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Introduction
Cognitive impairment (CI) occurs in 43%–70% of 
patients with MS, which profoundly affects their 
quality of life.1 An accurate prognosis of cognitive 
decline in MS is currently difficult, as the mecha-
nisms underlying cognitive decline remain unclear. 
Structural brain damage, including gray matter (GM) 
atrophy and tissue integrity loss, predicts cognitive 
decline, but cannot fully explain the extensive hetero-
geneity found between MS patients.2–4

Recent cross-sectional studies have shown that dis-
ruptions in functional brain network organization may 

further elucidate mechanisms underlying CI in MS,5 
even in the absence of atrophy.6 These studies have 
demonstrated that worse cognitive function could 
partly be understood in terms of changes in network 
integration (i.e. communication between spatially 
remote brain regions)7–9 and segregation (i.e. local 
connectedness).10,11

Functional network organization in MS has mainly 
been studied using functional (f)MRI, a technique 
based on metabolic changes. Another method to quan-
tify functional networks is magnetoencephalography 
(MEG), which, as opposed to fMRI, directly measures 
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neural activity.12 In addition, MEG has an excellent 
temporal resolution, and its spatial resolution has 
recently significantly improved.12,13 In fact, a recent 
MS study suggested that MEG has a higher sensitivity 
to detect cognitive relevant disruptions in functional 
networks than fMRI.14

Still, it remains unclear whether functional brain net-
work disruptions can also predict cognitive changes 
over time in MS due to a critical lack of longitudinal 
studies. This study therefore investigated whether 
MEG-derived functional brain network measures can 
predict cognitive decline in MS patients over 5 years 
and whether these measures have an independent pre-
dictive value beyond structural brain pathology.

Methods

Participants
Data of 146 MS patients from the Amsterdam MS 
Cohort were included (67% women, age = 48.30 ±  
11.16 years, disease duration = 12.95 ± 7.74 years; 
Table 1),4 and a subsample of this cross-sectional 
MEG data has been published before.14 Patients 
obtained MEG recordings, structural MRI, and a neu-
ropsychological evaluation at baseline. In 100 of 
these patients, a neuropsychological follow-up assess-
ment was acquired after 4.60 (±0.61) years. Disability 
at both time-points was classified using the Expanded 
Disability Status Scale (EDSS).15 Highest level of 
attained education ranged between 1 (did not finish 
primary school) and 7 (university degree) and was 
categorized into low (1–3), medium (4–5), and high 
(6–7). Sixty healthy controls from whom cognitive 
scores were obtained at baseline and follow-up (aver-
age time-interval 5.46 ± 1.08 years) were included to 
standardize cognitive scores for all participants (see 
details in the following section).4 Approval was 
obtained from the institutional ethics review board of 
the Amsterdam UMC (numbers 2004/9, 2012/140, 
and 2010/336), and participants gave written informed 
consent prior to participation.

Neuropsychological evaluation
The neuropsychological assessment consisted of an 
extended version of Rao’s Brief Repeatable Battery of 
Neuropsychological tests (BRB-N),16 as described 
previously:4 (1) the Selective Reminding Test (SRT) 
assessed verbal memory; (2) the 10/36 Spatial Recall 
Test assessed visuospatial memory; (3) the Symbol 
Digit Modalities Test assessed information processing 
speed; (4) the Memory Comparison Test assessed 

working memory; (5) the Word List Generation Test 
assessed verbal fluency; (6) the Concept Shifting Test 
(CST) assessed executive function, particularly con-
cept shifting; and (7) the Stroop Color-Word Test 
assessed sustained attention and executive function, 
including inhibiting an automated response.

