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Abstract: Tetropium fuscum is a harmful forest pest and attacks spruces. The contact sex pheromone of
this pest, (S)-11-methyl-heptacosane, and its enantiomer were synthesized via Evans’ chiral auxiliaries.
The key steps of this approach included acylation of carboxylic acid, diastereoselective methylation
of oxazolidinone amide, and Wittig coupling of the aldehyde with chiral phosphonium salt. The
synthetic pheromones would have potential utility in the control of this pest.

Keywords: contact sex pheromone; Tetropium fuscum; chiral auxiliary; asymmetric synthesis

1. Introduction

The brown spruce longhorn beetle, Tetropium fuscum Fabricius (Coleoptera: Ceramby-
cidae), is a harmful forest pest native to Europe where it attacks weakened Norway spruce,
Picea abies L. [1,2]. It first became invasive to North America around 1990 [3,4], where it
was infecting and killing healthy native spruces, such as red spruce (Picea rubens Sargent),
white spruce (Picea glauca Moench), blue spruce (Picea pungens Engelm), and black spruce
(Picea mariana Miller) [5,6]. Due to its subcortical feeding habits [7,8], systemic insecticides
and heating are not very effective and practical [9,10].

The strategy based on pheromones for controlling agricultural pests is one of the
most promising, effective, and safe solutions [11,12]. The contact sex pheromone of
Tetropium fuscum was identified as (S)-11-methyl-heptacosane ((S)-1) (Figure 1) by Silk,
meanwhile, (S)-1 and its enantiomer (R)-1 were synthesized from (S)- and (R)-citronellyl
bromides [13]. To study future utilization of the contact sex pheromone [14], herein, we
prepared the contact sex pheromone of Tetropium fuscum and its enantiomer using Evans’
chiral auxiliaries. Our synthesis was easily performed and afforded the target pheromone
with high enantiomeric purity.
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1. Introduction 
The brown spruce longhorn beetle, Tetropium fuscum Fabricius (Coleoptera: Ceram-

bycidae), is a harmful forest pest native to Europe where it attacks weakened Norway 
spruce, Picea abies L. [1,2]. It first became invasive to North America around 1990 [3,4], 
where it was infecting and killing healthy native spruces, such as red spruce (Picea rubens 
Sargent), white spruce (Picea glauca Moench), blue spruce (Picea pungens Engelm), and 
black spruce (Picea mariana Miller) [5,6]. Due to its subcortical feeding habits [7,8], sys-
temic insecticides and heating are not very effective and practical [9,10]. 

The strategy based on pheromones for controlling agricultural pests is one of the 
most promising, effective, and safe solutions [11,12]. The contact sex pheromone of Tetro-
pium fuscum was identified as (S)-11-methyl-heptacosane ((S)-1) (Figure 1) by Silk, mean-
while, (S)-1 and its enantiomer (R)-1 were synthesized from (S)- and (R)-citronellyl bro-
mides [13]. To study future utilization of the contact sex pheromone [14], herein, we pre-
pared the contact sex pheromone of Tetropium fuscum and its enantiomer using Evans’ 
chiral auxiliaries. Our synthesis was easily performed and afforded the target pheromone 
with high enantiomeric purity. 
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Figure 1. Contact sex pheromone of Tetropium fuscum and its enantiomer. 

2. Results and Discussion 
2.1. Retrosynthetic Analysis 

In view of retrosynthetic analysis of contact sex pheromone of (S)-1 (Scheme 1), the 
key step is to construct the chiral center. It was envisaged that Evans’ chiral auxiliaries 
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Figure 1. Contact sex pheromone of Tetropium fuscum and its enantiomer.

2. Results and Discussion
2.1. Retrosynthetic Analysis

In view of retrosynthetic analysis of contact sex pheromone of (S)-1 (Scheme 1), the key
step is to construct the chiral center. It was envisaged that Evans’ chiral auxiliaries including
acylation of dodecanoic acid (2) and diastereoselective methylation of oxazolidinone amide
would introduce chiral methyl of amide (S,S)-5. The target pheromone (S)-1 could be
synthesized via hydrogenation reduction of olefin (S)-10, which could be divided into two
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components, pentadecanal (9) and phosphonium salt in situ prepared by hydrocarbon
bromide (S)-7 and triphenylphosphine. Furthermore, (S)-1-bromo-2-methyldodecane ((S)-7)
could be easily prepared from chiral alcohol (S)-6 through Appel reaction.
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2.2. Synthesis of Chiral Primary Bromides

