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Abstract

Background: Bacteraemia is a frequent and severe condition with a high mortality rate. Despite profound knowledge about
the pre-test probability of bacteraemia, blood culture analysis often results in low rates of pathogen detection and therefore
increasing diagnostic costs. To improve the cost-effectiveness of blood culture sampling, we computed a risk prediction
model based on highly standardizable variables, with the ultimate goal to identify via an automated decision support tool
patients with very low risk for bacteraemia.

Methods: In this retrospective hospital-wide cohort study evaluating 15,985 patients with suspected bacteraemia, 51
variables were assessed for their diagnostic potency. A derivation cohort (n = 14.699) was used for feature and model
selection as well as for cut-off specification. Models were established using the A2DE classifier, a supervised Bayesian
classifier. Two internally validated models were further evaluated by a validation cohort (n = 1,286).

Results: The proportion of neutrophile leukocytes in differential blood count was the best individual variable to predict
bacteraemia (ROC-AUC: 0.694). Applying the A2DE classifier, two models, model 1 (20 variables) and model 2 (10 variables)
were established with an area under the receiver operating characteristic curve (ROC-AUC) of 0.767 and 0.759, respectively.
In the validation cohort, ROC-AUCs of 0.800 and 0.786 were achieved. Using predefined cut-off points, 16% and 12% of
patients were allocated to the low risk group with a negative predictive value of more than 98.8%.

Conclusion: Applying the proposed models, more than ten percent of patients with suspected blood stream infection were
identified having minimal risk for bacteraemia. Based on these data the application of this model as an automated decision
support tool for physicians is conceivable leading to a potential increase in the cost-effectiveness of blood culture sampling.
External prospective validation of the model’s generalizability is needed for further appreciation of the usefulness of this
tool.
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Background

Bacteraemia is a frequent and severe condition with an

annualized incidence of 122 per 100.000 people. The mortality

rate ranges between 14% and 37% [1–3]. Risk factors for

bacteraemia are advanced patient’s age, urinary or indwelling

vascular catheter, fulfilment of two or more SIRS criteria,

impaired renal or liver function, malignancy or other chronic

co-morbidities [4–8]. Although blood culture analysis is considered

the gold standard for diagnosing bacteraemia in patients with

suspected blood stream infection, the clinical decision of when to

take a blood culture is not trivial. Despite profound knowledge

about the pre-test probability of positive blood culture results,

which is strongly influenced by the site of infection, true positive

rates identifying a causative pathogen are in a low range when

consecutively assessed (4.1%–7%) [9–11]. Compared to the true

positive rate, false positive results due to contamination are in a

similar or even in a higher range, varying between 0.6% to over

8% [11–13]. Importantly, these imperfections of blood culture

analysis have an important economic impact, resulting in a 20%

increase of total hospital costs for patients with false positive blood

cultures [14–17]. Economic analyses estimate the costs related to a

single false positive blood culture result between $6,878 and $7,502

per case [17–19].
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To increase the cost effectiveness of blood culture analysis, the

identification of targeted patient cohorts is therefore highly

needed. Several prediction systems for bacteraemia in special

patient cohorts have been published with ROC-AUCs in a

moderate range [20–24]. However, physicians are arguably

inefficient in applying a multitude of available prediction scores

for specific conditions and specific patient cohorts [25,26]. The

aim of the current study was therefore to establish a machine

learning based prediction system for inpatients and outpatients

with suspected bacteraemia using highly standardized and

routinely available laboratory parameters to identify those patients

for whom blood culture sampling may safely be omitted due to

very low pre-test probability for bacteraemia.