Raw scores were adjusted for age, sex, and educa-
tion based on a normative sample of healthy con-
trols, converted into test-specific z-scores based on 
the means and standard deviations (SDs) of healthy 
controls and averaged into one cognitive score at 
baseline.4,17 To analyze cognitive decline over time, 
the modified practice adjusted reliable change index 
(RCI) was applied to correct for learning effects, as 
described previously (see Supplementary 
Information).4,18 RCIs were divided by the patients’ 
time interval, and test-specific yearly RCIs were 
averaged across tests into a “yearly rate of cognitive 
decline” representing longitudinal cognition.4

MRI scans, lesion load, and GM volumes
At baseline, participants were scanned on a 3-Tesla 
whole-body MRI (General Electric Signa HDxt), 
including FLAIR and 3D-T1 sequences as previously 
described.4 Automated lesion detection using k-nearest 
neighbor classification was run on 3D-FLAIR images. 
Deep GM volumes were estimated using FIRST 
(FSL5) after lesion filling (using LEAP). Cortical GM 
volumes were calculated by masking deep GM areas 
from total GM segmentations from SIENAX (also 
FSL5). All GM volumes were multiplied with the so-
called V-scaling factor, which describes the difference 
in skull size of each participant compared to the skull 
of the standard brain, using FSL.

MEG recordings and pre-processing
Five minutes of eyes-closed resting-state MEG data 
were recorded on a 306-channel whole-head system 
(Elekta Neuromag Oy, Helsinki, Finland) and pro-
cessed according to a standardized procedure (Figure 
1 and Supplementary Information). In short, MEG 
data were visually inspected to discard malfunctioning 
channels, and the temporal extension of Signal Space 
Separation removed artifacts.19 Source-localized MEG 
data were then constructed for 78 cortical regions of 
the automated anatomical labeling atlas20 using a 
beamformer approach.13 Subsequently, 52 epochs of 
4096 samples (3.27 s) were filtered into canonical fre-
quency bands in Matlab (R2012a): delta (0.5–4 Hz), 
theta (4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–13 Hz), 
beta (13–30 Hz), and gamma (30–48 Hz).

Neuroscience, Amsterdam, 
The Netherlands

Dirk Bertens  
Donders Institute for Brain, 
Cognition and Behaviour, 
Radboud University, 
Nijmegen, The Netherlands; 
Klimmendaal Rehabilitation 
Center, Arnhem, The 
Netherlands

*These authors contributed 
equally to the manuscript.

https://journals.sagepub.com/home/msj


IM Nauta, SD Kulik et al.

journals.sagepub.com/home/msj 1729

Functional connectivity and the MST
Functional connectivity between all 78 cortical 
regions was calculated with the phase lag index,21 
which served as input for the minimum spanning tree 
(MST) algorithm (Supplementary Information pro-
vides more details).22–24 This resulted in a dichoto-
mized backbone of the functional brain network 
formed by 78 cortical regions and only the 77 strong-
est functional connections, as the MST contains a 
fixed number of regions (i.e. nodes) and connections 
(i.e. edges).22,24 Consequently, there are no arbitrary 
thresholds, which optimizes comparability between 
participants.25 MST measures representing global net-
work integration and overload (i.e. leaf fraction (LF), 
betweenness centrality (BC), diameter, tree hierarchy; 
Table 2; Figure 2) were calculated for each of the six 
frequency bands in Matlab using previously described 
codes.9

Statistical analyses
Statistical analyses were performed in SPSS 22 and 
bootstrapping analyses in R 3.6.2.

Correlational and regression analyses. Pearson’s cor-
relations were calculated between MST and MRI mea-
sures. White matter lesion load was log-transformed. 
Pearson’s partial correlations were calculated between 
brain measures (i.e. both MST and MRI measures) and 
cognition (i.e. baseline and longitudinal cognition), 
correcting for age, education, sex, and, for longitudi-
nal analyses, also baseline cognition. Correlations 
with MST measures were Bonferroni-corrected at 
p < 0.008 (i.e. p < 0.05 divided by six frequency 
bands) and other correlations were set at p < 0.05.

Then, backward stepwise linear regression analyses 
were performed to identify the most important 

Table 1. Demographic, clinical, cognitive, and MRI characteristics.