Based on the retrosynthetic analysis of contact sex pheromone (S)-1, chiral primary bro-
mides (S)- and (R)-7 were first prepared (Scheme 2). The reaction of dodecanoic acid (2) with
oxalyl chloride afforded the corresponding crude acyl chloride [15] were then treated with
oxazolidinone (S)-3 and NaH to provide (S)-4-benzyl-3-dodecanoyloxazolidin-2-one ((S)-4)
in a 96% yield [16]. In the presence of hexamethyldisilazide (NaHMDS), diastereoselective
methylation of amide (S)-4 with methyl iodide gave chiral methyl amide (S,S)-5 (62% yield,
dr > 99:1, determined by 13C NMR spectra) [17]. According to Evans’ chiral auxiliary prece-
dent [18], the absolute configuration of the new stereocenter of (S,S)-5 was assigned as (S).
The subsequent reduction with NaBH4 afforded (S)-2-methyldodecan-1-ol ((S)-6) in an 88%
yield [19,20]. Its specific rotation {[α]D

22 = −9.0 (c 1.37, CHCl3)} was identical to the litera-
ture [21] value {[α]D

23 = −8.4 (c 1.00, CHCl3)}, which also supported the (S)-configuration
of the new stereocenter. The final Appel reaction converted the chiral methyl alcohol (S)-6
to (S)-1-bromo-2-methyldodecane ((S)-7) in a 99% yield [22,23]. Similarly, (R)-1-bromo-2-
methyldodecane ((R)-7) was prepared via acylation, diastereoselective methylation, reduc-
tion, and bromination from dodecanoic acid (2) and (R)-4-benzyloxazolidin-2-one ((R)-3).
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Scheme 2. Synthesis of chiral primary bromides (S)- and (R)-7.

2.3. Research on the Enantiomeric Purity of Chiral Alcohols

To explore the optical purity of key intermediate chiral methyl alcohols (S)-6 and (R)-6,
we synthesized their MBT derivatives (Scheme 3). According to the similar sequence of
(S)-6, the racemic alcohol 6 was prepared from dodecanoic acid and oxazolidin-2-one. Then,
the Mitsunobu reaction of methyl alcohols 6 with benzo[d]thiazole-2(3H)-thione (MBT)
afforded their MBT derivatives 8 [24,25]. Ee of (S)-8 and (R)-8 was 98–99% determined by
HPLC with a Daciel Chiralcel OD-H column, which indicated that the enantiomeric purity
of (S)-6 and (R)-6 were also 98–99%.
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2.4. Synthesis of the Target Compounds

With chiral primary bromides in hand, we focused on the synthesis of the target
pheromone (S)-1 and its enantiomer (R)-1 (Scheme 4). The Z/E mixtures of olefin (S)-10
were achieved through Wittig coupling of n-pentadecanal (9) and phosphonium salt
(53% yield, Z:E = 5.6:1, determined by 13C NMR spectra) [26,27], which was prepared
in situ from hydrocarbon bromide (S)-7 and triphenylphosphine[28]. The final palladium-
catalyzed hydrogenation of (S)-10 afforded the target compound (S)-11-methylheptacosane
((S)-1) [29,30]. The NMR spectrum and specific rotation of (S)-1 were matched with the lit-
erature [13]. Using the similar approach of pheromone (S)-1, we synthesized its enantiomer,
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(R)-11-methylheptacosane ((R)-1). Moreover, the structure of (R)-1 was characterized with
1H NMR, 13C NMR, and EIMS spectra, which were consistent with reference 13.
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3. Materials and Methods
3.1. General Information

All reactions were performed in a Schlenk system under an argon atmosphere unless
otherwise indicated. All commercial reagents were used directly, whereas solvents were pu-
rified following the standard strategies before use. Polarimetric measurements were taken
on a Perkin–Elmer PE-341 polarimeter. Enantiomeric excesses were determined by an Agi-
lent 1200 HPLC system with a Daicel Chiralcel OD-H column with the eluents of n-hexane
and isopropanol. 1H and 13C NMR spectra were recorded on a Bruker DP-X500 MHz
spectrometer. Chemical shifts were reported in ppm relative to tetramethylsilane for 1H
NMR and CDCl3 (77.16 ppm) for 13C NMR. High resolution mass spectra were collected
on Waters LCT Premier™ with an ESI mass spectrometer. Low-resolution mass spectra
were obtained from an Exactive GC-MS (EI).