Material and Methods

Study Design and Data Collection
The current study was designed as a retrospective cohort study,

including inpatients and outpatients at the Vienna General

Hospital, Austria, a 2,116-bed tertiary teaching facility. Between

January 2006 and December 2010, patients with the clinical

suspicion to suffer from bacteraemia were included if blood culture

analysis was requested by the responsible physician and blood was

sampled for assessment of haematology and biochemistry. Patients

younger than 18 years and patients with unavailable laboratory

parameter results were excluded. Patients with a potential blood

culture contaminant and those with missing or inaccurate

identification to the species level were excluded from further

analysis. Blood culture contamination was defined according to

the criteria of Hall and Lyman [27]. Furthermore, patients with

rare blood culture isolates (less than 0.15% frequency of positives)

were also excluded. Patients’age, gender and 49 laboratory

parameters (see table 1) were used in the analysis. All laboratory

parameters had been assessed in accordance to parameter specific

SOPs at the Clinical Department of Laboratory Medicine,

Medical University Vienna, an ISO 9001:2008 certified and

ISO 15189:2008 accredited facility. Anonymous raw data can be

request by contacting the corresponding author. Following

national regulations each request will be evaluated for approval

by the local human data safety commission.

Ethical Considerations
The study was approved by the local Ethics Committee of the

Medical University Vienna (EC-Nr.: 333/2011) and conducted in

accordance to the Declaration of Helsinki (1965, including current

revisions), the rules of Good Clinical Practice (GCP, European

Union) and the standards for the reporting of diagnostic accuracy

studies (STARD). Since a retrospective study design was applied,

informed consent was not sought from study participants. To

assure anonymity, every study participant was assigned a

consecutive identification number, which was exclusively used

for further analysis.

Evaluation method
The data set was divided into a derivation set (Jan 1, 2006 to Jul

31, 2010) and a validation set (Aug 1, 2010 to Dec 31, 2010) based

on the date of inclusion. For feature selection and model training

the derivation set was used. Feature selection and internal

validation of the trained model was performed using a 10 fold

cross validation scheme. Results of the internal validation were

taken to set cut-off points for risk stratification of the study

population. The Youden index method was applied to set optimal

cut-off points [28,29]. Using likelihood ratios (LR; LR2:0.12,

LR+:4.93, see figure S1) of corresponding cut-off values, three

strata were established to group the patients into a low risk,

intermediate risk and high risk group. For the low risk group a cut-

off point for the classification probability was set to yield 1% post-

test probability for bacteraemia. For the high risk group, a cut-off

point resulting in more than 30% post-test probability was

predefined. Classification probabilities between these defined cut

off points were allocated to the intermediate risk group. To

externally validate the discriminatory potency of the previously

trained algorithm and risk strata, the validation set was used.

Statistical Analysis
For statistical analysis, WEKA (Version 3.7.10, GNU General

Public License) and R (Version 3.0.2, GNU General Public

License) were used [30]. Descriptive statistics of all variables

indicated are given as median and interquartile range. For single

variable analysis, the Mann-Whitney U-test, Pearson’s chi-squared

test and area under the receiver operating characteristic curve

(ROC-AUC) analysis of individual variables were applied [31]. To

train the multivariable models, variables with a high discriminative

power were selected, using the wrapper subset evaluator algorithm

and the correlation feature selection (CFS) subset evaluator of

WEKA. The wrapper approach aims at selecting a relevant set of

variables for a specific classification algorithm (in our case the

A2DE algorithm, see below) [32]. The CFS subset evaluator

evaluates the discriminatory power of a variable subset with

respect to their inter-correlation to each other [33]. Furthermore,

the effect of each variable was evaluated by a step-wise deletion of

variables in the order of their individual Pearson’s correlation

coefficient with respect to the outcome.

For statistical modelling, several major groups of supervised

machine learning algorithms were applied, including Bayesian

classifiers such as Naı̈ve Bayes, artificial neural networks such as

multilayer perceptrons, or support vector machines. The best

results were consistently achieved with the averaged 2-dependence

estimators (A2DE) algorithm. The A2DE, belonging to the

averaging n-dependence estimator classifier group, is a semi-

Naı̈ve Bayes method [34]. This group of algorithms assumes that

Figure 1. Selection process of the study population. 1unavail-
ability of laboratory variables, 2Contaminations or fungal growth,
3blood culture results with less than 0.001% frequency, 4study patients
treated between Jan 1, 2006 and Jul 31, 2010, 5study patients treated
between Aug 1, 2010 and Dec 31, 2010.
doi:10.1371/journal.pone.0106765.g001
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each predicting variable depends on the outcome-class and n other

