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Abstract

Microtubules (Mts) are dynamic cytoskeleton structures that play a key role in vesicular

transport. The Mts-mediated transport depends on motor proteins named kinesins and the

dynein/dynactin motor complex. The Rab7 adapter protein FYCO1 controls the anterograde

transport of the endocytic compartments through the interaction with the kinesin KIF5. Rab7

and its partner RILP induce the recruitment of dynein/dynactin to late endosomes regulating

its retrograde transport to the perinuclear area to fuse with lysosomes. The late endosomal-

lysosomal fusion is regulated by the HOPS complex through its interaction with RILP and

the GTPase Arl8. Coxiella burnetii (Cb), the causative agent of Q fever, is an obligate intra-

cellular pathogen, which generates a large compartment with autophagolysosomal charac-

teristics named Cb-containing vacuole (CCV). The CCV forms through homotypic fusion

between small non-replicative CCVs (nrCCV) and through heterotypic fusion with other

compartments, such as endosomes and lysosomes. In this work, we characterise the role of

Mts, motor proteins, RILP/Rab7 and Arl8 on the CCV biogenesis. The formation of the CCV

was affected when either the dynamics and/or the acetylation state of Mts were modified.

Similarly, the overexpression of the dynactin subunit non-functional mutants p150Glued and

RILP led to the formation of small nrCCVs. This phenomenon is not observed in cells over-

expressing WT proteins, the motor KIF5 or its interacting protein FYCO1. The formation of

the CCV was normal in infected cells that overexpressed Arl8 alone or together with hVps41

(a HOPS subunit) or in cells co-overexpressing hVps41 and RILP. The dominant negative

mutant of Arl8 and the non-functional hVps41 inhibited the formation of the CCV. When the

formation of CCV was affected, the bacterial multiplication diminished. Our results suggest

that nrCCVs recruit the molecular machinery that regulate the Mts-dependent retrograde

transport, Rab7/RILP and the dynein/dynactin system, as well as the tethering processes

such as HOPS complex and Arl8 to finally originate the CCV where C. burnetii multiplies.
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Introduction

Coxiella burnetii, a Gram-negative intracellular bacterium, is the etiological agent of human Q

fever, a disease that generally manifests as an acute, debilitating flu-like illness [1]. The bacte-

rium can survive long periods in the environment since it is highly resistant to heat, drying,

and common disinfectants. C. burnetii can infect mainly monocytes/macrophages and a wide

variety of host cells in vitro [2]. Depending on the lipopolysaccharide (LPS) content, C. burnetii
presents two phase variants: the virulent Nine Mile phase I variant (NMI) and the avirulent

Nine Mile phase II variant (NMII). C. burnetii phase I produces a full-length LPS, while C. bur-
netii phase II displays a truncated LPS [3,4]. Even though phase I and phase II C. burnetii con-

tain LPSs of different in lengths, the intracellular behavior of both phases is similar.

C. burnetii is internalised and sequestered in small vacuoles that progressively fuse with

each other and mature to generate a large vacuole named Coxiella burnetii-containing vacuole

(CCV) [5–7]. The CCV presents autophagolysosomal characteristics, which favour bacterial

replication. The CCV is highly fusogenic with different compartments of the endocytic, phago-

cytic and autophagic pathways and also with vesicles derived from the endoplasmic reticulum

(ER) [8,9].

Mts serve as tracks for vesicular traffic in phagosome maturation. Besides, during certain

infections, the Mts dynamics can be modified and controlled by the pathogen, such as Shigella
spp and E. coli [10,11].

Mts are polar structures with two distinct ends: a fast-growing plus end and a slow-growing

minus end. There are two types of Mts-based molecular motors in the cell: kinesins and the

dynein/dynactin complex. Members of the kinesin family typically transport cargoes toward

the plus end of Mts; by contrast, members of the dynein family do so toward the minus end of

Mts [12]. Mts, and particularly dynein, are known to be involved in the invasion by several

pathogens such as Shigella spp. and Campylobacter jejuni [13,14].

The stability and dynamics of Mts depend on post-translational modifications of tubulin,

including detyrosination/tyrosination, acetylation/deacetylation, phosphorylation, glutamyla-

tion, glycosylation and the generation of non-tyrosinatable α-tubulin [15–17]. The acetyla-

tion/deacetylation state of tubulin has been associated with cell motility, intracellular transport

and ciliary assembly/disassembly [16]. HDAC6 and αTAT are the main regulators of α-tubulin

deacetylation and acetylation, respectively [18]. It has recently been demonstrated that histone

deacetylase 6 (HDAC6) and NAD-dependent tubulin deacetylase sirtuin-2 (SIRT2) drive the

ciliary disassembly [19] and the mitotic progression in the normal cell cycle [20]. αTAT is the

main tubulin acetyltransferase in mammals [21–23]. In mice, this acetyltransferase is involved

in sperm motility and fertility [24]. αTAT also participates in cell adhesion and contact inhibi-

tion of proliferation [25]. Acetylation-deacetylation modification also seems to regulate the

interaction of the motors with the Mts surface [26–28].

The later steps of endosomal trafficking are under the control of the GTPase Rab7 [29].

Rab7 orchestrate the molecular machinery that controls transport, aggregation, and fusion of

late endosomes and lysosomes. [30]. Interestingly, some pathogens reside in phagosomes that

exclude Rab7 from their membranes [31–33], whereas others reside in phagosomes that recruit

this GTPase [34]. The plus-end movement of endosomes along Mts is mediated by the interac-

tion of Rab7 with the FYCO1 protein, which can interact with kinesin motor proteins [35].

RILP is involved in targeting the dynein-dynactin motor complex to Rab7-containing organ-

elles [36]. RILP also regulates the recruitment of the HOPS complex (homotypic fusion and

protein sorting) to endocytic compartments; it is a complex that stimulates tethering and

fusion of late endosomes. HOPS is a conserved protein complex consisting of several VPS

(vacuolar protein sorting) protein subunits including Vps11, Vps16, Vps18, Vps33, Vps39,
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and Vps41 [37–40]. The N-terminal region of RILP interacts with the HOPS complex, mainly

with the C-terminal region of the Vps41 subunit [41].

Lysosomes are dynamic organelles which not only participate in the cell substrate degrada-

tion but they also play critical roles in processes such as cholesterol homeostasis, repair of the

plasma membrane, antigen presentation and cell migration [42]. Arl8, which is a member of

Arf-like (Arl) GTPases, has recently been identified as a crucial regulator of membrane traffic

toward lysosomes and lysosome positioning. This protein mediates the kinesin I-dependent

lysosome motility along the Mts towards the cell periphery [43,44]. Furthermore, Arl8 regu-

lates membrane traffic to the lysosomes through the recruitment of HOPS complex subunits.

The Vps41-Arl8 interaction regulates the endocytic cargo degradation. It has been proposed

that Arl8-positive lysosomes and Rab7-positive late endosomes fuse through interaction with

the HOPS complex [45].

Many pathogens can modulate the activity of Rab GTPases through the secretion of effectors

into the host cell cytoplasm [46]. For example, Mycobacterium tuberculosis and Listeria monocy-
togenes have been found in modified Rab5-positive endocytic compartments [47]. Tropheryma
whipplei resides in a Rab5-Rab7 positive phagocytic compartment that does not fuse with lyso-

somes. Burkholderia cenocepacia can survive within macrophages because it arrests the fusion

of phagosomes with lysosomes by acting at the level of Rab7 function [48]. The CCV is intensely

labelled with Rab7, and this GTPase is known to regulate the vacuole biogenesis [5].

In the present work, we evaluate the role of Mts, the acetylation of tubulin, motor com-

plexes and GTPases involved in late endolysosomal trafficking and tethering process in the

biogenesis of the CCV. Through the treatment of C. burnetii-infected HeLa cells with either

nocodazole or taxol, or the overexpression of the deacetylases HDAC6 and SIRT2 and αTAT,

we demonstrated the crucial role of the dynamics of Mts in the biogenesis of the CCV. Unlike

the overexpression of the dynein complex, the overexpression of KIF5 inhibited the formation

of the CCV. Furthermore, the overexpression of Rab7, RILP, and Arl8 allowed the formation

of the CCV through the interaction with motor proteins and the HOPS complex. These find-

ings would suggest that after internalization, C. burnetii travels on Mts inside small vacuoles

containing bacteria (non-replicative CCVs, nrCCVs), using the dynein/dynactin complex to

move in a retrograde manner, while acquiring the tethering molecular machinery to fuse with

each other, with endosomes and lysosomes to form the characteristic CCV where bacteria

replicate.

Material and methods

Materials

Dulbecco’s Modified Eagle’s Medium (D-MEM), fetal bovine serum (FBS), penicillin and

streptomycin were obtained from Gibco BRL/Life Technologies (Buenos Aires, Argentina).

Plasmids encoding EGFP-HDAC6 WT and EGFP-HDAC6 H216A/H611A were kindly pro-

vided by Francisco Sánchez Madrid (Instituto de Investigación Sanitaria Princesa IIS-IP, Uni-

versidad Autónoma de Madrid, Spain). Plasmids encoding EGFP-αTAT WT and EGFP-

αTAT D157N were kindly provided by Philippe Chavrier (Intitut Curie, Paris, France). Plas-

mids encoding EGFP-p150GluedWT, EGFP-p50dynamitinWT and DsRed-p150GluedCC1 were

kindly provided by Jean Celli (Laboratory of Intracellular Parasites, Rocky Mountain Labora-

tories, National Institute of Allergy and Infectious Diseases, National Institutes of Health,

Hamilton, USA). Plasmids encoding DsRed-RILP WT and DsRed-RILP ΔN were kindly pro-

vided by Jacques Neefjes (Nederlands Kanker Instituut, Amsterdam, Netherlands). Plasmids

encoding EGFP-KIF5B WT and EGFP-KIF5B 332–963 were kindly provided by Juan Bonifa-

cino (National Institutes of Health, Bethesda, USA). Plasmids encoding EGFP-FYCO1 WT
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and EGFP-FYCO1 Δ555–1136 were kindly provided by Terje Johansen (Institute of Medical

Biology, University of Tromsø, Tromsø, Norway). Plasmids encoding HA-hVps41 WT and

HA-hVps41 A187T were kindly provided by Mahak Sharma (Indian Institute of Science, Edu-

cation and Research Mohali, Punyab, India). Plasmids encoding EGFP-Arl8 WT and EGF-

P-Arl8 T34N were kindly provided by Roberto Botelho (Department of Chemistry and

Biology, Ryerson University, Toronto, ON). Plasmids encoding HA-SIRT2 WT and HA-

SIRT2 NLSΔNES were kindly provided by Bernhard Lüscher (Uniklinik RWTH Aachen, Insti-

tut für Biochemie und Molekularbiologie, Aachen, Germany). Plasmids encoding pEGF-

P-Rab7 WT, pEGFP-Rab7 T22N and pEGFP-Rab7 Q67L were kindly provided by Bo van

Deurs (University of Copenhagen, Copenhagen, Denmark).

The rabbit polyclonal anti-Coxiella burnetii serum was kindly provided by Robert Heinzen

(Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MTS, USA). The anti-HA monoclo-

nal antibody was obtained from Sigma-Aldrich (Argentina). The monoclonal antibody against

α-tubulin was kindly provided by Cristian Acosta (IHEM, CONICET). Secondary antibodies

were purchased from Jackson ImmunoResearch Laboratories, Inc. (West Grove, PA, USA

Phalloidin). Taxol and nocodazole were obtained from Sigma-Aldrich (Argentina).