Total patient 
group (N = 146)

Patient group with follow-up data 
(N = 100)

 Baseline data Baseline data Follow-up data

Demographics

 Age; years, mean (SD) 48.30 (11.16) 48.40 (10.97) 53.00 (10.84)

 Women; n (%) 98 (67.1) 69 (69.0) 69 (69.0)

 Education; median (range) 4 (1–7) 4 (1–7) 4.5 (1–7)

Clinical characteristics

 MS type; RRMS/SPMS/PPMS (%) 76.6/12.4/11.0 80.0/13.0/7.0 69.0/23.0/7.0

 Disease duration; years, mean (SD) 12.95 (7.74) 13.17 (7.48) 17.77 (7.32)

 EDSS; median (range) 3 (0–8) 3 (0–8) 4 (0–8.5)

Cognitive scores, mean (SD) Z-score Z-score Yearly rate of 
cognitive change

SRT—Verbal memory –0.72 (1.14) –0.77 (1.18) –0.08 (0.24)

10/36 SPART-Visuospatial memory –1.02 (1.26) –1.01 (1.28) –0.01 (0.27)

SDMT—Information processing speed –1.46 (1.20) –1.40 (1.18) –0.04 (0.21)

MCT—Working memory –1.33 (1.43) –1.37 (1.48) –0.03 (0.30)

WLGT—Verbal fluency –0.81 (0.91) –0.76 (0.86) –0.04 (0.19)

CST—Executive function –1.12 (1.42) –0.99 (1.35) –0.08 (0.27)

SCWT—Sustained attention and executive function –0.94 (1.05) –0.93 (1.10) 0.05 (0.25)

Average cognition –1.07 (0.80) –1.03 (0.80) –0.03 (0.11)

MRI characteristics

 Deep gray matter volume; mL, mean (SD) 55.79 (6.39) 56.37 (6.27) —

 Cortical gray matter volume; L, mean (SD) 0.70 (0.05) 0.75 (0.06) —
 White matter lesion volume; mL, median (range) 10.04 (1.36–85.5) 8.56 (1.36–69.18) —

SD: standard deviation; MS: multiple sclerosis; RRMS: relapsing remitting multiple sclerosis; SPMS: secondary progressive 
multiple sclerosis. PPMS: primary progressive multiple sclerosis; EDSS: Expanded Disability Status Scale; SRT: Selective 
Reminding Test; SPART: Spatial Recall Test; SDMT: Symbol Digit Modalities Test; MCT: Memory Comparison Test; WLGT: Word 
List Generation Test; CST: Concept Shifting Test; SCWT: Stroop Color-Word Test; MRI: magnetic resonance imaging.
Disease duration represents the disease duration since symptom onset.
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predictors of baseline and longitudinal cognition. 
Initial models allowed one predictor for every 10 par-
ticipants (including covariates), and the strength of 
the partial correlations between the MST measures 
and cognition was used to select MST predictors for 
these initial models. Tree hierarchy was excluded due 
to collinearity with LF and maximum BC, as it is 
defined as their ratio.

The initial cross-sectional MEG model (N = 146) 
included 10 MST variables with the strongest partial 
correlations with baseline cognition, along with four 
fixed covariates (age, education (two dummy variables) 
and sex). The initial longitudinal MEG model (N = 100) 
included five MST measures with the strongest partial 

correlation with longitudinal cognition and five fixed 
covariates (age, education (two dummy variables), 
sex, and baseline cognition). Backward stepwise 
selection was applied on these models based on a 
threshold of p < 0.10, and p < 0.05 was considered 
statistically significant. Next, to assess the independ-
ence of MST predictors beyond structural damage, 
both cross-sectional and longitudinal final MEG-
models were combined with structural measures, on 
which backward selection was applied again, resulting 
in final MEG-MRI models. Finally, as a post hoc 
exploration, the final longitudinal MEG-model was 
repeated using individual cognitive tests as outcome 
measures to assess how specific the set of MST predic-
tors was for different cognitive functions.