variables. In case of the A2DE classifier, n equals two, whereas the

classic Naı̈ve Bayes algorithm is a zero-dependence estimator,

assuming that all variables are conditionally independent from

each other [35,36]. In many real-world applications, this

independence assumption is violated, leading to inadequate

results. The Naı̈ve Bayes algorithm requires a two dimensional

table (outcome class and predicting variable) for indexing the

probability estimates. In contrast, the A2DE requires two

additional dimensions for the estimation of the two additional

variable dependencies. Further, these classifiers aggregate the

predictions made by a collection of n-dependence estimators [37].

These procedures decrease the bias but slightly increase the

model’s variance [38]. However, comprehensive experimental

evaluations indicate that the A2DE’s trade-off between bias and

variance results in a good predictive accuracy for many

applications and data sets [39–41].

For ROC-curve comparison, a paired t-test (comparison of

paired cross validation folds), the DeLong test or the Hanely and

McNeil comparison test were applied to values of the ROC-AUC

[42–44]. Furthermore, 95% confidence intervals of performance

measures, including sensitivity, specificity, negative predictive

value (NPV) or positive predictive value (PPV), were calculated

with bootstrapping (2,000 iterations) [45]. Where appropriate, the

Bonferroni-Holm method was used to control for type I errors,

related to multiple testing. Statistical significance was defined as a

p-value less than 0.05.

Results

Study population
Between January 2006 and December 2010, blood culture

analysis was requested for 23,765 patients. Figure 1 presents the

selection process of patients. Patients less than 18 years old

(n = 3,879), patients with unavailable laboratory parameter results

(n = 3,389), patients with blood culture contamination, patients

with blood culture results having missing or inaccurate identifica-

tion to the species level and fungal growth (n = 464) and patients

with rare blood culture isolates (n = 48) were excluded from

analysis. The final study population consisted of 15,985 patients.

Among them, 1,286 patients (8%) had a positive blood culture

result. Most prevalent bacteria were E. coli (n = 406, 31.5%), S.
aureus (n = 297, 23.1%), and K. pneumonie (n = 83, 6.5%). Patient

characteristics are presented in Table 1. According to a predefined

temporal criterion (cut-off date: Aug 1, 2010), the data set was

divided into a derivation set (n = 14,691, 8% bacteraemia) and a

validation set (n = 1,294, 8.2% bacteraemia).

Feature selection and model training
Among 51 available variables in the derivation set, 40 variables

resulted in a statistically significant difference between bacteraemia

and non-bacteraemia patients. The best individual discriminatory

variable was the proportion of neutrophil leukocytes in differential

blood count (p,0.0001) with an ROC-AUC of 0.694 (CI: 0.686–

0.702). At the Youden Index cut-off point, the relative amount of

neutrophils resulted in 61.95% (59.1%–64.7%) sensitivity and

67.6% specificity (66.8%–68.4%), respectively. Among all vari-

Figure 2. ROC-AUCs assessed in relation to the number of variables used. Variables are ranked according to their individual correlation
coefficient with respect to the outcome; significant decrease of the ROC-AUC is seen when more than one variable is deleted.
doi:10.1371/journal.pone.0106765.g002
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ables, 20 variables were selected by the wrapper approach (model

1), which were further evaluated by the CFS subset evaluator

(model 2). Finally, model 2 consisted of ten variables, including

patient’s age, proportion of neutrophils, monocytes (absolute and

relative value), eosinophils (absolute value), lymphocytes (absolute

value), sodium, C-reactive protein, creatinine and total bilirubin

(Table 2). Also other feature selection steps were evaluated,

resulting in models with lower ROC-AUCs than described below.

A number of applicable classes of supervised machine learning

techniques including artificial neural networks and support vector

machines were screened in the model selection process. Figure S2

presents ROC-curves of various classifiers. The best results in

ROC curve analysis were achieved by applying the A2DE

classifier yielding an ROC-AUC of 0.767 (CI: 0.754–0.781) in

model 1, and of 0.759 (CI: 0.745–0.773) in model 2, respectively.