Cell culture

HeLa and Vero cells (Asociación Banco Argentino de Células, Buenos Aires, Argentina) were

grown in DMEM supplemented with 10% heat-inactivated FBS, 2.2 g/l sodium bicarbonate, 2

mM glutamine, 100 IU/ml penicillin and 100 μg/ml streptomycin, pH 7, at 37˚C under a 5%

CO2 atmosphere.

Propagation of phase II C. burnetii
Clone 4 phase II Nine Mile strain of C. burnetii, which is infective for cells in culture but not

for animals, was provided by Ted Hackstadt (Rocky Mountain Laboratories, NIAID, NIH,

Hamilton, MTS, USA) and handled in a biosafety level II facility. Non-confluent Vero cells

were cultured in T25 flasks at 37˚C under a 5% CO2 atmosphere in DMEM supplemented

with 5% FBS, 0.22 g/l sodium bicarbonate and 20 mM Hepes, pH 7 (MfbH). Cultures were

infected with C. burnetii phase II suspensions for 6 days at 37˚C under a 5% CO2 atmosphere.

To prepare cell lysates, cells were frozen at -70˚C, then thawed at 37˚C, scraped and passed 20

times through a 27 μm gauge needle connected to a syringe. Cell lysates were centrifuged at

800 x g for 10 min at 4˚C. Supernatants were centrifuged at 24,000 x g for 30 min at 4˚C, and

pellets containing C. burnetii were resuspended in phosphate-buffered saline (PBS; 10 mM

sodium phosphate, 0.9% NaCl), aliquoted and frozen at -70˚C.

Infection of HeLa cells with C. burnetii
A total of 0.5x105 HeLa cells were seeded on sterile glass coverslips placed in 24-well plates and

grown overnight (see above). For infection, a 1μl aliquot of C. burnetii suspension was added

to each well (multiplicity of infection: 20–40). Cells were incubated overnight at 37˚C under

5% CO2 for bacterial internalization. After that, cells were post-incubated for 48 h to allow the

formation of C. burnetii-containing vacuole.

Treatment of infected cells with taxol and nocodazole during the formation

of C. burnetii containing vacuole

Infected HeLa cells were treated with taxol (2 μM) or nocodazole (2 μM) during 48 h post-

infection at 37˚C under a 5% CO2 atmosphere.
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Fluorescence staining

HeLa cells were fixed with 4% paraformaldehyde solution in PBS for 10 min at 37˚C, washed

with PBS, and blocked with PBS with 5% SFB. Subsequently, cells were permeabilized with

0.05% saponin in PBS containing 0.5% BSA and then incubated with primary antibodies

against C. burnetii (1:800). After washing, cells were incubated with secondary antibodies con-

jugated to Cy2, Cy3 or Cy5 (1:500). To detect the HA-tag, antibodies conjugated to Alexa

Fluor 488 and Cy3 were used. Cells were mounted with Mowiol and examined by fluorescence

microscopy

Cell transfection

Infected cells were transfected for 2 h with 1 μg/ml of an empty pEGFP vector, pEGFP encod-

ing HDAC6 WT, HDAC6 H216A/H611A, αTAT WT, αTAT D157N, KIF5B WT, KIF5B

332–963, FYCO1 WT, FYCO1 Δ555–1136, p150GluedWT, p50dynamitinWT, Arl8 WT, Arl8

T34N, Rab7 WT, Rab7 T22N and Rab7 Q67L, DsRed encoding RILP WT, RILP ΔN and

p150GluedCC1 or HA encoding hVps41 WT, hVps41 A187T, SIRT2 WT and SIRT2 NLSΔNES

using the Lipofectamine 2000 reagent according to the manufacturer’s instructions (Invitro-

gen, Buenos Aires, Argentina).

Foci-forming unit (FFU) assay

This assay was performed according to Howe et al. [9]. Briefly, a total 1,5x105 Vero cells were

seeded on sterile glass coverslips placed in 24-well plates and incubated overnight to reach con-

fluency. Infected cells subjected to different experimental conditions were lysed with hypo-

tonic buffer and then scrapped from a six-well plate. Ten-fold serial dilutions of the cell lyses

in cultured medium were used to infect Vero cells. After incubating 16 h at 37˚C under a 5%

CO2 atmosphere, cells were washed with PBS and incubated in culture medium for 48 h. Cells

were fixed in methanol and the fluorescent staining of infectious foci was performed by indi-

rect immunofluorescence using an anti-C. burnetii antibody and an Alexa Fluor 488-conju-

gated goat anti-rabbit IgG as secondary antibody (Molecular Probes cat # A-11034). FFU were

quantified in 10 fields of each sample using a Nikon Eclipse TE2000 microscope with a 20x

objective.

Determination of size and number of C. burnetii-containing vacuoles

Infected cells were defined as those containing at least one bacterium inside, detected by

immunofluorescence. An average of 50 cells per coverslip was calculated (in triplicate) to

determine the diameter and number of vacuoles containing C. burnetii. Images were acquired

with a Nikon Eclipse TE2000 microscope with a 60x objective, and analysed by phase contrast

microscopy and assumptions with the fluorescence image to be able to observe the limit of the

CCV correctly (and the location of the fluorescent protein overexpressed in relation to the

CCV). The size and number of CCV were calculated by means of a morphometric analysis

using the different measurement tools of the ImageJ software.

Fluorescence microscopy

HeLa cells were analysed under an Eclipse TE2000 inverted microscope (Nikon, Japan).

Images were obtained with a charge-coupled device camera (Orca I; Hamamatsu) and pro-

cessed with the Metamorph 6.1 software (Universal Images Corporation). Representative

images of each experiment were acquired with the Olympus FV1000 confocal microscope and

the FV 10-ASW 1.7 software (Olympus, Japan). Images were deconvoluted using the ImageJ
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software (NIH [http://rsb.info.nih.gov/ij]). The degree of co-localization between CCV and

the proteins of interest was quantified in control and infected cells. The localization degree of

the proteins under study with the CCV in phase contrast images was analysed by the Pearson

coefficient. The correlation of fluorescent intensity to quantify co-localization of two proteins

on the CCV was analysed by the Manders coefficient. Proteins were considered to co-localize

when the values of the coefficients were above 0.5. The analysis was done using the JACoP

plugin (Just Another Co-localization Plugin; NIH [https://imagej.nih.gov/ij/plugins/track/

jacop2.html]) of the ImageJ software.

Statistical analysis

Data were expressed as the means ± standard error of the mean (SE) from three independent

experiments. Statistics were performed with the GraphPad Prism software using one-way

ANOVA and/or Student’s two-tailed t-test followed by the Tukey’s comparisons test.

Results

Host cell microtubules-dependent biogenesis of the C. burnetii-containing

vacuole

With the aid of molecular motors, Mts are used as structural support and as tracks to guide

and transport intracellular cargoes [49]. Both the cargo transport and the Mts assembly and/or

disassembly can be used for certain intracellular pathogens [50]. To determine if any modifica-

tion occurring at the Mts level affects the biogenesis of the C. burnetii-containing vacuole

(CCV), we assessed the effect of taxol and nocodazole during a cell post-infection period. We

first determined, by Trypan Blue staining, if the treatment with these drugs affected cell viabil-

ity. As shown in S1 Fig, the incubation for different times with taxol or nocodazole (2 μM) did

not affect cell viability.

HeLa cells were infected for 16 h and then incubated for 48 h with either taxol or nocoda-

zole. After incubating, cells were processed for IIF and analysed by confocal microscopy. To

distinguish the compartments that contain C. burnetii, cells were analysed by phase-contrast

bright-field microscopy. When the Mts were altered by taxol or nocodazole, C. burnetii was

found in small vacuoles. As a rule, these vacuoles contained a single bacterium, suggesting a

low bacterial replication rate (Fig 1A, panels f and j, E panels b and c). The size of these (1.76

±0.32 μm and 1.52±0.55 μm, for vacuoles altered by taxol and nocodazole, respectively) was

around four folds smaller than the CCV size observed in DMSO-treated cells (5.48±0.61 μm)

(Fig 1A and 1B). While one CCV was observed in control cells incubated with DMSO (Fig 1A,

panel b, and 1B), approximately twelve nrCCVs were observed in treated cells (Fig 1 A, panels

f and j, and C). To determine if the phenotype alteration caused by the treatment with either

taxol or nocodazole alters bacterial replication, intracellular bacteria were quantified by the

foci-forming unit (FFU) assay. Bacterial replication was diminished by 84% in cells treated

with taxol and by 67% in cells treated with nocodazole, as compared to control cells incubated

with DMSO (Fig 1D). The decrease in bacterial multiplication would be in agreement with the

phenotype displayed by small vacuoles containing a single bacterium. These results suggest

that the formation of the CCV and bacterium multiplication requires dynamic Mts.

Although controversial, the Mts stability has been related to post-translational modifica-

tions of α-tubulin, such as the acetylation-deacetylation [51–53]. Deacetylation is known to be

carried out by HDAC6 and SIRT2, while acetylation is catalysed by αTAT [54]. To determine

whether the HDAC6 and SIRT2 were related to the biogenesis of the CCV, HeLa cells were

infected with C. burnetii and then transfected with plasmids encoding either HDAC6 WT
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(wild type) or its mutant HDAC6 H216A/H611A or αTAT WT or its mutant αTAT D157N.

These mutants are catalytically inactive enzymes that cannot covalently modify Mts [55]. As

shown in Fig 2A, the overexpression of HDAC6 WT prevented the formation of the CCV

(panels a-d) while such process was not affected by the inactive mutant (panels e-h). Interest-

ingly, non-transfected cells showed CCV (panels a-c, arrow pointed cells). This observation

was corroborated when the size and number of CCV were determined. In cells expressing

HDAC6 WT, the CCV size was 0.5±0.1 μm vs. 8.5±0.5 μm in cells expressing HDAC6 H216A/

H611A (Fig 2B). The CCV number was 26±4 vacuoles/cell in HDAC6 WT cells vs. 2.0±5.0 vac-

uoles/cell in HDAC6 H216A/H611A cells (Fig 2C). Similar differences were observed between

cells overexpressing the HDAC6 WT and control cells overexpressing EGFP (Fig 2B and 2C).

The bacterial multiplication was inhibited by 73% in cells overexpressing HDAC6 WT as com-

pared to cells overexpressing EGFP (control) and cells overexpressing HDAC6 H216A/H611A

(Fig 2D).

The role of SIRT2 deacetylase was also evaluated. Infected HeLa cells were transfected with

plasmids encoding HA-SIRT2 WT and its mutant HA-SIRT2 NLΔNES. This truncated mutant

lacks the NES domain (nuclear export signal), therefore it cannot be transported from the

nucleus to cytoplasm to catalyse substrate deacetylation [56]. As shown in S2 Fig, HA-SIRT2

WT remained dispersed in the cell cytoplasm and induced the formation of small and numer-

ous nrCCVs (S2A Fig, panels a-d, S2B and S2C). A CCV was observed in a non-transfected

cell (S2A Fig, panels a-c, arrow pointed cells). In cells overexpressing the mutant HA-SIRT2

NLΔNES, which was sequestered in the nucleus, CCVs presented size and number that was

similar to those observed in control cells overexpressing EGFP (S2A Fig, panels e-h, S2B and

S2C). The bacterial multiplication was inhibited by 60% in cells overexpressing HA-SIRT2

WT, as compared to that observed in EGFP overexpressing cells (control) and HA-SIRT2

NLΔNES overexpressing cells (S2D Fig).