3.2. Synthesis of (S)-4-Benzyl-3-dodecanoyloxazolidin-2-one ((S)-4) (CAS 198649-20-6)

The catalytic amount of DMF was added to a stirred solution of dodecanoic acid (2)
(5.00 g, 24.97 mmol) in DCM (40 mL) at 0 ◦C. Oxalyl chloride (4.75 g, 37.43 mmol) was
then added dropwise, and the reaction mixture was stirred for 1 h at 0 ◦C. After being
warmed to room temperature and maintained for another 1 h, the solvent was removed
under reduced pressure. The crude dodecanoyl chloride (3.49 g, 64% yield) was obtained
as a slight yellow solid.

NaH (0.99 g, 60% in mineral oil, 24.75 mmol) was added in portions to a stirred solution
of (S)-4-benzyloxazolidin-2-one ((S)-3) (2.95 g, 16.64 mmol, >99% ee) in THF (20 mL) at
0 ◦C. The resulting mixture was warmed to room temperature and stirred for 2 h, followed
by the addition of the crude dodecanoyl chloride. The reaction mixture was maintained for
another 3 h at the same temperature, then quenched with saturated aqueous NH4Cl (10 mL).
After the layers were separated, the aqueous phase was extracted with EtOAc (3 × 50 mL).
The EtOAc extracts were combined with organic layer, washed with saturated aqueous
NaCl (50 mL), dried over anhydrous Na2SO4, and filtered. The filtrate was concentrated
under reduced pressure, and the residue was purified by silica gel column chromatography
(EtOAc/petroleum ether 2:8) to afford (S)-4-benzyl-3-dodecanoyloxazolidin-2-one ((S)-4)
as a colorless oil (5.73 g, 96% yield). [α]D

22 = +32.8 (c = 2.67, CHCl3). 1H NMR (500 MHz,
CDCl3) δ 7.33–7.20 (m, 5H), 4.67 (ddt, J = 10.7, 7.3, 3.2 Hz, 1H), 4.20–4.14 (m, 2H), 3.29 (dd,
J = 13.4, 3.2 Hz, 1H), 3.00–2.86 (m, 2H), 2.77 (dd, J = 13.4, 9.6 Hz, 1H), 1.72–1.66 (m, 2H),
1.38–1.23 (m, 16H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 173.56, 153.55,
135.44, 129.51, 129.01, 127.39, 66.23, 55.22, 38.00, 35.62, 31.99, 29.70, 29.57, 29.48, 29.42, 29.22,
24.37, 22.77, 14.19; one resonance was not observed due to coincidence of the chemical
shifts. HRMS (ESI) m/z calcd. for C22H33NO3Na (M + Na)+: 382.2353, found 382.2354.
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3.3. Synthesis of (S)-4-Benzyl-3-((S)-2-methyldodecanoyl)oxazolidin-2-one ((S,S)-5)
(CAS 2771300-96-8)

NaHMDS (13 mL, 2.0 M in THF, 26.00 mmol) was added to a stirred solution of
oxazolidinone amide 4 (6.25 g, 17.38 mmol) in dry THF (60 mL) at −78 ◦C over 15 min
via syringe pump. The resulting mixture was stirred for 1 h at −78 ◦C, followed by slow
addition of MeI (12.34 g, 86.93 mmol). The reaction mixture was maintained for 2 h
at the same temperature, then quenched with saturated aqueous NH4Cl (20 mL). After
the layers were separated, the aqueous phase was extracted with EtOAc (3 × 75 mL).
The EtOAc extracts were combined with organic layer, washed with saturated aqueous
NaCl (150 mL), dried over anhydrous Na2SO4, and filtered. The filtrate was concentrated
under reduced pressure, and the residue was purified by silica gel column chromatography
(EtOAc/petroleum ether 1:10) to afford (S)-4-benzyl-3-((S)-2-methyldodecanoyl) oxazolidin-
2-one ((S,S)-5) (4.03 g, 62 % yield, dr > 99:1, based on 13C MNR spectra) as a white solid.
[α]D

22 = +56.5 (c = 2.04, CHCl3). 1H NMR (500 MHz, CDCl3) δ 7.34–7.21 (m, 5H), 4.68 (dd,
J = 9.7, 7.2 Hz, 1H), 4.21–4.15 (m, 2H), 3.72–3.68 (m, 1H), 3.27 (dd, J = 13.4, 3.2 Hz, 1H), 2.77
(dd, J = 13.3, 9.6 Hz, 1H), 1.75–1.72 (m, 1H), 1.42–1.41 (m, 1H), 1.29–1.25 (m, 16H), 1.22 (d,
J = 6.8 Hz, 3H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 177.49, 153.19, 135.49,
129.57, 129.05, 127.45, 66.12, 55.49, 38.04, 37.84, 33.57, 32.03, 29.79, 29.72, 29.64, 29.45, 27.40,
22.80, 17.48, 14.24; one resonance was not observed due to coincidence of the chemical
shifts. HRMS (ESI) m/z calcd. for C23H35NO3Na (M + Na)+: 396.2509, found 396.2518.