This classifier is conceptually simpler than other algorithms

available, and presented constantly better results in ROC-AUC

analysis than other classifier tested. Generally, the models’calibra-

tion appears to be good. Calibration plots are shown in figure S3.

Model 1 shows a modest risk for overestimation for patients at

higher bacteraemia risk. This overestimation effect is not seen in

model 2, which therefore appears to be very well calibrated.

Using the Youden Index method to set an optimal cut-off point,

model 1 yielded 72.1% sensitivity and 70.3% specificity with

17.3% PPV and 96.7% NPV. Model 2 yielded 67.7% sensitivity

and 72.8% specificity with 17.8% PPV and 96.7% NPV. Different

cut-off points were used to establish a low risk, an intermediate risk

and a high risk group for bacteraemia. Table 3 summarizes

diagnostic prediction measures when using different cut-off points.

Importantly, the low risk group demonstrates a NPV of 98.84

(model 1) and 99.14 (model 2), respectively.

Effects of feature reduction and missing values
To estimate the effect of omitting variables with low predictive

power, variables of model 1 were ranked according to their

individual Pearson correlation coefficient against the outcome

variable and deleted step by step in that order. The majority of

deletion steps led to a significant decrease of the ROC-AUC.

Figure 2 summarizes this deletion procedure.

Due to its retrospective study design, some variables were not

available for all patients (Table 2). For most variables less than

10% missing values were observed with the exception of

cholesterol (34% missing values), amylase (27%), creatinine kinases

(14%) and magnesium (13%). When replacing missing values with

the mean value of the corresponding group (‘‘value imputation’’),

no significant difference in ROC-AUCs were detected (model 1:

ROC-AUC = 0.77, p = 0.85; model2: ROC-AUC = 0.76,

p = 0.09).

Validation set
To test the generalizability of the established models, a

validation set (n = 1,294) was used. Model 1 achieves an ROC-

AUC of 0.80 (CI: 0.76–0.84, see figure S4). Model 2 yields an

ROC-AUC of 0.79 (CI: 0.74–0.83). No significant differences

were found between ROC-AUCs derived from the validation set

and the corresponding ROC-AUCs derived from the derivation

set (model 1: p = 0.1542, model 2: p = 0.2594).

When applying the cut-offs point predefined by the Youden

index method in the derivation cohort, model 1 yields a sensitivity

Figure 3. Graphical result of the validation cohort. model 1: 16% low risk cohort with 2 false negative patients; model 2: 12% low risk cohort
with 3 false negative patients.
doi:10.1371/journal.pone.0106765.g003
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of 79.3% and a specificity of 68.4% with 18.4% PPV and 97.4%

NPV. Model 2 achieved a sensitivity of 80.2% and a specificity of

70.0% with 19.3% PPV and 97.5% NPV. Using the predefined

cut-off points for the risk model, 16% of the patients (n = 202) were

allocated to the low risk group and 7% (n = 89) to the high risk

group, respectively. Among the patients in the low risk group, only

2 patients were false negatives. Similarly, applying model 2, 157

patients (12%) were allocated to the low risk group with 3 false

negatives. Details of the risk model are provided in table 2 while

figure 3 represents a tree-based graphical representation of the

prediction outcome.

Discussion

The goal of the current study was to assess the discriminatory

power of machine learning models with frequently requested

variables for predicting negative blood culture results in inpatients

and outpatients with a suspicion to suffer from bacteraemia. The

cost effectiveness of blood culture analysis very much depends on

the diagnostic yield and therefore an automated tool improving

the selection of patients may therefore increase cost-effectiveness.