Figure 1. MEG pre-processing steps. (a) MEG recording at sensor level. (b) The MEG recording was co-registered to 
the participants’ structural MRI. (c) Beamforming was applied to convert the MEG signal to source space: signals were 
projected onto the Automated Anatomical Labeling (AAL) atlas. (d) The phase lag index (PLI) was calculated between 
each of the 78 cortical regions of the AAL atlas. (e) The Minimum Spanning Tree (MST) was constructed based on the 
PLI, which consists of the 78 strongest connections. These connections were subsequently binarized. (f) An example of 
an MST graph.
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Table 2. Description of MST measures.9,23

Measure Definition Network integration and overload

Leaf fraction The fraction of nodes in the MST with a 
degree (i.e. number of connections) of one.

A higher leaf fraction indicates a more ‘star-like’ 
network organization, which indicates more 
network integration as well as a larger chance of 
overload of central regions (Figure 2). The leaf 
fraction represents the dependency of the network 
on central nodes.

Maximum 
betweenness 
centrality (BC)

BC of a node quantifies the fraction of 
shortest paths in the MST passing through 
that node. The maximum BC represents the 
node with the highest BC.

A higher maximum BC indicates a more ‘star-
like’ network organization, which indicates more 
network integration as well as a larger chance of 
overload of central regions (Figure 2). The higher 
the BC, the more important a node is within the 
network, but also the larger the chance that this 
node will be overloaded.

Diameter The largest distance between any two 
regions of the MST network, which 
is normalized for the total number of 
connections.

A larger diameter indicates a more line-like 
organization, which indicates less network 
integration and a lower chance of overload of 
central regions (Figure 2). The diameter represents 
the efficiency of the information transfer across the 
network.

Tree hierarchy The tree hierarchy measures the trade-off 
between large scale integration in the MST 
(measured with the leaf fraction) and the 
overload of central nodes, also called hubs 
(measured with the maximum BC).

A higher tree hierarchy indicates a more star-
like organization, which indicates more network 
integration as well as a larger chance of overload 
of central regions (Figure 2). The tree hierarchy 
represents the hierarchal structure of the MST.

MST: minimum spanning tree; BC: betweenness centrality.

Figure 2. Visual representation of functional brain network organization (MST). Red line: representation of the diameter 
(i.e. longest shortest path of the MST). Green nodes: leaf nodes (i.e. a node with one connection). Yellow nodes: nodes 
with the highest betweenness centrality (i.e. the node with the largest fraction of shortest paths in the MST passing 
through that node). (a) Line-like network organization; this organization is considered inefficient and less integrated. 
(b) Balance between a line-like and star-like network; this organization is considered optimal. (c) Star-like network 
organization; this organization is considered efficient, but there is a larger risk of hub overload.
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Bootstrapped validation of linear regression models.  
To investigate the robustness of the MST predictors in 
our regression models, 10,000 bootstrap samples 
were created non-parametrically (i.e. observations 
drawn with uniform probabilities and replacement 
from the total sample). On each bootstrap sample, we 
performed a linear regression analysis (“enter”) 
including only variables selected in the final cross-
sectional and longitudinal MEG and MEG-MRI mod-
els. In addition, each bootstrap sample was used to 
perform a full backward selection procedure on the 
initial cross-sectional and longitudinal MEG models, 
based on the Akaike’s information criterion (AIC),26 
that balance model fit with its complexity (i.e. related 
to the number of predictors in the model). The fitting 
used a ‘step’-function with default settings from the 
car-package.27 From the thus acquired 10,000 models, 
the selection frequency of each MEG predictor (crite-
rion > 50%)28 was reported.

Results

Baseline and follow-up characteristics
Table 1 presents an overview of baseline and follow-
up characteristics. The largest rate of yearly cognitive 
decline was found for tests that measured executive 
function and verbal memory (both cognitive decline 
scores = −0.08). The 100 patients included in the lon-
gitudinal analyses did not differ from the 46 patients 
from whom no follow-up cognition data were obtained 
with respect to demographics, baseline cognition, and 
disease duration (p > 0.05).