3.4. Synthesis of (S)-2-Methyldodecan-1-ol ((S)-6) (CAS 57289-26-6)

NaBH4 (2.02 g, 53.68 mmol) in water (8 mL) was added dropwise to a stirred solution
of oxazolidinone amide 5 (4.01 g, 10.74 mmol) in THF (64 mL) at 0 ◦C over 30 min. After
the reaction mixture was stirred for 3 h at room temperature, it was neutralized with
aqueous HCl (1 M) until the pH was 6. The resulting mixture was then extracted with
Et2O (3 × 30 mL). The combined organic layers were washed sequentially with saturated
aqueous NaHCO3 (20 mL) and saturated aqueous NaCl (2 × 20 mL), dried over anhydrous
Na2SO4, and filtered. The filtrate was concentrated under reduced pressure, and the residue
was purified by silica gel column chromatography (EtOAc/petroleum ether 1:10) to afford
(S)-2-methyldodecan-1-ol ((S)-6) (1.90 g, 88% yield, 98% ee, determined by chiral HPLC
of its MBT derivative (S)-8). [α]D

22 = −9.0 (c = 1.37, CHCl3), literature [21] [α]D
23 = −8.4

(c = 1.00, CHCl3). 1H NMR (500 MHz, CDCl3) δ 3.51 (dd, J = 10.4, 5.8 Hz, 1H), 3.41 (dd,
J = 10.4, 6.6 Hz, 1H), 1.64–1.59 (m, 2H), 1.26–1.16 (m, 17H), 0.91 (d, J = 6.7 Hz, 3H), 0.88
(d, J = 6.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 68.56, 35.91, 33.30, 32.06, 30.09, 29.81,
29.79, 29.78, 29.49, 27.13, 22.83, 16.72, 14.24. HRMS (ESI) m/z calcd. for C13H28OK (M + K)+:
239.1772, found 239.1786.

3.5. Synthesis of (S)-1-Bromo-2-methyldodecane ((S)-7) (CAS 1333499-05-0)

PPh3 (1.56 g, 5.97 mmol) and CBr4 (1.98 g, 5.97 mmol) were added to a stirred solution
of alcohol 6 (1.14 g, 5.69 mmol) in DCM (30 mL) at 0 ◦C. The reaction mixture was warmed
to room temperature and stirred for 6 h. The solvent was removed under reduced pressure
and the residue was purified by silica gel column chromatography (n-hexane) to afford
(S)-1-bromo-2-methyldodecane ((S)-7) (1.48 g, 99% yield) as a colorless oil. [α]D

22 = −0.90
(c = 5.33, CHCl3). 1H NMR (500 MHz, CDCl3) δ 3.39 (dd, J = 9.8, 4.9 Hz, 1H), 3.32 (dd,
J = 9.8, 6.3 Hz, 1H), 1.80–1.76 (m, 1H), 1.31–1.18 (m, 18H), 1.01 (d, J = 6.6 Hz, 3H), 0.88 (t,
J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 41.75, 35.37, 35.04, 32.07, 29.86, 29.78, 29.74,
29.50, 27.04, 22.84, 18.95, 14.26; one resonance was not observed due to coincidence of the
chemical shifts. HRMS (ESI) m/z calcd. for C13H27Br (M)+: 262.1291, found 262.1279.

3.6. Synthesis of (R)-4-Benzyl-3-dodecanoyloxazolidin-2-one ((R)-4) (CAS 185803-85-4)

According to the same manner of (S)-4, dodecanoic acid (2) (5.00 g, 24.97 mmol),
oxalyl chloride (4.75 g, 37.43 mmol), and (R)-4-benzyloxazolidin-2-one ((R)-3) (2.95 g,
16.64 mmol, >99% ee) afforded (R)-4-benzyl-3-dodecanoyloxazolidin-2-one ((R)-4) as a
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colorless oil (5.67 g, 95% yield). [α]D
22 = −31.0 (c = 2.18, CHCl3). 1H NMR (500 MHz,

CDCl3) δ 7.35–7.17 (m, 5H), 4.70–4.67 (m, 1H), 4.21–4.15 (m, 2H), 3.30 (dd, J = 13.4, 3.3 Hz,
1H), 3.00–2.86 (m, 2H), 2.76 (dd, J = 13.4, 9.6 Hz, 1H), 1.73–1.66 (m, 2H), 1.30–1.26 (m, 16H),
0.87 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 173.62, 153.61, 135.48, 129.57, 129.09,
127.47, 66.28, 55.29, 38.06, 35.68, 32.04, 29.76, 29.72, 29.62, 29.54, 29.47, 29.27, 24.40, 22.82,
14.25. HRMS (ESI) m/z calcd. for C22H33NO3Na (M + Na)+: 382.2353, found 382.2364.