Several scoring systems predicting the probability of a positive

blood culture result in a specific patient cohort have been

published previously [20,21,46–48]. However, since these scores

necessitate the manual calculation by the physician, these are often

not applied. Our approach was to compute a potentially

automated decision support tool to improve the cost-effectiveness

of blood culture sampling using highly standardized data resulting

in ROC-AUCs between 0.759 and 0.804. Based on these models

the NPV was 99.01% for model 1 and 98.1% for model 2 for

patients of low risk for bacteraemia. Based on these results the

proposed support tool would be able to safely reduce 12–16% of

blood culture sampling leading to a reduction of costs.

In this study, statistical analysis was restricted to laboratory

parameters as well as gender and patient’s age, which are all

readily available and highly standardized. These variables

combine the advantage of reproducibility and availability as

opposed to most clinical variables.

Pre-test probability of bacteraemia may vary considerably

between studies potentially impacting on the diagnostic accuracy

of prediction models [10,11]. Our results are similar to those of a

previous study by Piftenmeyer et al. reporting a 8.2% prevalence

of bacteraemia [49]. Nakamura et. al. published a hospital based

study with a 19.5% prevalence of bacteraemia and predicting

bacteraemia with an ROC-AUC of 0.73 [47]. The prevalence of

bacteraemia (19.5%) in this study is higher than generally reported

for hospital-based studies and may therefore lack generalizability

[10,11]. Finally, Jin et al. evaluated a Bayesian algorithm for the

prediction of bacteraemia in 19,303 patients, yielding an ROC-

AUC of 0.70 [50]. In contrast to our study, however, laboratory

markers included in the analysis were allowed a considerable lag

time to blood culture sampling of up to 72 hours, or even 7 days in

case of albumin and alkaline phosphatise. Considering the

dynamic evolution of inflammation makers, this discrepancy in

sampling times may have importantly impacted on their results.

Several limitations have to be acknowledged in this study.

Firstly, the retrospective nature of the study may introduce bias in

the analysis of the results. Although the data set has been split into

a sub-set used for model generation and one for validation, the

external generalizability needs to be addressed prospectively at

other health care institutions. Finally, the applicability of an

automated decision support tool needs to be tested in clinical

practice. The potential trade-off between diagnostic certainty and

economic aspects must be well-balanced and may vary between

different settings [51,52].

In conclusion our data show the utility of highly standardized

variables for predicting bacteraemia with an ROC-AUC between

0.759 and 0.800. This prediction model may be tested for

implication as clinical support tool to exclude blood culture

sampling in patients with very low probability for bacteraemia. A

prospective evaluation of the model’s generalizability would be

indicated.

Supporting Information

Figure S1 Fagan’s Nomogram. To graphically represent the

correlation between pre-test probability, likelihood ratio and post-

test probability; left side: negative likelihood ratio for low risk

group cut-off point specification; right side: positive likelihood

ratio for high group cut-off point specification.

(TIF)

Figure S2 ROC-AUCs of various machine learning
algorithms. A: Model 1 (20 variables); resulting in the following

ROC-AUCs: A2DE: 0.7671 (CI: 0.754–.781), SVM 0.5 (CI: 0.5–

0.5), Naı̈ve Bayes: 0.547 (CI: 0.530–0.563), Multilayer Perceptron:

0.694 (CI: 0.677–0.710), Logistic Regression: 0.751 (CI: 0.737–

0.766); B: Model 2 (10 variables), resulting in the following ROC-

AUCs: A2DE: 0.759 (CI: 0.745–0.774), SVM: 0.5 (CI: 0.5–0.5),

Naı̈ve Bayes: 0.650 (CI: 0.633–0.666), Multilayer Perceptron:

0.729 (CI: 0.714–0.744), Logistic Regression: 0.742 (CI: 0.727–

0.757).

(TIF)

Figure S3 Calibration plots of model 1 and model 2. x-

axis: predicted risk, y-axis: observed risk; a slight overestimation is

seen in model 1 for patients with high risk for bacteraemia.

(TIF)

Figure S4 ROC-AUCs of various the A2DE classifier at
the validation set. Model 1: ROC- AUC: 0.80 (CI: 0.76–0.84).

Model 2: ROC-AUC: 0.79 (CI: 0.74–0.83).

(TIF)
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