It is expected that the overexpression of αTAT have an opposite effect to that observed with

HDAC6 and SIRT2. As shown in Fig 2A, CCVs were observed not only in cells overexpressing

αTAT WT (panels i-l) but also in control cells (data not shown). In contrast, the mutant αTAT

D157N inhibited the formation of the CCV (panels m-p). This observation was corroborated

when the size and number of CCVs were determined (αTAT WT: 7.0±0.2 μm vs. αTAT

D157N: 1.6±0.2 μm; αTAT WT: 2.0±1.0 vacuoles/cell vs. αTAT D157N 30.0±2.0 vacuoles/cell;

Fig 2B and 2C). Similar differences in the CCV size and number were observed in cells overex-

pressing the αTAT D157N, as compared to control cells overexpressing EGFP (Fig 2B and

2C). CCVs were observed in cells that did not express EGFP-αTAT D157N (Fig 2A, panels m-

o, arrow pointed cells). Bacterial multiplication was inhibited by 47% in cells overexpressing

αTAT D157N in comparison to cells overexpressing αTAT WT and control cells overexpres-

sing EGFP (Fig 2D).

To check the acetylation status of Mts, HeLa cells were infected with C. burnetii, then trans-

fected with plasmids encoding either HDAC6 WT or αTAT WT, and processed by immuno-

fluorescence to detect acetylated α-tubulin using a specific antibody. As shown in S3 Fig,

moderate levels of acetylated Mts were observed in untransfected cells (arrow pointed cells). In

Fig 1. Dynamic microtubules participate in the formation of the CCV. HeLa cells were infected for 16 h with Coxiella burnetii and

incubated for 48 h with either DMSO (control), taxol or nocodazole. Cells were then fixed and processed for IIF. Mts were labelled with

an anti-α tubulin antibody (green pseudo-colour) or C. burnetii with a specific antibody (red pseudo-colour). (A) Cells treated with 0.1%

DMSO (panel a-d), 2 μM taxol (panel e-h), and 2 μM nocodazole (Noc) (panel i-l). Scale bar: 10 μm. Quantitative analysis of CCV size

(B) and number (C)s, and bacterial multiplication (D). Forty to sixty cells were analysed in each experiment. Results are expressed as

means ± SE of three independent experiments. ���p<0.001. (E) Phase contrast microscopy of infected and transfected HeLa cells.

Arrowheads indicate a nrCCV (panel b and c), or a CCV (panel a). Scale bar: 2 μm.

https://doi.org/10.1371/journal.pone.0209820.g001
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cells overexpressing HDAC6 WT, Mts acetylation was slightly reduced (panels a-d), as com-

pared to non-transfected cells (arrow pointed cells). High Mts acetylation levels were observed

in cells overexpressing αTAT WT (panel e-h) as compared to untransfected cells (arrow

pointed cells). nrCCVs were observed in cells overexpressing HDAC6 WT (panel c) while

CCVs developed in cells overexpressing αTAT (panel g) and in untransfected cells (arrow

pointed cells). HDAC6 WT deacetylase mainly acts on tubulin dimers [57], which could justify

the low or basal levels of Mts acetylation found in cells overexpressing HDAC6 WT. Although

the formation of CCV was observed in cells overexpressing αTAT with high levels of Mts acet-

ylation, we cannot assert that our observation can be attributed to this post-translation modifi-

cation. HDAC6 and αTAT participate in the regulation of the dynamics of Mts rather than in

their stability [58–61]. Taking into account the effects caused by the overexpression of these

enzymes and by the treatment with either nocodazole or taxol on the formation of the CCV,

we conclude that the dynamics of Mts are crucial for the biogenesis of the CCV.

The dynein/dynactin motor complex is involved in the formation of the C.

burnetii-containing vacuole

The dynein/dynactin motor complex is responsible for the Mts-dependent intracellular retro-

grade transport. Dynactin is a heterocomplex comprising several subunits, including

p150Glued, p50dynamitin and Arp1 [62–64]. To determine the role of the dynein/dynactin motor

complex, cells were infected and then transfected with pEGFP-p150GluedWT or pEGFP-

p50dynamitinWT. As shown in Fig 3A (panels a-d) and Table 1, the overexpressed p150GluedWT

was recruited to CCV membranes without inducing a significant modification in the size (5.0

±0.2 μm) and number (4.0±1.0 vacuoles/cell) of CCV, as compared to control cells overexpres-

sing EGFP (6.1±0.1 μm, 2.0±0.2 vacuoles/cell) (Fig 3B and 3C).

The CCV phenotype was altered in cells overexpressing the mutant p150GluedCC1. This

mutant is known to bind dynein and to disrupt the dynein-dynactin interaction, thus altering

the motor activity [65]. As shown in Fig 3A (panels i-l), nrCCVs were observed instead of a

CCV. When the cells presented in panels i-k were analysed; CCVs were observed in non-trans-

fected cells (arrow pointed cells). The quantification showed small (0.5±0.1 μm) and numerous

(25.5±0.5 vacuoles/cell) nrCCVs, as compared to control cells overexpressing EGFP (Fig 3B

and 3C). In cells overexpressing p150GluedCC1, a statistically significant inhibition (35%) of

bacterial multiplication was observed, as compared to p150GluedWT or EGFP overexpressing

cells (control) (Fig 3D).

It has been described that the overexpressed p50dynamitinWT subunit disrupts the dynein-

dynactin motor complex dispersing p150GluedWT into the cytoplasm [66]. To assess whether the

assembly of the dynein-dynactin complex is necessary for the formation of the CCV, infected

HeLa cells were transfected with a pEGFP-p50dynamitinWT. As shown in Fig 3A (panels e-h), 3B

and 3C, small (0.5±0.1 μm) and numerous (23.0±1.0 vacuoles/cell) nrCCVs were observed in

EGFP-p50dynamitinWT overexpressing cells. Non-transfected cells presented a CCV (panels e-g,

cells pointed by arrows). In cells overexpressing EGFP-p50dynamitinWT, a statistically significant

Fig 2. Overexpression of HDAC6 and αTAT regulate the formation of CCV. (A) Infected HeLa cells were transfected

with pEGFP-HDAC6WT (panels a-d), -HDAC6 H216A/H611A (panels e-h), -αTAT WT (panels i-l) or -αTAT D157N

(panels m-p). Cells were fixed and processed for IIF. An anti-C. burnetii (red pseudo-colour) antiserum was used for

detecting bacteria. Arrows indicate untransfected cells containing CCVs. Scale bar: 10 μm. Quantitative analysis of CCV size

(B), number (C), and bacterial multiplication (D). Forty to sixty cells were analysed in each experiment. Results are

expressed as means ± SE of three independent experiments. ��p<0.01, ���p<0.001. (E) Phase contrast microscopy of

infected and transfected HeLa cells. Arrowheads indicate a nrCCV (panel a and d), and a CCV (panel b and c). Scale bar:

2 μm.

https://doi.org/10.1371/journal.pone.0209820.g002
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inhibition (55%) in bacterial multiplication was observed, as compared to control cells overexpres-

sing EGFP (Fig 3D). These results suggest that a functional dynein-dynactin motor complex is

required for the formation of the big vacuoles that shelter C. burnetii.

Fig 3. The formation of CCV is regulated by the dynein/dynactin motor complex. (A) Infected HeLa cells were transfected with

pEGFP-p150GluedWT (panels a-d), -p50dynamitinWT (panels e-h), pDsRed-p150GluedCC1 (panels i-l), -RILP WT (panels m-p) or -RILP

ΔN (panels q-t). Arrows indicate non-transfected cells containing CCV. Scale bar: 10μm. Cells were fixed and processed for IIF. C.

burnetii was detected with an anti-C. burnetii antiserum (panels b-h, red pseudo-colour; panels j-t, green pseudo-colour. Quantitative

analysis of CCV size (B) and number (C), and bacterial multiplication (D). Forty to sixty cells were analysed in each experiment.

Results are expressed as means ± SE of three independent experiments. �p<0.05; ���p<0.001. (E) Phase contrast microscopy of

infected and transfected HeLa cells. Arrowheads indicate a nrCCV (panels b, c and e), or a CCV (panels a and d). Scale bar: 2 μm.

https://doi.org/10.1371/journal.pone.0209820.g003

Table 1. Pearson’s and Manders’ colocalization coefficients.

Coefficients Values

Pearson CCV—RILP WT 0.824 ± 0.021

Manders RILP WT—Rab7 WT M1 0.700 ± 0.050

Manders Rab7 WT—RILP WT M2 0.625 ± 0.005

Manders RILP WT—Rab7 T22N M1 0.175 ± 0.026

Manders Rab7 T22N - RILP WT M2 0.350 ± 0.018

Manders RILP WT—Rab7 Q67L M1 0.650 ± 0.005

Manders Rab7 Q67L - RILP WT M2 0.640 ± 0.020

Manders RILP WT—p150 WT M1 0.800 ± 0.010

Manders p150 WT—RILP WT M2 0.815 ± 0.020

Manders RILP WT—p50 WT M1 0.900 ± 0.023

Manders p50 WT—RILP WT M2 0.620 ± 0.030

Manders RILP WT—hVps41 WT M1 0.840 ± 0.016

Manders hVps41 WT—RILP WT M2 0.890 ± 0.018

Manders RILP WT—hVps41 A187T M1 0.160 ± 0.020

Manders hVps41 A187T - RILP WT M2 0.163 ± 0.022

Pearson CCV—RILP ΔN 0.710 ± 0.010

Manders RILP ΔN—Rab7 WT M1 0.700 ± 0.025

Manders Rab7 WT—RILP ΔN M2 0.725 ± 0.012

Manders RILP ΔN—p150 WT M1 0.850 ± 0.025

Manders p150 WT—RILP ΔN M2 0.650 ± 0.012

Manders RILP ΔN—hVPs41 WT M1 0.850 ± 0.020

Manders hVps41 WT—RILP ΔN M2 0.775 ± 0.025

Pearson CCV—p150 WT 0.675 ± 0.025

Pearson CCV—p150 CC1 0.100 ± 0.010

Pearson CCV—p50 WT 0.225 ± 0.025

Pearson CCV—Arl8 WT 0.860 ± 0.030

Pearson CCV—Arl8 T34N 0.350 ± 0.025

Pearson CCV—hVps41 WT 0.800 ± 0.045

Manders hVps41 WT—Arl8 WT M1 0.675 ± 0.025

Manders Arl8 WT—hVps41 WT M2 0.730 ± 0.025

Manders hVps41 WT—Arl8 T34N M1 0.900 ± 0.020

Manders Arl8 T34N - hVps41 WT M2 0.605 ± 0.022

Pearson CCV—hVps41 A187T 0.200 ± 0.025

Manders hVps41 A187T - Arl8 WT M1 0.630 ± 0.015

Manders Arl8 WT—hVps41 A187T M2 0.873 ± 0.015

Pearson CCV—FYCO1 WT 0.750 ± 0.023

Pearson CCV—FYCO1 Δ555–1136 0.800 ± 0.005

https://doi.org/10.1371/journal.pone.0209820.t001
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There is evidence suggesting that motor proteins have more affinity for acetylated Mts

[18,27,63,67,68]. The latter finding is in line with the observation that infected cells co-express-

ing HA-SIRT2 NLΔNES and p150GluedWT developed CCVs labelled with p150GluedWT (S4A,

S4B and S4C Fig). The same phenomenon was observed for EGFP overexpressing cells (Fig 2B

and 2C). Small and numerous nrCCVs were formed in cells co-expressing HA-SIRT2WT and

p150GluedWT. These vacuoles were not decorated with p150GluedWT. CCVs were observed in

non-transfected cells used as internal control (panels a-c and e-g, cells pointed by arrows).