3.7. Synthesis of (R)-4-Benzyl-3-((R)-2-methyldodecanoyl)oxazolidin-2-one ((R,R)-5)
(CAS 185803-86-5)

According to the same manner of (S,S)-5, oxazolidinone amide (R)-4 (6.25 g, 17.4 mmol)
and MeI (12.34 g, 86.93 mmol) afforded (R)-4-benzyl-3-((R)-2-methyldodecanoyl)oxazolidin-
2-one ((R,R)-5) (4.85 g, 75% yield, dr > 99:1, based on 13C MNR spectra) as a white solid.
[α]22D = −71.3 (c = 2.31, CHCl3). 1H NMR (500 MHz, CDCl3) δ 7.34–7.21 (m, 5H), 4.67
(ddt, J = 10.3, 6.8, 3.1 Hz, 1H), 4.21–4.15 (m, 2H), 3.72–3.67 (m, 1H), 3.26 (dd, J = 13.3, 3.3 Hz,
1H), 2.77 (dd, J = 13.3, 9.5 Hz, 1H), 1.76–1.70 (m, 1H), 1.44–1.38 (m, 1H), 1.28–1.23 (m, 16H),
1.22 (d, J = 6.9 Hz, 3H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 177.49, 153.18,
135.49, 129.57, 129.03, 127.43, 66.10, 55.46, 38.01, 37.82, 33.55, 32.01, 29.77, 29.71, 29.62, 29.43,
27.37, 22.79, 17.46, 14.21; one resonance was not observed due to coincidence of the chemical
shifts. HRMS (ESI) m/z calcd. for C23H35NO3Na (M + Na)+: 396.2509, found 396.2516.

3.8. Synthesis of (R)-2-Methyldodecan-1-ol ((R)-6) (CAS 109034-03-9)

According to the same manner of (S)-6, oxazolidinone amide (R,R)-5 (3.50 g, 9.37 mmol)
and NaBH4 (1.77 g, 46.85 mmol) afforded (R)-2-methyldodecan-1-ol ((R)-6) (1.60 g, 85%
yield, 99% ee, determined by chiral HPLC of its MBT derivative (R)-8) as a colorless oil.
[α]D

22 = +10.8 (c = 1.52, CHCl3), literature [31] [α]D
22 = +9.1 (c = 0.80, CHCl3). 1H NMR

(500 MHz, CDCl3) δ 3.50 (dd, J = 10.5, 5.8 Hz, 1H), 3.42 (dd, J = 10.5, 6.5 Hz, 1H), 1.63–1.35
(m, 2H), 1.27–1.13 (m, 17H), 0.91 (d, J = 6.8 Hz, 3H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR
(126 MHz, CDCl3) δ 68.55, 35.90, 33.30, 32.06, 30.09, 29.81, 29.78, 29.48, 27.12, 22.82, 16.71,
14.24; one resonance was not observed due to coincidence of the chemical shifts. HRMS
(ESI) m/z calcd. for C13H28OK (M + K)+: 239.1772, found 239.1785.

3.9. Synthesis of (R)-1-Bromo-2-methyldodecane ((R)-7) (CAS 1643618-98-7)

According to the same manner of (S)-7, alcohol (R)-6 (1.50 g, 7.49 mmol), PPh3 (2.06 g,
7.86 mmol), and CBr4 (2.61 g, 7.86 mmol) afforded (R)-1-bromo-2-methyldodecane ((R)-7)
(1.87 g, 95% yield) as a colorless oil. [α]D

22 = +0.29 (c = 3.99, CHCl3). 1H NMR (500 MHz,
CDCl3) δ 3.40 (dd, J = 9.8, 4.9 Hz, 1H), 3.32 (dd, J = 9.8, 6.3 Hz, 1H), 1.81–1.75 (m, 1H),
1.45–1.42 (m, 1H), 1.33–1.19 (m, 18H), 1.01 (d, J = 6.6 Hz, 3H), 0.88 (t, J = 6.9 Hz, 3H); 13C
NMR (126 MHz, CDCl3) δ 41.77, 35.36, 35.03, 32.06, 29.86, 29.77, 29.73, 29.48, 27.03, 22.83,
18.95, 14.25; one resonance was not observed due to coincidence of the chemical shifts.
HRMS (ESI) m/z calcd. for C13H28Br (M + H)+: 263.1369, found 263.1369.