Cross-sectional correlates of structural damage
Out of all 24 MST measures, 16 were significantly 
related to deep GM volume and 18 to lesion volume 
(p < 0.008; Table 3). More specific, a lower LF, 
larger diameter, and lower tree hierarchy, represent-
ing a less integrated network, related to lower deep 
GM volumes and higher lesion volumes (Figure 
2(a)). Also, a lower gamma BC related to higher 
lesion volumes. MST measures were not signifi-
cantly related to cortical GM volumes (Table 3) and 
disease duration (p > 0.008).

Cross-sectional correlates of cognitive function
Worse baseline cognition was related to a lower LF 
and tree hierarchy in multiple frequency bands 
(p < 0.008; Table 3), which represented a less inte-
grated network (Figure 2(a)). Worse baseline cogni-
tion also related to lower deep (partial r = 0.52, 
p < 0.001) and cortical (partial r = 0.50, p < 0.001) 

GM volumes, and a higher lesion load (partial 
r = −0.36, p = 0.001).

The initial cross-sectional MEG model included the 
LF (all frequency bands) and diameter (delta, alpha1, 
beta, and gamma bands). The final MEG model after 
backwards stepwise selection showed that a lower 
alpha1 LF (i.e. less integrated network; β = 0.24, 
p = 0.004) was the best correlate of worse cognitive 
performance (Radj

2 10= %; Table 4). This MST meas-
ure remained an independent correlate of cognition 
(β = 0.15, p = 0.041) in the cross-sectional MEG-
MRI model, together with cortical (β = 0.33, 
p = 0.007) and deep GM volumes (β = 0.29, p = 0.009; 
Radj model
2 34= %; Table 4).

These predictors remained significant when the final 
MEG and MEG-MRI models were bootstrapped 
(median p value <0.05; Table 4). Bootstrapped back-
ward selection of the initial MEG model showed that 
all MST predictors were selected in a minority of the 
bootstrap samples (<50%). The alpha1 LF had the 
highest selection frequency (47.5%), and the selection 
frequency of the other MST predictors ranged between 
22.7% and 44.1%.

Predictors of longitudinal cognitive decline
The yearly rate of cognitive decline and MST meas-
ures at baseline were not significantly correlated 
(p > 0.008; Table 3). Lower deep (partial r = 0.24, 
p = 0.018) and cortical (partial r = 0.28, p = 0.007) GM 
volumes at baseline did show correlations with the 
yearly rate of cognitive decline, lesion volumes did 
not (p > 0.05).

The initial longitudinal MEG model included the LF 
(delta and gamma bands) and diameter (delta, alpha2, 
and beta bands). The final MEG model after back-
wards selection showed that a lower delta LF (i.e. less 
integrated network; β = 0.40, p = 0.001) and a smaller 
beta diameter (i.e. more integrated network; β = 0.35, 
p = 0.003) predicted larger rates of cognitive decline 
(Radj

2 15= %; Table 4; Figure 3). These MST predictors 
remained independent predictors of cognitive decline 
(β = 0.39, p = 0.001 and β = 0.34, p = 0.003, respec-
tively) in the longitudinal MEG-MRI model, together 
with lower cortical GM volume (β = 0.35, p = 0.006; 
Radj model
2 21= %; Table 4).

These predictors remained significant when the final 
MEG and MEG-MRI models were bootstrapped 
(median p value <0.05; Table 4). Bootstrapped back-
ward selection of the initial MEG model showed that 
the delta band LF and the beta band diameter were 
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selected in 59.0% and 97.7% of the bootstrap sam-
ples, respectively, and the selection frequency of the 
other MST predictors ranged between 28.4% and 
41.8%.