These results suggest that deacetylases disrupt the formation of CCVs, even in the presence of

p150GluedWT.

We have previously reported that the GTPase Rab7 is recruited to CCV and that its active

state is necessary to allow vacuole formation [5,7]. It is known that Rab7 is a key regulator of the

endosome and phagosome maturation and the Mts-mediated intracellular transport [69]. Rab7

participates in the transport toward the minus or plus ends of Mts, with the direction being

defined by its binding to either RILP (Rab interacting lysosomal protein) or FYCO, which inter-

act with dynein or kinesin, respectively. The RILP-Rab7 association plays an important role in

the recruitment of the dynein-dynactin motor complex to endosomal compartments during

transport towards the pericentriolar region [36,70]. We hypothesise that since C. burnetii is

transported inside vacuoles along the phagocytic pathway, the pathogen takes advantage of

RILP to finally generate the large CCV. To test this hypothesis, infected cells were transfected

with plasmids encoding RILP WT or the truncated mutant RILP ΔN, which bind Rab7 but not

the motor complex. As shown in Fig 3A (panels m-p) and Table 1, the overexpressed pDsRed-

RILP WT was recruited to the CCV membrane. The size (5.5±0.2 μm) and number (3.0±1.0

vacuoles/cell) of CCVs were comparable to those observed in control cells overexpressing EGFP

(6.2±0.2 μm, 2.0±0.1 vacuoles/cell) (Fig 3B and 3C). The overexpression of the truncated

mutant RILP ΔN generated a high number of RILP ΔN positive nrCCVs (17.5±0.5 vacuoles/

cell, 1.2±0.2 μm) (Fig 3A, panels q-t, 3B and 3C, and Table 1). The overexpression of RILP WT

did not significantly affect the multiplication of C. burnetii as the truncated mutant did (86%

decrease) when compared to control cells overexpressing EGFP (Fig 3D).

To confirm the role of RILP in the biogenesis of the CCV, endogenous RILP and overex-

pressed EGFP were knocked down by specific siRNAs. Similarly, to the effects observed after

the overexpression of the dominant negative mutant RILP ΔN, the depletion of the endoge-

nous and the overexpressed EGFP-RILP proteins led to the generation of nrCCVs instead of

CCV (S5 Fig).

Taken together, these results suggest that the RILP and the dynein-dynactin motor complex

participate in the biogenesis of the CCV and in bacterial multiplication.

Infected HeLa cells were either transfected or co-transfected with plasmids encoding the

different proteins under study. Cells were fixed, processed for IIF and analysed by confocal

microscopy. The fluorescence intensity of these proteins was analysed with specific channels.

Pearson’s (mono-transfection) and Manders’ (co-transfection) coefficients were calculated

using the JACoP plugin of the ImageJ software. Fifty cells overexpressing the proteins were

imaged in each experiment. Results are expressed as means ± SE of three independent experi-

ments. Data were analysed by one-way ANOVA.

The formation of C. burnetii-containing vacuole requires Rab7, RILP and

the dynein/dynactin motor complex

It is known that Rab7 associates with the cytoplasmic dynein-1 through the binding of RILP to

the dynactin p150Glued subunit to control late endosomal transport [36]. We have previously

demonstrated that Rab7 regulates the CCV biogenesis [5]. In this work, we study the role of
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the Rab7 effector RILP and the dynein/dynactin motor complex in that process. Cells were

infected and then co-transfected with pDsRed-RILP WT/pEGFP-Rab7 WT or pDsRed-RILP

ΔN/pEGFP-Rab7 WT. As shown in Fig 4A, DsRed-RILP WT and EGFP-Rab7 WT (panels a-

d), and RILP ΔN and Rab7 WT (panels e-h) were recruited to CCVs (Table 1). In cells overex-

pressing RILP WT/Rab7 WT (Fig 4A, 4B and 4C), the size (5.2±0.3) and number (4.7±0.3) of

CCVs were similar to those recorded in cells overexpressing RILP WT only (Fig 3) and control

cells overexpressing EGFP (Fig 4B and 4C). On the contrary, the combination of Rab7 WT

and RILP ΔN induced the formation of a higher number (25.0±2.5 vacuoles/cell) of smaller

(1.6±0.1 μm) nrCCVs (Fig 4A, 4B and 4C), as compared to control cells overexpressing EGFP

(Fig 4B and 4C). A similar effect was observed in cells overexpressing RILP ΔN alone (Fig 3).

Interestingly, in Fig 4A (panels e-h, cells pointed by arrows), a CCV can be observed in a non-

transfected cell.

In infected cells co-overexpressing DsRed-RILP WT and pEGFP-Rab7 Q67L (constitutively

active mutant), the number and size of CCVs (S6 Fig) were similar to those observed in control

cells overexpressing EGFP alone. Both proteins were recruited to the CCV (Table 1). In

infected cells that co-overexpressed pDsRed-RILP WT and EGFP-Rab7 T22N (dominant neg-

ative mutant), the size and number of vacuoles (S6 Fig) were diminished and increased,

respectively, as compared to control cells overexpressing only EGFP. Neither pDsRed-RILP

WT nor EGFP-Rab7 T22N was significantly recruited to vacuoles (Table 1). The latter finding

is in agreement with the regulation exerted by Rab7 on RILP [70].

To test the motor complex recruitment to the CCV membrane mediated by RILP, and the

impact in the formation of the CCV, infected cells were co-transfected with either pDsRed-RILP

WT or -RILP ΔN and the motor subunits pEGFP-p150GluedWT or -p50dynamitinWT. As shown in

Fig 4A (panel i-l) and Table 1, both p150GluedWT and RILP WT decorated the CCV membranes.

The combination RILP WT/p150GluedWT (Fig 4B and 4C) did not affect the size and number of

CCVs, parameters that were similar to those of cells overexpressing RILP WT or p150GluedWT

alone (Fig 3A–3C). In cells co-expressing DsRed-RILP ΔN and EGFP-p150GluedWT, RILP ΔN

was found to be associated to nrCCVs (Fig 4A, panels m-p, 4B and 4C), similarly to that observed

in cells expressing RILP ΔN alone (Fig 3A–3C). Interestingly, p150GluedWT, which was co-

expressed with RILP ΔN, was found to be associated in a low degree to nrCCVs (Fig 4A, panels

m-p, and Table 1). As shown above, a recruitment of overexpressed p150GluedWT was observed in

a CCV formed in mono-transfected cells (Fig 3A–3C and Table 1).

Unlike control cells overexpressing EGFP (Fig 4B and 4C) or cells expressing RILP alone

(Fig 3B and 3C), cells co-expressing RILP WT/p50dynamitinWT (Fig 4A, 4B and 4C), displayed

several nrCCVs, (12.2 ±0.2 vacuoles/cell) with small size (1.2 ±0.2 μm). Interestingly, when the

cells of panels p-t were analysed, non-transfected cells (Fig 4A, panels q-t) showed a normal

CCV phenotype. The overexpression of RILP WT seemed to induce a partial reversal in the

changes (size and number) exerted by the expression of p50dynamitin alone (Fig 3A–3C). Inter-

estingly, some p50dynamitin co-localized to vacuoles labelled with RILP WT (Fig 4A, panels q-t,

Fig 3A, panels e-h, and Table 1).

Together, these results suggest that the RILP/Rab7 association plays an important role in

recruiting the dynein-dynactin motor complex to vacuoles that contain C. burnetii.

KIF5 and FYCO1 inhibit the formation of the C. burnetii-containing

vacuole

Kinesins are motors that transport cargoes toward the plus end of Mts [71]. Kinesin I (KIF5) is

involved in Mts plus end transport of late endosomes [72]. FYCO1 participates actively in the

anterograde cargo transport by linking Rab7 to kinesin motor proteins.
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Fig 4. Rab 7 and its effector RILP are required for the formation of CCV. (A) Infected HeLa cells were co-transfected with

pDsRed-RILP WT and pEGFP-Rab7 WT (panels a-d), pDsRed-RILP ΔN and pEGFP-Rab7 WT (panels e-h), pDsRed-RILP WT
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Infected cells transfected with either EGFP-KIF5B WT or EGFP-KIF5B 332–963, a motor-

less form having a dominant-negative effect, were used as an experimental strategy to study

the role of kinesin in the formation of the CCV. It has been demonstrated that the KIF5B 332–

963 mutant causes a juxtanuclear clustering of lysosomes [73]. Infected cells overexpressing

EGFP-KIF5B WT presented a higher number (9.0±1 vacuoles/cell) and a smaller size (1.5

±0.2 μm) of vacuoles containing C. burnetii (Fig 5A, panels a-d, 5B and 5C) than those

observed in cells overexpressing EGFP-KIF5B 332–963 (1.0±1.0 vacuoles/cell; 7.0±0.5 μm)

(Fig 5A, panels e-h, 5B and 5C), or control cells overexpressing EGFP (1.5±0.5 vacuoles/cell;

8.5±0.5 μm) (Fig 5B and 5C). The multiplication rate of C. burnetii was inhibited by 22% in

cells overexpressing EGFP-KIF5B WT, when compared to control cells overexpressing EGFP

alone or cells overexpressing EGFP-KIF5B 332–963 (Fig 5D).

FYCO is an effector of Rab7 and an adaptor for kinesin, which participates in phagosome

tubulation processes [35] and autophagosome trafficking [74]. To study the possible relation-

ship between FYCO and the formation of CCV, infected cells were transfected with pEGFP-

FYCO1 WT or the pEGFP-FYCO1 Δ555–1136 mutant. As shown in Fig 5A both overexpressed

constructs EGFP-FYCO1 WT (panels i-l) and its non-functional mutant EGFP-FYCO1 Δ555–

1136 (panels m-t), were recruited to the membrane of vesicles containing C. burnetii (Table 1).

It is known that the construct EGFP-FYCO1 Δ555–1136 binds to Rab7 but not to the kinesin

motor [74]. In cells overexpressing EGFP- FYCO1 WT, the sizes of compartments containing

C. burnetii decreased (0.5±0.1 μm) while its number increased (4.2±0.1 vacuoles/cell), as com-

pared to cells overexpressing EGFP-FYCO1 Δ555–1136 (6.0±0.2 μm, 0.7±0.3 vacuoles/cell) or

to control cells overexpressing EGFP (Fig 5B and 5C). The multiplication rate of C. burnetii was

not affected by the overexpression of EGFP-FYCO1 Δ555–1136; however, a significant decrease

(37%) was observed in cells overexpressing FYCO1 WT, as compared to control cells overex-

pressing EGFP (Fig 5D).

These results suggest that C. burnetii resides in a compartment formed under the regulation

of FYCO1 and KIF5.

The HOPS complex participates in the formation of the C. burnetii-
containing vacuole through the interaction with RILP and Arl8

HOPS (homotypic fusion and protein sorting) is a complex that plays a critical role in regulat-

ing the late stage of the endocytic pathway by driving the late endosomal membrane tethering

and fusion. This complex consists of several subunits, in particular, Vps39 and Vps41 are sub-

units that presumably interact with Rab7, and can bind RILP [75]. The Vps41 subunit is

required for the stabilization of the HOPS complex [38,76].