3.10. Synthesis of 2-((2-Methyldodecyl)thio)benzo[d]thiazole (rac-8) (New Compound)

Ph3P (0.38 g, 1.44 mmol) was added to a stirred solution of alcohol rac-6 (0.24 g,
1.20 mmol) in THF (6 mL) at 0 ◦C. Benzo[d]thiazole-2(3H)-thione (MBT) (0.24 g, 1.44 mmol)
and DIAD (0.29 g, 1.44 mmol) were added sequentially. The reaction mixture was warmed
to room temperature and stirred for 4 h, followed by removal of solvent under reduced
pressure. The residue was purified by silica gel column chromatography (hexanes: ethyl
acetate = 50:1) to afford 2-((2-methyldodecyl)thio)benzo[d]thiazole (rac-8) (0.31 g, 75% yield)
as a yellow oil. 1H NMR (500 MHz, CDCl3) δ 7.77 (dd, J = 8.1, 1.0 Hz, 1H), 7.66 (dd, J = 8.0,
1.2 Hz, 1H), 7.32 (td, J = 8.2, 7.7, 1.2 Hz, 1H), 7.20 (td, J = 7.6, 1.1 Hz, 1H), 3.33 (dd, J = 12.7,
5.6 Hz, 1H), 3.11 (dd, J = 12.7, 7.5 Hz, 1H), 1.87–1.83 (m, 1H), 1.45–1.41 (m, 1H), 1.21–1.18 (m,
17H), 1.06 (d, J = 6.7 Hz, 3H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 167.89,
153.51, 135.31, 126.10, 124.20, 121.57, 121.02, 36.24, 33.37, 32.05, 29.89, 29.79,29.78, 29.74,
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29.48, 27.03, 22.82, 19.51, 14.26; one resonance was not observed due to coincidence of the
chemical shifts. HRMS (ESI) m/z calcd for C20H32NS2 (M + H)+: 350.1971, found 350.1960.

3.11. Synthesis of (S)-2-((2-Methyldodecyl)thio)benzo[d]thiazole ((S)-8) (New Compound)

According to the same manner of rac-8, alcohol (S)-6 (0.080 g, 0.40 mmol) and benzo[d]
thiazole-2(3H)-thione (0.080 g, 0.48 mmol) afforded (S)-2-((2-methyldodecyl)thio) benzo[d]
thiazole ((S)-8 (0.11 g, 79% yield, 98% ee) as a yellow oil. The ee was determined by chiral
HPLC (Daicel Chiralcel OD-H column, 1% isopropanol in n-hexane, 0.7 mL/min, 254 nm,
major tr = 8.53 min (S), minor tr = 9.40 min (R)). [α]D

22 = +7.7 (c = 1.46, CHCl3). 1H NMR
(500 MHz, CDCl3) δ 7.78–7.76 (m, 1H), 7.65 (dd, J = 8.0, 1.2 Hz, 1H), 7.33–7.29 (m, 1H),
7.21–7.17 (m, 1H), 3.33 (dd, J = 12.7, 5.7 Hz, 1H), 3.11 (dd, J = 12.7, 7.5 Hz, 1H), 1.87–1.83 (m,
1H), 1.45–1.40 (m, 1H), 1.21–1.18 (m, 17H), 0.98 (d, J = 6.7 Hz, 3H), 0.80 (t, J = 6.9 Hz, 3H);
13C NMR (126 MHz, CDCl3) δ 167.89, 153.49, 135.29, 126.09, 124.19, 121.55, 121.01, 40.84,
36.23, 33.35, 32.05, 29.89, 29.78, 29.75, 29.49, 27.03, 22.83, 19.51, 14.26; one resonance was not
observed due to coincidence of the chemical shifts. HRMS (ESI) m/z calcd for C20H32NS2
(M + H)+: 350.1971, found 350.1973.