Post hoc longitudinal analyses
The final longitudinal MEG model was repeated for 
separate cognitive tests and showed that the delta 
band LF only predicted cognitive decline on tests 
with the largest rate of decline (CST and SRT; 
p < 0.05). The beta band diameter did not reach sig-
nificance (p > 0.05). The explained variance of all 
models was lower (Radj

2 15= %) than when a compos-
ite cognitive score was used.

Discussion
This study aimed to investigate the predictive value of 
functional brain network characteristics on cognitive 
decline in MS patients. Our results showed that func-
tional network integration and cortical GM volume at 
baseline predicted cognitive decline after a 5-year 
follow-up period. Importantly, functional network 
integration was an independent predictor of cognitive 
decline beyond structural brain pathology and there-
fore hold promise as a marker of imminent cognitive 
decline.

Our results indicate the value of MEG-based markers 
of network dysfunction in predicting cognitive decline 
in MS. Specifically, we found that both a less integrated 

Table 3. Correlations between MST measures and both cognition and structural brain measures.

MST measure Cognition (partial r) Structural brain measures (r)

 Cross-sectional Longitudinal Deep GM 
volume

Cortical GM 
volume

WM lesion 
volume

Leaf fraction

 Delta 0.20^ 0.19 0.35* 0.12 –0.33*

 Theta 0.18^ <–0.01 0.27* 0.12 –0.32*

 Alpha1 0.24* 0.07 0.25* 0.05 –0.28*

 Alpha2 0.20^ 0.10 0.35* 0.17^ –0.37*

 Beta 0.22^ 0.02 0.34* 0.13 –0.32*

 Gamma 0.19^ 0.11 0.38* 0.19^ –0.36*

Betweenness centrality

 Delta <0.01 0.07 0.01 –0.09 –0.05

 Theta <–0.01 –0.02 0.14 0.06 –0.17

 Alpha1 0.06 –0.04 <–0.01 –0.05 <0.01

 Alpha2 –0.08 <0.01 0.06 0.05 –0.14

 Beta 0.05 –0.02 0.08 –0.04 –0.13

 Gamma –0.08 0.04 0.16 0.03 –0.29*

Diameter

 Delta –0.22^ –0.22^ –0.36* –0.16 0.35*

 Theta –0.03 0.08 –0.20^ –0.03 0.25*

 Alpha1 –0.19^ 0.04 –0.13 –0.06 0.15

 Alpha2 –0.09 –0.14 –0.26* –0.12 0.24*

 Beta –0.15 0.14 –0.28* –0.12 0.24*

 Gamma –0.11 –0.02 –0.27* –0.14 0.33*

Tree hierarchy

 Delta 0.20^ 0.15 0.35* 0.16^ –0.31*

 Theta 0.20^ <–0.01 0.23* 0.11 –0.28*

 Alpha1 0.23* 0.10 0.27* 0.08 –0.31*

 Alpha2 0.27* 0.11 0.37* 0.17^ –0.35*

 Beta 0.23* 0.02 0.34* 0.16 –0.30*
 Gamma 0.25* 0.10 0.35* 0.21^ –0.27*

MST: minimum spanning tree; GM: gray matter; WM: white matter.
^p < 0.05. *p < 0.008 (i.e. significant after correction for multiple comparisons). The partial correlations between cognition and the 
MST measures were corrected for age, education, sex, and for longitudinal cognition, also baseline cognition.
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delta band network, represented by a lower LF, and a 
more integrated beta band network, represented by a 
smaller diameter, predicted cognitive decline after 
5 years. Both network changes may represent devia-
tions away from the optimal network:9,23 a less inte-
grated network indicates less efficient information 
transfer between spatially remote areas, while a more 
integrated network has a larger risk of overload of cen-
tral brain regions, such as the thalamus and default-
mode network.24 In line with this, network integration 
in a healthy population also shows frequency-specific 
differences: a previous study showed a high level of 

delta band integration and a low level of beta band inte-
gration in healthy controls,29 which is the reverse pat-
tern that we found to predict cognitive decline in MS 
patients. It should be noted that functional network 
integration only predicted a modest amount of cogni-
tive decline in our MS sample (Radj

2 15= %), which 
increased (to 21%) when also including cortical GM 
volume. Still, functional network integration was an 
independent predictor of cognitive decline in addition 
to cortical GM volume, indicating the added value of 
studying network functioning in the context of cogni-
tive decline.