Knowing that the formation of the CCV involves vesicle fusion and that the CCV is highly

fusogenic [77], HOPS is expected to participate in the CCV biogenesis. To study the role of the

HOPS complex in the formation of the CCV, infected cells were transfected with plasmids

encoding HA-hVps41 WT or its mutant HA-hVps41 A187T, which cannot bind RILP [78].

Infected cells overexpressing hVps41 WT showed a hVps41-positive CCV. Such cells pre-

sented 3.0±0.5 vacuoles/cell with a diameter of 7.2±0.5 μm (Fig 6A, panels a-d, 6B and 6C),

and pEGFP-p150GluedWT (panels i-l), pDsRed-RILP ΔN and pEGFP-p150GluedWT (panel m-p) or pDsRed-RILP WT and

pEGFP-p50dynamitinWT (panels q-t). Cells were fixed and processed for IIF. C. burnetii was detected with an anti-C. burnetii
antiserum (white pseudo-colour). Arrows indicate non-transfected cells containing CCV. Scale bar: 10 μm. Quantitative analysis

of CCV size (B) and number (C). Forty to sixty cells were analysed in each experiment. Results are expressed as means ± SE of

three independent experiments. ���p<0.001. (D) Phase contrast microscopy of infected and transfected HeLa cells. Arrowheads

indicate a nrCCV (panels b, d and e), and a CCV (panels a and c). Scale bar: 2 μm.

https://doi.org/10.1371/journal.pone.0209820.g004
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similarly to control cells (data not shown). Nevertheless, the overexpression of HA-hVps41

A187T induced the formation of smaller (1.0±0.2 μm) and a higher number (22.0 ±1.2 vacu-

oles/cell) of nrCCVs, as compared to control cells (Fig 6A, panels e-h, 6B and 6C). The multi-

plication rate of C. burnetii was inhibited by 71% in cells overexpressing HA-hVps41 A187T,

when compared to control cells overexpressing EGFP or cells overexpressing hVps41 WT (Fig

6D). Non-transfected cells presented CCVs (panels e-g, arrow pointed cells). These data sug-

gest that a functional hVps41 is important for the formation of the CCV.

The interplay between Vps41 and RILP is responsible, in part, for the fusion events that

take place during the late steps of the endocytic pathway. To study this relationship in during

the formation of the CCV, infected cells were co-transfected with plasmids encoding HA-

hVps41 WT and DsRed-RILP WT or DsRed-RILP ΔN. The size (6.2±0.2 μm) and the number

(2.7±0.2 vacuoles/cell) of CCV formed in cells overexpressing either hVps41 WT and RILP

WT (Fig 6A, 6B and 6C) did not differ from that observed in control cells overexpressing

EGFP (Fig 6B and 6C). Both proteins were recruited to the CCV membrane (Fig 6A, panels i-l,

and Table 1). In contrast, in cells overexpressing the hVps41 WT and RILP ΔN, C. burnetii
resided inside of numerous (23.7±0.2 vacuoles/cell) and small (1.0±0.2 μm) nrCCVs labelled

with RILP ΔN (Fig 6A, panels m-p, 6B and 6C), but lacking hVps41 WT. Similar results were

observed when RILP WT was co-expressed with hVps41 A187T (3.0±0.2 vacuoles/cell, 6.3

±0.2 μm) (Fig 6A, panels q-t, 6B and 6C). Normal CCVs were observed in non-transfected

cells (panels m-p and q-t, arrow pointed cells).

The small GTPase Arl8 (Arf-like Small G Protein 8) has been demonstrated to be involved

in the HOPS complex recruitment to LE/Ly without affecting the recruitment Rab7 [45].

Apparently, Rab7 is upstream of Arl8. However, it is considered that both GTPases work coop-

eratively in the recruitment and stabilization of the HOPS complex on endolysosomal mem-

branes [45,78].

When cells were infected and then transfected with pEGFP-Arl8 WT, we observed CCVs

with a diameter of 7.2±0.5 μm, similarly to that observed in control cells overexpressing EGFP

(Fig 7A, panels a-d, and 7B). The number of CCVs (2.0±0.5 vacuoles/cell) was not statistically

different from control cells overexpressing EGFP (Fig 7C). Contrarily, the overexpression of

EGFP-Arl8 T34N, a constitutively negative mutant [45], induced the formation of smaller (0.5

±0.2 μm) and a higher number (23.0±1.2 vacuoles/cell) of nrCCVs (Fig 7A, 7B and 7C) than

control cells overexpressing EGFP (Fig 7B and 7C). It was observed that non-transfected cells

presented normal CCVs (panels e-h of Fig 7, arrow pointed cells).

The bacterial multiplication was inhibited by 88% in cells overexpressing EGFP-Arl8 T34N

compared to that observed in control cells overexpressing EGFP or cells overexpressing EGF-

P-Arl8 WT (Fig 7D). These results show the importance of this small GTPase in the formation

of CCVs.

As demonstrated above, the interaction between the HOPS complex and RILP is important

in the formation of the CCV (Fig 6). Arl8 plays a role in the recruitment and stabilization of

the HOPS complex on the LE/Ly membrane and in the formation of the CCV. To test if these

proteins participate in the formation of the CCV, infected cells were co-transfected with

Fig 5. The overexpression of KIF5B and FYCO1 inhibits the formation of the CCV. (A) Infected HeLa cells were

transfected with EGFP-KIF5B WT (panels a-d), or -KIF5 332–963 (panels e-h) or transfected with pEGFP-FYCO1 WT

(panels i-l) or -FYCO1 Δ555–1136 (panels m-p). Cells were fixed and processed for IIF. An anti-C. burnetii antiserum was

used for detecting the bacteria (red pseudo colour). Arrows indicate non-transfected cell containing CCV. Scale bar: 10 μm.

Quantitative analysis of CCV size (B) and number (C) and bacterial multiplication (D). Forty to sixty cells were analysed in

each experiment. Results are expressed as means ± SE of three independent experiments. �p<0.05; �� p<0.01; ��� p<0.001.

(E) Phase contrast microscopy of infected and transfected HeLa cells. Arrowheads indicate a nrCCV (panels a and c), or a

CCV (panels b and d). Scale bar: 2 μm.

https://doi.org/10.1371/journal.pone.0209820.g005
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plasmids encoding HA-hVps41 WT and EGFP-Arl8 WT or EGFP-Arl8 T34N. As shown in

Fig 7A, panels i-l, 7B and 7C, the size (7.7 ±0.2 μm) and the number (1.5±0.5 vacuoles/cell) of

CCVs in cells co-expressing Vps41 WT and Arl8 WT were comparable to those observed in

cells overexpressing Arl8 WT (Fig 7A, panels a-d), Vps41 WT (Fig 6A, panels a-d) or EGFP

(Fig 7B and 7C). Co-expressed Vps41 WT and Arl8 WT were found to be recruited to CCVs

(Fig 7A, panels i-l, and Table 1). In contrast, in cells overexpressing both Arl8 T34N and

Vps41 WT, C. burnetii resided inside of numerous (22.5±5 vacuoles/cell) and small (1.7

±0.2 μm) nrCCVs labelled with Arl8 T34N (Fig 7A, panels m-p, 7B and 7C, and Table 1) but

negative for hVps41 WT. Regarding the size and number of CCVs, similar results were

observed when Arl8 WT was co-expressed with hVps41 A187T (Fig 7A, panels q-t, 7B and

7C). Arl8 WT, but not hVps41 A187T, was recruited to nrCCVs (Fig 7A, panels q-t, and

Table 1). In conclusion, these results show that Vps41 is recruited to the CCV but only in the

presence of the active forms of Arl8 and RILP.

Discussion

In this report, we show that Mts and the Mts-associated motors dynein and kinesin play very

important roles in the biogenesis of the C. burnetii-containing vacuoles (CCV) and the intra-

cellular bacterium multiplication. This is the first molecular description of the interplay

between the CCV and Mts-motor proteins. Mts and motor proteins are used by several bacte-

ria to accomplish cell invasion, intracellular trafficking and intra- and inter-cellular spreading

[11,79,80–87,88].

Herein we demonstrate that the biogenesis of the CCV is a Mts and motor proteins-depen-

dent process (Figs 1 and 3). The results showing the inhibitory effect of both nocodazole and

taxol on the formation of CCV and bacterial replication suggest that Mts should be dynamic.

Further evidence regarding the involvement of Mts in the formation of the CCV comes

from post-translational modifications studies of tubulin, such as acetylation. We consider that

HDAC6 and αTAT are important for the development of the CCV (Fig 2 and 8). The forma-

tion of CCVs is favoured when Mts are acetylated, i.e. when the HDAC6 mutant and αTAT

are overexpressed WT; however, we cannot asseverate that Mts acetylation is the only factor

affecting the formation of the CCV formation.

The acetylation of α-tubulin and αTAT decreases stability and an increases the dynamics of

Mts [23,24]; however, opposite results have been reported when working with HDAC6 [58–

60].

The relationship between tubulin acetylation and microtubule stability remains controver-

sial; however, our results with nocodazole (a Mts depolymerising agent) and taxol (a Mts stabi-

lizing agent) suggest that Mts should display a dynamic behavior to support CCV biogenesis.

Several authors have demonstrated that the post-translational modification of tubulin,

together with the dynamics of Mts, are essential not only for the interaction between Mts and

the motor proteins but also for the regulatory functions associated with Mts [18,27,54,67,68].

Although there is not a consensus about the role of acetylation in the affinity of motor proteins

Fig 6. HOPS and RILP participate in the development of the CCV. (A) Infected HeLa cells were transfected with plasmids

encoding HA-hVps41 WT (panels a-d) or -hVps41 A187T (panels e-h) or co-transfected with plasmids encoding HA-hVps41WT

and DsRed-RILP WT (panels i-l), HA-hVps41WT and DsRed-RILPΔN (panels m-p) or HA-hVps41 A187T and DsRed-RILP WT

(panel q-t). Cells were fixed and processed for IIF. C. burnetii was detected with an anti-C. burnetii antibody // antiserum (panels

a-h, red pseudo-colour; panels i-t, white pseudo-colour). Arrows indicate non-transfected cells containing CCV. Scale bar: 10 μm.

Quantitative analysis of CCV size (B) and number (C), and bacterial multiplication (D). Forty to sixty cells were analysed in each

experiment. Results are expressed as means ± SE of three independent experiments. ���p<0.001. (E) Phase contrast microscopy of

infected and transfected HeLa cells. Arrowheads indicate a nrCCV (panels b, d and e), or a CCV (panels a and c). Scale bar: 2 μm.

https://doi.org/10.1371/journal.pone.0209820.g006

Role of microtubules in the biogenesis of Coxiella burnetii-containing vacuole

PLOS ONE | https://doi.org/10.1371/journal.pone.0209820 January 14, 2019 20 / 32

https://doi.org/10.1371/journal.pone.0209820.g006
https://doi.org/10.1371/journal.pone.0209820


Role of microtubules in the biogenesis of Coxiella burnetii-containing vacuole

PLOS ONE | https://doi.org/10.1371/journal.pone.0209820 January 14, 2019 21 / 32

https://doi.org/10.1371/journal.pone.0209820


for Mts, we have observed that the recruitment of dynactin to the CCV is stimulated by

mutated SIRT2 (S2 and S4 Figs, and Table 1) promoting the formation of the CCV. This obser-

vation suggests that acetylation could be important in such processes. Accordingly, Gao et al.
have shown that the binding of dynein motor to acetylated Mts is stimulated by the inhibition

and knockdown of HDAC6, which increased the retrograde transport of endosomes contain-

ing EGFR toward the late degradative endosomal compartment [27]. These findings support

our hypothesis suggesting that the recruitment of dynein motor drives nrCCV retrograde traf-

ficking and, therefore, the formation of the CCV (Fig 8).