3.12. Synthesis of (R)-2-((2-Methyldodecyl)thio)benzo[d]thiazole ((R)-8) (New Compound)

According to the same manner of rac-8, alcohol (R)-6 (0.080 g, 0.40 mmol) and
benzo[d]thiazole-2(3H)-thione (0.080 g, 0.48 mmol) afforded (R)-2-((2-methyldodecyl)thio)
benzo[d]thiazole ((R)-8) (0.11 g, 79% yield, 99% ee) as a yellow oil. The ee was determined
by chiral HPLC (Daicel Chiralcel OD-H column, 1% isopropanol in n-hexane, 0.7 mL/min,
254 nm, minor tr = 8.78 min (S), major tr = 9.44 min (R)). [α]D

22 = -8.0 (c = 1.84, CHCl3). 1H
NMR (500 MHz, CDCl3) δ 7.79–7.77 (m, 1H), 7.65 (dd, J = 8.0, 1.2 Hz, 1H), 7.34–7.31 (m, 1H),
7.21–7.19 (m, 1H), 3.33 (dd, J = 12.7, 5.7 Hz, 1H), 3.11 (dd, J = 12.7, 7.5 Hz, 1H), 1.86–1.84 (m,
1H), 1.46–1.40 (m, 1H), 1.18–1.15 (m, 17H), 0.98 (d, J = 6.7 Hz, 3H), 0.81 (t, J = 6.9 Hz, 3H);
13C NMR (126 MHz, CDCl3) δ 167.92, 153.51, 135.30, 126.11, 124.20, 121.56, 121.02, 40.86,
36.24, 33.37, 32.06, 29.89, 29.78, 29.75, 29.49, 27.03, 22.83, 19.52, 14.26; one resonance was not
observed due to coincidence of the chemical shifts. HRMS (ESI) m/z calcd for C20H32NS2
(M + H)+: 350.1971, found 350.1972.

3.13. Synthesis of (S)-11-Methylheptacos-9-ene ((S)-10) (New Compound)

Ph3P (3.31 g, 12.62 mmol) was added to a stirred solution of hydrocarbon bromide (S)-7
(2.20 g, 8.35 mmol) in CH3CN (60 mL) at room temperature. After the reaction solution was
heated to 85 ◦C and stirred for 48 h, it was cooled to room temperature and concentrated
under reduced pressure. The residue was purified by silica gel column chromatography
(DCM/MeOH 10:1) to afford the corresponding phosphonium salt (2.23 g, 51% yield) as a
colorless oil.

n-BuLi (0.25 mL, 2.4 M in n-hexane, 0.60 mmol) was added dropwise to a stirred
solution of phosphonium salt (0.24 g, 0.45 mmol) in dry THF (5 mL) at room temperature
via syringe. After the reaction mixture was maintained for 2 h at the same temperature, it
was cooled to −35 ◦C. n-Pentadecanal (9) (0.068 g, 0.30 mmol) in dry THF (3 mL) was then
added. The reaction mixture was stirred for 5 h at −35 ◦C and quenched with saturated
aqueous NH4Cl (5 mL). After the layers were separated, the aqueous phase was extracted
with Et2O (3 × 5 mL). The ether extracts were combined with the organic layer, washed with
saturated aqueous NaCl (20 mL), dried over anhydrous Na2SO4, and filtered. The filtrate
was concentrated under reduced pressure, and the residue was purified by silica gel column
chromatography (petroleum ether) to give the Z/E mixtures of (S)-11-methylheptacos-9-ene
((S)-10) (0.062 g, 53% yield, Z:E = 5.1:1, determined by 13C NMR spectra) as a colorless
liquid. [α]D

22 = −1.09 (c = 1.47, CHCl3). 1H NMR (500 MHz, CDCl3) δ 5.31–5.26 (m,
1H), 5.12–5.08 (m, 1H), 2.41–2.40 (m, 1H), 2.03–1.95 (m, 2H), 1.29–1.24 (m, 42H), 0.91 (d,
J = 6.7 Hz, 3H), 0.88 (t, J = 6.9 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 135.63, 135.58, 127.59,
127.50, 76.42, 76.16, 75.91, 36.77, 31.10, 30.78, 29.12, 29.01, 28.87, 28.84, 28.75, 28.54, 26.70,
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26.65, 21.86, 20.60, 13.28. EIMS (m/z(%)): 392.5(8, M+), 266.3(9), 167.1(19), 139.1(12), 83.1(78),
71.1(52), 57.1(100), 43.1(59).