Table 4. Regression models to predict cognitive decline and cognition at baseline.

Final models Bootstrapped validation final models

 B P Bmean 95% CImean Pmedian*

Cognition at baseline (MEG model; Radj
2 10= %)

 Leaf fraction alpha1 13.99 0.004* 13.82 4.36–22.84 0.004*

 Sex 0.30 0.029* 0.30 0.04–0.57 0.027*

 Age –0.01 0.184 –0.008 –0.019 to 0.004 0.185

 Education middle vs. low 0.25 0.141 0.25 –0.11 to 0.60 0.145

 Education high vs. low 0.37 0.025* 0.37 0.04 to 0.68 0.025*

Cognition at baseline (MEG and MRI model; Radj
2 34= %)

 Leaf fraction alpha1 8.79 0.041* 8.56 –1.36 to 18.08 0.043*

 Cortical GM volume (L) 4.83 0.007* 4.85 1.42–8.12 0.006*

 Deep GM volume (ml) 0.04 0.009* 0.04 0.008–0.06 0.008*

 Sex 0.15 0.204 0.16 –0.07 to 0.37 0.183

 Age 0.01 0.064 0.01 –0.002 to 0.02 0.062

 Education middle vs. low 0.31 0.037* 0.30 –0.02 to 0.63 0.038*

 Education high vs. low 0.37 0.010* 0.36 0.05 to 0.69 0.010*

Longitudinal cognitive decline (MEG model; Radj
2 15= %)

 Leaf fraction delta band 3.37 0.001* 3.40 0.94 to 5.93 0.001*

 Diameter beta band 0.07 0.003* 0.07 0.03 to 0.10 0.003*

 Cognition at baseline –0.02 0.148 –0.02 –0.05 to 0.01 0.158

 Sex 0.03 0.264 0.03 –0.03 to 0.08 0.237

 Age –0.003 0.011* –0.002 –0.004 to 0.001 0.009*

 Education middle vs. low 0.04 0.190 0.04 –0.01 to 0.09 0.194

 Education high vs. low 0.06 0.031* 0.06 0.01–0.11 0.030*

Longitudinal cognitive decline (MEG and MRI model; Radj
2 21= %)

 Leaf fraction delta 3.35 0.001* 3.41 1.13–5.74 0.001*

 Diameter beta 0.07 0.003* 0.07 0.03–0.10 0.003*

 Cortical GM volume (L) 0.70 0.006* 0.69 0.24–1.16 0.006*

 Cognition at baseline –0.04 0.009* –0.04 –0.07 to 0.007 0.010*

 Sex 0.02 0.363 0.02 –0.03 to 0.07 0.291

 Age –0.001 0.641 –0.001 –0.003 to 0.002 0.454

 Education middle vs. low 0.05 0.076 0.05 0.003 to 0.10 0.079

 Education high vs. low 0.07 0.010* 0.07 0.02 to 0.12 0.010*

CI: confidence interval; MEG: magnetoencephalography; MRI: magnetic resonance imaging; GM: gray matter.
Covariates are presented in italics.
*Due to a skewed distribution of the p values across the 10,000 bootstrap samples, the median p value is noted.
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Our cross-sectional analyses showed that worse cog-
nitive function was related to a less integrated net-
work with fewer hub-like brain regions, as indicated 
by a lower tree hierarchy, which confirmed earlier 
MEG and fMRI studies.7,9,10,23,30 The direction and 
strength of this cross-sectional association was not 
specific to one frequency band, whereas our longitu-
dinal results were highly frequency-specific. This 
could imply that network patterns heralding cognitive 
decline are different from those patterns identifiable 
after CI has already developed. This could indicate 
that the process of developing CI is related to a pro-
gressive spreading of network dysfunction across  
frequency bands over time. This finding that cross-
sectional and longitudinal predictors of cognitive 
decline differ was also confirmed by a recent struc-
tural study, showing that while deep GM atrophy best 
relates to cross-sectional cognition, the primary pre-
dictor of future cognitive decline was actually cortical 
GM volume.4 This hypothesis also underlines the 
need for longitudinal MEG studies.