The formation of the CCV also depends on Mts-associated motor proteins. The overex-

pressed p150GluedWT, a dynactin subunit, is recruited to the CCV in a Rab7/RILP-dependent

fashion; in addition, it is also important for the biogenesis of the CCV, since its non-functional

mutant p150GluedCC1 inhibits the formation of the CCV (Fig 3). This finding is in line with

the formation of numerous small nrCCVs in cells overexpressing p50dynamitin. It is known that

the overexpression of p50dynamitin disrupts the dynactin complex and the dynein motor func-

tion. These results suggest that the dynactin complex plays an important role in the CCV bio-

genesis (Fig 8). Interestingly, other intracellular pathogens use the same molecular machinery

to develop their replicative niches. For instance, the initial intracellular transport of Salmo-
nella-containing vacuoles (SCV) to and its maintenance in the juxtanuclear region require the

dynein-dynactin complex [89]. A dispersion of bacteria was observed when either RILP C33

or p50dynamitin were overexpressed [90]. Similar results have been observed for inclusions con-

taining Chlamydia trachomatis in infected cells [87].

Rab7 mediates the recruitment of dynein to late endosomes through its effector RILP

[36,70]. Herein, we demonstrate that RILP is also recruited to the CCV in a Rab7-dependent

manner. In addition, RILP is required for dynein recruitment to the CCV (Fig 4, and Table 1),

since this association was prevented by the overexpression of the RILP ΔN, a truncated form

of RILP. Under these conditions, the CCV is not observed.

Cantalupo et al. have suggested the existence of a direct interaction between Rab7 and RILP

[70]. The results obtained in that work are in line with the results presented herein. Jordens

et al. have proposed RILP as a motor complex adapter protein [36]. We demonstrated that the

dynein/dynactin motor complex is not only associated with the CCV but also that this complex

must be functional to accomplish the formation of the CCV. Our results would suggest that

the fusion of nrCCVs to generate the CCV was favoured by the motor complex and RILP

(Fig 4).

In epithelial cells, the formation of Salmonella-induced filaments (SIFs) depends on the

integrity and transport function of Mts [91–93]. SIF membranes recruit kinesin instead of

dynein-RILP [89,90,94].

PipB2 (a SPI2-T3SS Salmonella effector) and Arl8 (a host ARF GTPase) stimulate the kine-

sin-1 recruitment to the SCV [95–97]. This activity is counterbalanced by the interaction of

SifA (SifA-kinesin interacting protein) with SKIP (SifA-kinesin interacting protein), leading to

the partial exclusion of kinesin-1 from the SCV and the proper positioning of the SCV. In the

Fig 7. Arl8 and HOPS are involved in the development of the CCV. (A) Infected HeLa cells were transfected with plasmids

encoding EGFP-Arl8 WT (panels a-d) or EGFP-Arl8 T34N (panels e-h), or co-transfected with plasmids encoding HA-hVps41

WT and EGFP-Arl8 WT (panels i-l), HA-hVps41 WT and EGFP-Arl8 T34N (panels m-p) or HA-hVps41 A187T and EGFP-Arl8

WT (panels q-t). Cells were fixed and processed for IIF. C. burnetii and Vps41 were detected with an anti-C. burnetii antiserum

(red pseudo-colour) and an anti-HA (green pseudo-colour) antiserum, respectively. The arrow indicates non-transfected cell

containing a CCV. Scale bar: 10 μm. (B) Quantification of (B) size and (C) number of CCV and (D) bacterial multiplication. Forty

to sixty cells were analysed in each experiment. Results are expressed as means ± SE of three independent experiments.
���p<0.001. (E) Phase contrast microscopy of infected and transfected HeLa cells. Arrowheads indicate a nrCCV (panels b, d and

e), or a CCV (panels a and c). Scale bar: 2 μm.

https://doi.org/10.1371/journal.pone.0209820.g007
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absence of SifA or SKIP, the SCV associated with kinesin, thus leading to further Mts-depen-

dent anterograde transport and, ultimately, to the breaking of the SCV [97–99]. In our system,

in infected cells overexpressing KIF5 WT (kinesin-1) or FYCO WT, several nrCCVs were

Fig 8. Relationship of intracellular transport of C. burnetii with microtubules and motor proteins: A model. C. burnetii (Cb) transits along the endo-phagocytic

pathway into non-replicative C. burnetii-containing vacuole (nrCCVs) acquiring markers such as Rab7. This small GTPase recruits RILP protein, dynein/dynactin

motor and HOPS complexes to the nrCCVs. This molecular machinery drives a gradual retrograde transport along Mts and the fusion of the nrCCVs with each other

and with other endocytic compartments such as lysosomes. The fusion of lysosomes with nrCCVs is stimulated by the small GTPase Arl8 and HOPS complex. To the

end of this journey, the C. burnetii-containing vacuole (CCV) is formed. Dynamic Mts and their acetylation-deacetylation status, regulated by acetyl transferase and

deacetylase, are also important for CCV formation. C. burnetii could inhibit kinesin/FYCO1 (orange arrows) favouring the retrograde transport driven by the dynein/

dynactin motor complex. This condition leads to the formation of the CCV. The following mechanism can explain the inhibition of the formation of the CCV by the

expression of kinesin or FYCO1: the balance between dynein and kinesin recruited to nrCCVs can be shifted in favour of kinesin therefore the nrCCVs acquire a Mts-

mediated anterograde movement that disperses them in the cytoplasm (not shown in the model).

https://doi.org/10.1371/journal.pone.0209820.g008
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observed instead of the CCV (Fig 5). It could be speculated that the CCV disrupts into small

vacuoles, as it occurs in Salmonella infected cells. This hypothesis seems to be unlikely since

the CCV was not disrupted when the cells were transfected with the plasmid encoding KIF5B

after the formation of the CCV (48h post-infection, unpublished data). Other possibility is that

the kinesin-mediated anterograde transport of nrCCVs is stimulated, thus hampering their

retrograde movement and preventing the homotypic fusion to form the CCV (Fig 8). Our

results suggest that C. burnetii would inhibit both the binding of kinesin to the CCV and the

anterograde transport, thus stimulating the retrograde one (Fig 8). These hypotheses are under

current study in our laboratory. It is known that the HOPS complex regulates the late stage of

the endocytic pathway, driving late endosomal membrane tethering and fusion. Vps41 func-

tions as a nexus between HOPS and RILP [41] and this interaction allows R- and Q-SNAREs

association and membrane fusion [100]. The Rab7-RILP association also brings together the

HOPS and the dynein motor complexes for retrograde transport [101]. It has been demon-

strated that Vps41 co-localises with avirulent C burnetii in a p38a-MAPK-dependent manner

[102]. Our results demonstrate that both the Vps41 and RILP associated to and are required

for the formation of the CCV (Fig 6 and Table 1). In cells overexpressing RILP and/or Vps41

non-functional mutants we observed nrCCVs instead of CCV detected in cells overexpressing

WT RILP and/or WT Vps41 (Fig 6). We hypothesise that the recruitment of HOPS complex

and RILP would stimulate the homotypic fusion among nrCCVs and with different compart-

ments, thus promoting the formation of the CCV (Fig 8).

Not only does Rab7-RILP interact with HOPS to regulate membrane traffic toward lyso-

somes, but also the Arl8 GTPase [103]. Garg et al. [104] have demonstrated the importance of

Arl8 in antigen presentation and pathogen killing by regulating phagolysosome fusion. In this

report, we show that the overexpressed Arl8 WT localizes to the CCV, while the overexpres-

sion of its mutant Arl8 T34A produces nrCCVs that are negative for this protein (Fig 7 and

Table 1). Therefore, Arl8 is required for the formation of the CCV. It is known that Vps41 is

an effector of Arl8 and the interaction between them occurs in lysosomes which fuse with late

endosomes decorated with Rab7 [43]. The co-localization of Rab7, Vps41 and Arl8 in the CCV

would suggest that the CCV is generated by fusion of nrCCVs and/or CCV with lysosomes

(Table 1).

Arl8 interacts with SKIP (Sif-A and kinesin-interacting protein) which binds kinesin-1 to

mediate the anterograde lysosomal movement [35,45]. The recruitment of dynein and kinesin

motors to SCV is important for Salmonella survival. This has been demonstrated by Mrakovic

et al. [35], who have shown that the tubulation of lysosomes (an important effect for Salmo-
nella survival within the host cell) is orchestrated by dynein and kinesin recruited to the SCV

by Rab7 and Arl8, respectively.

In our model, the expression of Arl8 alone allowed the formation of the CCV, while the

expression of KIF5B alone stimulated the formation of several nrCCVs with small sizes, as

compared to the CCV. We believe that the overexpression of KIF5B shifts the kinesin-dynein

equilibrium towards kinesin stimulating anterograde transport and dispersion of small

nrCCVs that can neither aggregate nor fuse with each other or with lysosomes to form the

CCV (Fig 8). On the contrary, the Arl8-positive CCV forms in cells overexpressing Arl8 alone.

We believe that under these conditions, Arl8 interacts with the endogenous downstream effec-

tors stimulating the fusion of CCV and/or nrCCVs with lysosomes. As mentioned above,

some of these hypotheses remain to be tested.

In conclusion, in the present report we demonstrate that dynamic Mts and enzymes

involved in acetylation-deacetylation of α-tubulin play important roles in the biogenesis of the

CCV and intracellular bacterial multiplication. Furthermore, we prove that RILP and its part-

ner Rab7 are involved in the recruitment of dynein/dynactin motor and HOPs complexes to
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nrCCVs and CCV. Considering these multiple interactions, we propose that the dynein com-

plex stimulates the Mts-dependent retrograde trafficking of nrCCVs, and that HOPs allows

tethering and homotypic and heterotypic fusion events that ultimately lead to the CCV forma-

tion. In addition, we present results suggesting that the GTPase Arl8 would contribute to CCV

development by stimulating anterograde transport and fusion of lysosomes with nrCCVs and/

or with CCV (Fig 8).

Supporting information

S1 Fig. Effect of nocodazol and taxol upon HeLa cell viability. HeLa cells were seeded in

24-well plates and grown overnight. Then, cells were incubated at 37˚C for different periods of

time with DMSO (0.1%), nocodazol (2μM, Noc) or taxol (2μM). Culture media were trans-

ferred to 15 ml tubes (non-attached cells) and kept on ice; and the attached flattened cells were

trypsinised. After washing twice, these cells were transferred to 15 ml tubes containing unat-

tached cells. Tubes were centrifuged at 200 xg for 5 min at 4˚C. Cell pellets were resuspended

in PBS and processed to estimated cell viability by using the Trypan blue exclusion test accord-

ing to standard protocols. Cell viability is expressed as percentage of the total cells relative to

control cells (DMSO). Data represent the mean ± SE of three independent experiments.

p< 0.05.

(TIF)

S2 Fig. The overexpression of the deacetylase SIRT2 inhibits the formation of CCV.