3.14. Synthesis of (S)-11-Methylheptacosane ((S)-1) (CAS 1370709-05-9)

Pd (0.010 g, 10% on carbon) was placed in a 25-mL Schlenk tube, and hydrogen was
charged at room temperature. Olefine (S)-10 (0.033 g, 0.084 mmol) in EtOH (5 mL) was then
added dropwise. The reaction mixture was maintained for 12 h, during which time hydro-
gen was bubbled into the Schlenk tube from a hydrogen balloon. After the reaction mixture
was filtered, the filter was washed with n-hexane (10 mL). The filtrate and washing were
combined and concentrated under reduced pressure. The residue was purified by silica gel
column chromatography (n-hexane) to obtain (S)-11-methylheptacosane ((S)-1) (0.018 g,
54% yield) as a colorless oil. [α]D

22 = −3.33 (c = 0.60, CHCl3), literature [13] [α]D
20 = −0.06

(c = 3.33, hexanes). 1H NMR (500 MHz, CDCl3) δ 1.38–1.35 (m, 1H), 1.31–1.26 (m, 48H),
0.88 (t, J = 6.8 Hz, 6H), 0.83 (d, J = 6.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 37.25, 32.90,
32.08, 30.18, 29.89, 29.85, 29.81, 29.51, 27.24, 22.84, 19.88, 14.27; sixteen resonances were not
observed due to coincidence of the chemical shifts. EIMS (m/z(%)): 379.5(3, (M−Me)+),
252.3(14), 168.2(34), 99.1(26), 85.1(65), 71.1(81), 57.1(100), 43.1(54).

3.15. Synthesis of (R)-11-Methylheptacos-9-ene ((R)-10) (New Compound)

According to the same manner of (S)-10, hydrocarbon bromide (R)-7 (2.86 g, 10.86 mmol)
and Ph3P (4.30 g, 16.39 mmol) provided the corresponding phosphonium salt (2.90 g,
51% yield) as a colorless oil, followed by the reaction with n-pentadecanal (9) (0.15 g,
0.66 mmol) affording the Z/E mixtures of (R)-11-methylheptacos-9-ene ((R)-10) (0.020 g,
77% yield, Z:E = 2.2:1, determined by 13C NMR spectra) as a colorless liquid. [α]D

22 = +7.09
(c = 0.73, CHCl3). 1H NMR (500 MHz, CDCl3) δ 5.34–5.27 (m, 1H), 5.26–5.07 (m, 1H),
2.04–1.94 (m, 2H), 1.33–1.25 (m, 43H), 0.94–0.90 (m, 3H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR
(126 MHz, CDCl3) δ 136.64, 136.59, 128.60, 128.51, 37.77, 37.41, 36.87, 32.74, 32.10, 31.77,
30.11, 30.00, 29.95, 29.87, 29.83, 29.74, 29.69, 29.53, 29.29, 27.69, 27.65, 27.51, 22.86, 21.59,
21.12, 14.27. EIMS (m/z(%)): 392.4(7, M+), 266.3(10), 167.2(19), 139.1(12), 83.1(80), 71.1(51),
57.1(100), 43.1(58).

3.16. Synthesis of (R)-11-Methylheptacosane ((R)-1) (CAS 1370709-06-0)

According to the same manner of (S)-1, Pd (0.023g, 10% on carbon) and olefine (R)-10
(0.077 g, 0.20 mmol) afforded (R)-11-methylheptacosane ((R)-1) (0.052 g, 66% yield) as
a colorless oil. [α]D

22 = +3.31 (c = 1.43, CHCl3), literature [13] [α]D
20 = +0.09 (c = 4.68,

hexanes). 1H NMR (500 MHz, CDCl3) δ 1.37–1.35 (m, 1H), 1.31–1.26 (m, 48H), 0.88 (t,
J = 6.8 Hz, 6H), 0.83 (d, J = 6.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 37.25, 32.90, 32.08,
30.19, 29.89, 29.85, 29.82, 29.52, 27.24, 22.85, 19.88, 14.27. Sixteen resonances were not
observed due to coincidence of the chemical shifts. EIMS (m/z(%)): 379.5(2, (M−Me)+),
252.3(14), 168.2(32), 99.1(25), 85.1(65), 71.1(79), 57.1(100), 43.1(51).

4. Conclusions

In summary, we have developed a novel and efficient synthesis of (R)-11-methylheptacosane,
the contact sex pheromone of Tetropium fuscum, and its enantiomer. The central element
to our strategy involved Evans’ chiral auxiliary to construct the stereocenter, and Wittig
coupling to connect aldehyde with chiral phosphonium salt. The synthetic pheromones
would be helpful for the development of the pest control.

Supplementary Materials: 1H NMR and 13C NMR spectra for all the synthetic compounds and chiral
HPLC chromatography of the MBT derivatives 8 can be downloaded at: https://www.mdpi.com/
article/10.3390/molecules27206897/s1.
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