The underlying histopathological substrates of 
changes in functional network integration in MS 
patients remain unclear. In our study, functional net-
work integration at baseline related to lesion load and 
deep GM volume, but not to cortical GM volume. 
Recent work suggested that functional network inte-
gration is likely to be facilitated by long-range white 
matter connections, including large commissural and 
association fibers, indicating that lesions within these 
long-range connections may lead to less integrated 
functional networks.31,32 Particularly these long-range 
connections seem to be vulnerable in MS,32 which 
may explain the widespread changes in functional 
network integration found in MS patients in our as 
well as other studies.9,7 Furthermore, as part of the 
deep GM, the thalamus seems to play a central role in 

functional network integration.14,33 This could possi-
bly explain the observed relation between measures 
of network integration and specifically deep GM vol-
ume in our study. Future longitudinal studies need to 
elucidate whether damage in the long-range white 
matter connections, as well as thalamus atrophy, coin-
cide with functional brain network changes or whether 
there is a certain order of events.

A limitation of our study is the relatively mild disease 
progression of our cohort, which could explain the 
modest amount of cognitive decline predicted by our 
functional and structural measures. Since the rate of 
decline differed between separate cognitive functions, 
we also investigated the predictive value of functional 
network integration for each cognitive function sepa-
rately, but the explanatory power of our functional 
network predictors did not improve. In addition, we 
could not fully account for cognitive reserve, which 
may have a protective effect on cognitive decline.2 
We did find that more highly educated patients had a 
lower rate of cognitive decline, but only including 
educational level may be too limited to represent cog-
nitive reserve.2,4

Furthermore, a methodological consideration of net-
work-based studies is the uncertainty of the computed 
network measures, given that several assumptions 
and choices need to be made.34,35 Still, an important 
advantage of MEG is that it directly measures the 
magnetic fields induced by neuronal currents and is 
therefore not affected by factors like neurovascular 
coupling, which strongly hamper interpretation of 
fMRI results.12 Moreover, we analyzed network inte-
gration based on the MST (i.e. the core of the func-
tional brain network), which disregards weaker 
connections that are inherently more noisy. Although 
such weaker connections might still hold information, 

Figure 3. Functional brain network characteristics (MST) as predictors of cognitive decline.
A less integrated delta band network (i.e. a more line-like organization) and a more integrated beta band network (i.e. a 
more star-like organization) at baseline predicted larger rates of yearly cognitive decline.
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this algorithm avoids arbitrary choices with regard to 
thresholds or normalization procedures, which are 
usually needed when computing and comparing con-
ventional network measures.22–24 We further validated 
our results with a bootstrap-based approach, which 
confirmed the robustness of our longitudinal results. 
A next step would be to validate our findings in differ-
ent MS samples, as well as to employ multiple imag-
ing modalities to study functional and structural brain 
network abnormalities in relation to cognitive decline.

To conclude, a combination of neurophysiological 
markers of network dysfunction and GM atrophy best 
predicted cognitive decline in MS. More specifically, 
our results indicate that both impaired functional net-
work integration and lower cortical GM volume her-
ald imminent cognitive decline, while white matter 
lesion load was not predictive. Interestingly, network 
dysfunction was not directly related to cortical atro-
phy, indicating the added value of including func-
tional network measures when predicting decline in 
MS. As such, this work indicates the promise of net-
work measures in predicting disease progression in 
MS patients, which warrants further study.
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