Infected HeLa cells were transfected with plasmids encoding HA-SIRT2 WT (panels a-d) or

HA-SIRT2 NLSΔNES (panels e-h). Cells were fixed and processed for IIF. C. burnetii and

SIRT2 were detected with an anti-C. burnetii antiserum (red pseudo-colour) and an anti-HA

antiserum (green pseudo-colour), respectively. Scale bar: 10 μm. Quantitative analysis of CCV

size (B) and number (C), and bacterial multiplication (D). Forty to sixty cells were analysed in

each experiment. Results are expressed as means ± SE of three independent experiments.
���p< 0.001. (E) Phase contrast microscopy of infected and transfected HeLa cells. Arrow-

heads indicate a nrCCV (panel a), or a CCV (panel b). Scale bar: 2 μm.

(TIF)

S3 Fig. Detection of acetylated microtubules in infected cells overexpressing EGFP-H-

DAC6 or -αTAT. Infected HeLa cells were transfected with pEGFP-HDAC6WT (panels a-d)

or -αTAT WT (panels e-h). Cells were fixed and processed for IIF. Anti-C. burnetii and anti-

acetylated α-tubulin antisera (Sigma-Aldrich, Argentina) were used for detecting bacteria

(grey pseudo-colour, panels c and g) and acetylated microtubules (red pseudo-colour, panels b

and f), respectively. Arrows indicate non-transfected cells containing a CCV. Scale bar: 10 μm.

(B) Phase contrast microscopy of infected and transfected HeLa cells. Arrowheads indicate a

nrCCV (panel a), or a CCV (panel b). Scale bar: 2 μm.

(TIF)

S4 Fig. The overexpression of the deacetylase SIRT2 inhibits 150GluedWT recruitment and

the formation of the CCV. (A) Infected HeLa cells were co-transfected with plasmids encod-

ing EGFP-p150GluedWT and HA-SIRT2 WT (panels a-d) or EGFP-p150GluedWT and

HA-SIRT2 NLSΔNES (panels e-h). Cells were fixed and processed for IIF. C. burnetii and

HA-SIRT2 were detected with anti-C. burnetii (green pseudo-colour) and anti-HA (red

pseudo-colour) antisera, respectively. Yellow arrows indicate non-transfected cell containing

CCV. Scale bar: 10 μm. Quantitative analysis of CCV size (B) and number (C). Forty to sixty

cells were analysed in each experiment. Results are expressed as means ± SE of three indepen-

dent experiments. ���p<0.001. (D) Phase contrast microscopy of infected and transfected

Role of microtubules in the biogenesis of Coxiella burnetii-containing vacuole

PLOS ONE | https://doi.org/10.1371/journal.pone.0209820 January 14, 2019 25 / 32

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209820.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209820.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209820.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209820.s004
https://doi.org/10.1371/journal.pone.0209820


HeLa cells. Arrowheads indicate a nrCCV (panel a), or a CCV (panel b). Scale bar: 2 μm.

(TIF)

S5 Fig. RILP is required for the formation of the C. burnetii-containing vacuole. Infected

HeLa cells were co-transfected with pEGFP-empty vector (A) or pEGFP-RILP WT (B) with

scramble-siRNA (panels a-b), RILP-siRNA 1 (panels c-d) or RILP-siRNA 2 (panels e-f) (siR-

NAs purchased from Bioneer, Inc. Alameda, USA). Cells were fixed and processed for IIF

using an anti-C. burnetii antiserum (red pseudo-colour). Scale bar: 5 μm. Quantitative analysis

of CCV size (C) and number (D). Forty to sixty cells were analysed in each experiment. Results

are expressed as means ± SE of three independent experiments. ���p<0.001. (E) HeLa cells

were co-transfected with pEGFP-RILP WT and scramble-siRNA (line 1), RILP-siRNA 1 (line

2) or RILP-siRNA 2 (line 3). Cell lysate proteins were separated by SDS-PAGE and analysed

by Western blotting using antibodies against GFP (Genscript USA Inc., USA) or tubulin (load-

ing control) (Sigma-Aldrich Inc., Argentina). (F) HeLa cells were transfected with scramble-

siRNA (line 1), RILP-siRNA 1 (line 2) or RILP-siRNA 2 (line 3). Cell lysate proteins were sepa-

rated by SDS-PAGE and analysed by Western blotting using antibodies against RILP (Santa

Cruz Biotechnology Inc., USA) or tubulin (loading control). Molecular weight standards are

indicated with arrowheads. (G) Bands corresponding to overexpressed EGFP-RILP WT and

endogenous RILP were quantified (relative to tubulin) using the ImageJ software. Results are

expressed as means ± SD of two independent experiments. ���p<0.05.

(TIF)

S6 Fig. The formation of CCV in cells expressing RILP is inhibited by the expression of the

dominant negative mutant Rab7 T22N. (A) Infected HeLa cells were co-transfected with

plasmids encoding pDsRed-RILP WT and pEGFP-Rab7 T22N (panels a-d) or pDsRed-RILP

WT and pEGFP-Rab7 Q67L (panels e-h). Cells were fixed and processed for IIF. C. burnetii
was detected with an anti-C. burnetii antiserum (white pseudo-colour). Scale bar: 10 μm.

Quantitative analysis of CCV size (B) and number (C). Forty to sixty cells were analysed in

each experiment. Results are expressed as means ± SE of three independent experiments.
���p<0.001. (D). Phase contrast microscopy of infected and transfected HeLa cells. Arrow-

heads indicate a nrCCV (panel a), or a CCV (panel b). Scale bar: 2 μm.

(TIF)

S1 Table. Experimental CCV mesures. Infected HeLa cells were either transfected or co-

transfected with plasmids encoding the different proteins under study. An average of 50 cells

per coverslip was calculated (in triplicate) to determine the diameter and number of vacuoles

containing C. burnetii. Images were acquired with a Nikon Eclipse TE2000 microscope and

analysed by phase contrast microscopy and assumptions with the fluorescence image to be

able to observe the CCV correctly. The size and number of CCV were calculated by means of a

morphometric analysis using the different measurement tools of the ImageJ software.

(PDF)
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Formal analysis: Rodolfo M. Ortiz Flores, Jesús S. Distel.
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6. Gutierrez MG, Vázquez CL, Munafó DB, Zoppino FCM, Berón W, Rabinovitch M, et al. Autophagy

induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol.

2005; 7: 981–93. https://doi.org/10.1111/j.1462-5822.2005.00527.x PMID: 15953030

7. Romano PS, Gutierrez MG, Berón W, Rabinovitch M, Colombo MI. The autophagic pathway is actively

modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell Microbiol. 2007; 9:

891–909. https://doi.org/10.1111/j.1462-5822.2006.00838.x PMID: 17087732

8. Hechemy KE, McKee M, Marko M, Samsonoff WA, Roman M, Baca O. Three-dimensional reconstruc-

tion of Coxiella burnetii-infected L929 cells by high-voltage electron microscopy. Infect Immun. 1993;

61: 4485–4488. PMID: 8406840

9. Howe D, Barrows LF, Lindstrom NM, Heinzen RA. Nitric oxide inhibits Coxiella burnetii replication and

parasitophorous vacuole maturation. Infect Immun. American Society for Microbiology (ASM); 2002;

70: 5140–7. https://doi.org/10.1128/IAI.70.9.5140-5147.2002 PMID: 12183564

10. Yoshida S, Katayama E, Kuwae A, Mimuro H, Suzuki T, Sasakawa C. Shigella deliver an effector pro-

tein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial

internalization. EMBO J. 2002; 21: 2923–2935. https://doi.org/10.1093/emboj/cdf319 PMID:

12065406

Role of microtubules in the biogenesis of Coxiella burnetii-containing vacuole

PLOS ONE | https://doi.org/10.1371/journal.pone.0209820 January 14, 2019 27 / 32

https://doi.org/10.1155/2011/248418
https://doi.org/10.1155/2011/248418
http://www.ncbi.nlm.nih.gov/pubmed/22194752
http://www.ncbi.nlm.nih.gov/pubmed/6348504
http://www.ncbi.nlm.nih.gov/pubmed/3988339
http://www.ncbi.nlm.nih.gov/pubmed/3570458
https://doi.org/10.1128/IAI.70.10.5816-5821.2002
https://doi.org/10.1128/IAI.70.10.5816-5821.2002
http://www.ncbi.nlm.nih.gov/pubmed/12228312
https://doi.org/10.1111/j.1462-5822.2005.00527.x
http://www.ncbi.nlm.nih.gov/pubmed/15953030
https://doi.org/10.1111/j.1462-5822.2006.00838.x
http://www.ncbi.nlm.nih.gov/pubmed/17087732
http://www.ncbi.nlm.nih.gov/pubmed/8406840
https://doi.org/10.1128/IAI.70.9.5140-5147.2002
http://www.ncbi.nlm.nih.gov/pubmed/12183564
https://doi.org/10.1093/emboj/cdf319
http://www.ncbi.nlm.nih.gov/pubmed/12065406
https://doi.org/10.1371/journal.pone.0209820


11. Hardwidge PR, Deng W, Vallance BA, Rodriguez-Escudero I, Cid VJ, Molina M, et al. Modulation of

host cytoskeleton function by the enteropathogenic Escherichia coli and Citrobacter rodentium effector

protein EspG. Infect Immun. American Society for Microbiology (ASM); 2005; 73: 2586–2594. https://

doi.org/10.1128/IAI.73.5.2586-2594.2005 PMID: 15845460

12. Hirokawa N, Hirokawa N, Weimbs T, Low SH, Chapin SJ, Mostov KE, et al. Kinesin and dynein super-

family proteins and the mechanism of organelle transport. Science. American Association for the

Advancement of Science; 1998; 279: 519–26. https://doi.org/10.1126/science.279.5350.519 PMID:

9438838

13. Bhavsar AP, Guttman JA, Finlay BB. Manipulation of host-cell pathways by bacterial pathogens.

Nature. 2007; 449: 827–34. https://doi.org/10.1038/nature06247 PMID: 17943119

14. Bouwman LI, Niewold P, van Putten JPM. Basolateral Invasion and Trafficking of Campylobacter

jejuni in Polarized Epithelial Cells. PLoS One. 2013; 8. https://doi.org/10.1371/journal.pone.0054759

PMID: 23382959

15. Bulinski JC, Richards JE, Piperno G. Posttranslational modifications of α tubulin: Detyrosination and

acetylation differentiate populations of interphase microtubules in cultured cells. J Cell Biol. 1988; 106:

1213–1220. https://doi.org/10.1083/jcb.106.4.1213 PMID: 3283150

16. Li L, Yang X-J. Tubulin acetylation: responsible enzymes, biological functions and human diseases.

Cell Mol Life Sci. 2015; 72: 4237–55. https://doi.org/10.1007/s00018-015-2000-5 PMID: 26227334

17. Song Y, Brady ST. Post-translational modifications of tubulin: Pathways to functional diversity of

microtubules. Trends Cell Biol. Elsevier Ltd; 2015; 25: 125–136. https://doi.org/10.1016/j.tcb.2014.10.

004 PMID: 25468068

18. Sadoul K, Khochbin S. The growing landscape of tubulin acetylation: lysine 40 and many more. Bio-

chem J. 2016; 473: 1859–68. https://doi.org/10.1042/BCJ20160172 PMID: 27354562

19. Ran J, Yang Y, Li D, Liu M, Zhou J. Deacetylation of α-tubulin and cortactin is required for HDAC6 to

trigger ciliary disassembly. Sci Rep. Nature Publishing Group; 2015; 5: 12917. https://doi.org/10.1038/

srep12917 PMID: 26246421

20. Inoue T, Hiratsuka M, Osaki M, Yamada H, Kishimoto I, Yamaguchi S, et al. SIRT2, a tubulin deacety-

lase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene.

2007; 26: 945–957. https://doi.org/10.1038/sj.onc.1209857 PMID: 16909107

21. Shida T, Cueva JG, Xu Z, Goodman MB, Nachury M V. The major alpha-tubulin K40 acetyltransferase

alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci U S A.

2010; 107: 21517–21522. https://doi.org/10.1073/pnas.1013728107 PMID: 21068373

22. Magiera MM, Janke C. Post-translational modifications of tubulin. Curr Biol. 2014; 24: R351–R354.

https://doi.org/10.1016/j.cub.2014.03.032 PMID: 24801181

23. Kalebic N, Sorrentino S, Perlas E, Bolasco G, Martinez C, Heppenstall PA, et al. αTAT1 is the major α-

tubulin acetyltransferase in mice. Nat Commun. Nature Publishing Group; 2013; 4: 207–275. https://

doi.org/10.1038/ncomms2962 PMID: 23748901

24. Kalebic N, Martinez C, Perlas E, Hublitz P, Bilbao-Cortes D, Fiedorczuk K, et al. Tubulin acetyltransfer-

ase αTAT1 destabilizes microtubules independently of its acetylation activity. Mol Cell Biol. American

Society for Microbiology; 2013; 33: 1114–23. https://doi.org/10.1128/MCB.01044-12 PMID: 23275437

25. Aguilar A, Becker L, Tedeschi T, Heller S, Iomini C, Nachury M V. Α-tubulin K40 acetylation is required

for contact inhibition of proliferation and cell-substrate adhesion. Mol Biol Cell. American Society for

Cell Biology; 2014; 25: 1854–66. https://doi.org/10.1091/mbc.E13-10-0609 PMID: 24743598

26. Bhuwania R, Castro-Castro A, Linder S. Microtubule acetylation regulates dynamics of KIF1C-pow-

ered vesicles and contact of microtubule plus ends with podosomes. Eur J Cell Biol. 2014; 93: 424–

437. https://doi.org/10.1016/j.ejcb.2014.07.006 PMID: 25151635

27. Gao YS, Hubbert CC, Yao TP. The microtubule-associated histone deacetylase 6 (HDAC6) regulates

epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J Biol Chem. 2010;

285: 11219–11226. https://doi.org/10.1074/jbc.M109.042754 PMID: 20133936

28. Dompierre JP, Godin JD, Charrin BC, Cordelières FP, King SJ, Humbert S, et al. Histone deacetylase

6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetyla-

tion. J Neurosci. 2007; 27: 3571–3583. https://doi.org/10.1523/JNEUROSCI.0037-07.2007 PMID:

17392473

29. Huotari J, Helenius A. Endosome maturation. EMBO J. 2011; 30: 3481–3500. https://doi.org/10.1038/

emboj.2011.286 PMID: 21878991

30. Hyttinen JMT, Niittykoski M, Salminen A, Kaarniranta K. Maturation of autophagosomes and endo-

somes: A key role for Rab7. Biochim Biophys Acta—Mol Cell Res. Elsevier B.V.; 2013; 1833: 503–

510. https://doi.org/10.1016/j.bbamcr.2012.11.018 PMID: 23220125

Role of microtubules in the biogenesis of Coxiella burnetii-containing vacuole

PLOS ONE | https://doi.org/10.1371/journal.pone.0209820 January 14, 2019 28 / 32

https://doi.org/10.1128/IAI.73.5.2586-2594.2005
https://doi.org/10.1128/IAI.73.5.2586-2594.2005
http://www.ncbi.nlm.nih.gov/pubmed/15845460
https://doi.org/10.1126/science.279.5350.519
http://www.ncbi.nlm.nih.gov/pubmed/9438838
https://doi.org/10.1038/nature06247
http://www.ncbi.nlm.nih.gov/pubmed/17943119
https://doi.org/10.1371/journal.pone.0054759
http://www.ncbi.nlm.nih.gov/pubmed/23382959
https://doi.org/10.1083/jcb.106.4.1213
http://www.ncbi.nlm.nih.gov/pubmed/3283150
https://doi.org/10.1007/s00018-015-2000-5
http://www.ncbi.nlm.nih.gov/pubmed/26227334
https://doi.org/10.1016/j.tcb.2014.10.004
https://doi.org/10.1016/j.tcb.2014.10.004
http://www.ncbi.nlm.nih.gov/pubmed/25468068
https://doi.org/10.1042/BCJ20160172
http://www.ncbi.nlm.nih.gov/pubmed/27354562
https://doi.org/10.1038/srep12917
https://doi.org/10.1038/srep12917
http://www.ncbi.nlm.nih.gov/pubmed/26246421
https://doi.org/10.1038/sj.onc.1209857
http://www.ncbi.nlm.nih.gov/pubmed/16909107
https://doi.org/10.1073/pnas.1013728107
http://www.ncbi.nlm.nih.gov/pubmed/21068373
https://doi.org/10.1016/j.cub.2014.03.032
http://www.ncbi.nlm.nih.gov/pubmed/24801181
https://doi.org/10.1038/ncomms2962
https://doi.org/10.1038/ncomms2962
http://www.ncbi.nlm.nih.gov/pubmed/23748901
https://doi.org/10.1128/MCB.01044-12
http://www.ncbi.nlm.nih.gov/pubmed/23275437
https://doi.org/10.1091/mbc.E13-10-0609
http://www.ncbi.nlm.nih.gov/pubmed/24743598
https://doi.org/10.1016/j.ejcb.2014.07.006
http://www.ncbi.nlm.nih.gov/pubmed/25151635
https://doi.org/10.1074/jbc.M109.042754
http://www.ncbi.nlm.nih.gov/pubmed/20133936
https://doi.org/10.1523/JNEUROSCI.0037-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17392473
https://doi.org/10.1038/emboj.2011.286
https://doi.org/10.1038/emboj.2011.286
http://www.ncbi.nlm.nih.gov/pubmed/21878991
https://doi.org/10.1016/j.bbamcr.2012.11.018
http://www.ncbi.nlm.nih.gov/pubmed/23220125
https://doi.org/10.1371/journal.pone.0209820


31. Veras PS, Moulia C, Dauguet C, Tunis CT, Thibon M, Rabinovitch M. Entry and survival of Leishmania

amazonensis amastigotes within phagolysosome-like vacuoles that shelter Coxiella burnetii in Chi-

nese hamster ovary cells. Infect Immun. 1995; 63: 3502–6. PMID: 7642284

32. Deretic V, Fratti RA. Mycobacterium tuberculosis phagosome. Mol Microbiol. 1999; 31: 1603–1609.

https://doi.org/10.1046/j.1365-2958.1999.01279.x PMID: 10209735

33. Scianimanico S, Desrosiers M, Dermine JF, Meresse S, Descoteaux A, Desjardins M. Impaired

recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leish-

mania donovani promastigotes. Cell Microbiol. 1999; 1: 19–32. https://doi.org/10.1046/j.1462-5822.

1999.00002.x PMID: 11207538

34. Taylor P, Rovetta AI, Peña D, Hernández RE, Pino D, Recalde GM, et al. patients with active tubercu-

losis IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis

antigens in patients with active tuberculosis. 2014; 37–41. https://doi.org/10.4161/15548627.2014.

981791

35. Mrakovic A, Kay JG, Furuya W, Brumell JH, Botelho RJ. Rab7 and Arl8 GTPases are Necessary for

Lysosome Tubulation in Macrophages. Traffic. 2012; 13: 1667–1679. https://doi.org/10.1111/tra.

12003 PMID: 22909026

36. Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L, Calafat J, et al. The Rab7 effec-

tor protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors.

Curr Biol. 2001; 11: 1680–1685. https://doi.org/10.1016/S0960-9822(01)00531-0 PMID: 11696325

37. Preston RA, Reinagel PS, Jones EW. Genes required for vacuolar acidity in Saccharomyces cerevi-

siae. Genetics. 1992; 131: 551–558. PMID: 1628805

38. Peterson MR, Emr SD. The class C Vps complex functions at multiple stages of the vacuolar transport

pathway. Traffic. 2001; 2: 476–86. PMID: 11422941

39. Sato TK, Rehling P, Peterson MR, Emr SD. Class C Vps Protein Complex Regulates Vacuolar

SNARE Pairing and Is Required for Vesicle Docking/Fusion. Mol Cell. 2000; 6: 661–671. https://doi.

org/10.1016/S1097-2765(00)00064-2 PMID: 11030345

40. Seals DF, Eitzen G, Margolis N, Wickner WT, Price A. A Ypt/Rab effector complex containing the

Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc Natl Acad Sci U S A. 2000; 97:

9402–7. PMID: 10944212

41. Lin X, Yang T, Wang S, Wang Z, Yun Y, Sun L, et al. RILP interacts with HOPS complex via VPS41

subunit to regulate endocytic trafficking. Sci Rep. 2013; 4: 7282. https://doi.org/10.1038/srep08302

42. Pu J, Guardia CM, Keren-Kaplan T, Bonifacino JS. Mechanisms and functions of lysosome position-

ing. J Cell Sci. 2016; jcs.196287. https://doi.org/10.1242/jcs.196287 PMID: 27799357

43. Khatter D, Raina VB, Dwivedi D, Sindhwani A, Bahl S, Sharma M. The small GTPase Arl8b regulates

assembly of the mammalian HOPS complex on lysosomes. J Cell Sci. 2015; 128: 1746–61. https://

doi.org/10.1242/jcs.162651 PMID: 25908847

44. Rosa-Ferreira C, Munro S. Arl8 and SKIP Act Together to Link Lysosomes to Kinesin-1. Dev Cell.

2011; 21: 1171–1178. https://doi.org/10.1016/j.devcel.2011.10.007 PMID: 22172677

45. Khatter D, Sindhwani A, Sharma M. Arf-like GTPase Arl8: Moving from the periphery to the center of

lysosomal biology. Cell Logist. 2015; 5: e1086501. https://doi.org/10.1080/21592799.2015.1086501

PMID: 27057420

46. Sherwood RK, Roy CR. A rab-centric perspective of bacterial pathogen-occupied vacuoles. Cell Host

and Microbe. 2013. pp. 256–268. https://doi.org/10.1016/j.chom.2013.08.010 PMID: 24034612

47. Prada-Delgado A, Carrasco-Marin E, Bokoch GM, Alvarez-Dominguez C. Interferon-γ Listericidal

Action Is Mediated by Novel Rab5a Functions at the Phagosomal Environment. J Biol Chem. 2001;

276: 19059–19065. https://doi.org/10.1074/jbc.M101639200 PMID: 11262414

48. Huynh KK, Plumb JD, Downey GP, Valvano MA, Grinstein S. Inactivation of Macrophage Rab7 by

Burkholderia cenocepacia. J Innate Immun. Karger Publishers; 2010; 2: 522. https://doi.org/10.1159/

000319864 PMID: 20829607

49. Caviston JP, Holzbaur ELF. Microtubule motors at the intersection of trafficking and transport. Trends

Cell Biol. 2006; 16: 530–7. https://doi.org/10.1016/j.tcb.2006.08.002 PMID: 16938456
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