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Abstract: Owing to the high aspect ratio, the two-dimensional (2D) inorganic nanofillers have
attracted extensive interest in the field of polymer reinforcement. In this work, graphitic carbon
nitride (g-C3N4) nanosheets were obtained via thermal condensation of melamine and were then
ultrasonically exfoliated in water, which was confirmed by atomic force microscopy (AFM) and
TEM. Poly(vinyl alcohol) (PVA)/g-C3N4 nanocomposites were achieved by solution casting using
water as the solvent. The structure and mechanical performance of PVA/g-C3N4 nanocomposites
were studied. It was found that the g-C3N4 nanosheets were well dispersed in the PVA matrix.
The introduction of g-C3N4 nanosheets increased the glass transition temperature and crystallinity of
the nanocomposites, leading to the improved mechanical performance. Compared with the pure PVA,
the PVA/g-C3N4 nanocomposite with 0.50 wt% g-C3N4 nanosheets showed ~70.7% enhancement in
tensile strength, up from 51.2 MPa to 87.4 MPa.

Keywords: poly(vinyl alcohol); graphitic carbon nitride; nanosheets; crystallinity; mechanical performance

1. Introduction

Polymer nanocomposites are among the most important materials in the academic and industrial
fields, and are produced by dispersing into the polymeric matrix with nanofillers that have one or more
dimensions at nano-scale. Filler dispersion in a polymer matrix is crucial to obtain high-performance
nanocomposites [1–3]. Enhancements in the performance of the final nanocomposites depends largely
on the morphological aspects of these fillers, such as their sizes and shapes. Among the nanofillers,
two-dimensional (2D) nanofillers, including layered silicate, layered double hydroxide (LDH), boron
nitride (BN), graphene and graphene oxide (GO), have attracted extensive interest due to the high
aspect ratio [4–13]. Compared to the bulk polymers, the polymer nanocomposites filled with 2D
nanofillers usually exhibit dramatically different or superior overall performance.

Over the past few years, increasing attention has been paid to graphitic carbon nitride (g-C3N4)
nanosheets, a promising 2D nanomaterial with a graphene-like structure, which can be synthesized
easily, rapidly and inexpensively. The g-C3N4 nanosheets have been utilized in many research
areas [14–19], which are, however, mostly limited in the field of photocatalysis and heterogeneous
catalysis. Recently, Zhu et al. [20] reported that the wear loss of the composite was reduced by
introducing g-C3N4 as a filler into poly(vinylidene difluoride) (PVDF) matrix. Gang et al. [21] prepared
sulfonated poly(ether ether ketone)/g-C3N4 nanocomposite membrane with a reduced methanol
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permeation. Although g-C3N4 has been used as fillers incorporated into some polymers to improve
their performance, the application of g-C3N4 in polymer reinforcement remained rarely explored.

It is expected that the mechanical performance of the polymer can be positively improved by
the introduction of g-C3N4 nanosheets, because the structure of g-C3N4 is similar to that of graphene.
Moreover, g-C3N4 nanosheets are easily dispersed in water to form stable aqueous suspension due to
the weak van der Waals force between the nanosheets [19]. Therefore, in our work, 2D ultrathin g-C3N4

nanosheets were obtained via thermal condensation and were then ultrasonically exfoliated in water,
and poly(vinyl alcohol) (PVA)/g-C3N4 nanocomposites were achieved by environmental-friendly
solution blending. The structures of g-C3N4 nanosheets and PVA/g-C3N4 nanocomposite were
analyzed, and the mechanical performance of the nanocomposites were studied to evaluate the effect
of using g-C3N4 as the filler for performance improvement of polymer composites.

2. Experimental Section

2.1. Materials

Melamine was purchased from Guangfu Chemical Research Institute, Tianjin, China. PVA (1788)
was supplied by Aladdin, Shanghai, China.

2.2. Sample Preparation

Melamine, covered by a tin foil paper in a muffle furnace, was heated to 550 ◦C at the heating
rate of 10 ◦C/min and maintained at 550 ◦C for 2 h. After being cooled in air, the yellow product
bulk g-C3N4 was obtained (as illustrated in Figure 1), which was milled into the powder and then
dispersed in water with a stirring rate of 13,000 rpm for 30 min. After ultrasonic exfoliation for 48 h,
the mixture was left to sit still for 36 h to remove unexfoliated g-C3N4 particles, yielding the stable
aqueous suspension of g-C3N4 nanosheets (~1 mg/mL in concentration).
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Figure 1. Thermal condensation process from melamine to bulk g-C3N4.

PVA was dissolved in deionized water at 80 ◦C for 3 h and then mixed with the aqueous
suspension of g-C3N4 nanosheets. The mixture was decanted into a glass dish and dried in an
oven at 80 ◦C for 36 h, and then dried under vacuum at 60 ◦C for 12 h to thoroughly remove the
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water. Finally, the prepared film (~60 µm in thickness) was carefully peeled off from the dish to obtain
PVA/g-C3N4 nanocomposite (as illustrated in Figure 2).Polymers 2019, 11, x FOR PEER REVIEW 3 of 9 
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nanosheets and poly(vinyl alcohol (PVA).

2.3. Measurements

Atomic force microscope (AFM) images were obtained from a SPM-9500 AFM (Shimadzu, Kyoto,
Japan) (the dilute dispersions of the samples were drop-cast onto the freshly cleaved silicon surface).
Transmission electron microscopy (TEM) images were recorded by a JEM 2010 EX microscope (JEOL,
Tokyo, Japan) at an accelerating voltage of 200 kV. Scanning electron microscope (SEM) images were
acquired from a JSM-7001F microscope (JEOL) with an acceleration voltage of 20 kV. Differential
scanning calorimetry (DSC) experiments were conducted under a nitrogen atmosphere using a STARe
system DSC (Mettler-Toledo Co., Schweiz, Switzerland) at a heating rate of 5 ◦C·min−1. The mechanical
behavior was characterized according to ISO 527-3-1995 (specimen type 2) using an AI-7000S1 electrical
tensile tester (Goodtechwill Testing Machines, Co. Ltd., Qingdao, China) at a speed of 2 mm·min−1.

3. Results and Discussion

3.1. Characterization of g-C3N4 Nanosheets

The transformation from melamine to g-C3N4 was confirmed by XRD, FTIR and XPS, as shown
in the supporting information (Figures S1 and S2). The morphologies of the as-prepared g-C3N4

nanosheets were observed by AFM and TEM. In the AFM images shown in Figure 3, the thickness
of the nanosheets is measured to be 2.0~4.5 nm, indicating that the bulk g-C3N4 was successfully
exfoliated into ultrathin nanosheets. Based on the AFM images, the size of the g-C3N4 nanosheets is
evaluated to be 50–80 nm, which is also supported by TEM observation. As shown in Figure 3d,e, the
as-prepared g-C3N4 nanosheets consist of stacks of the nanosheets.

3.2. SEM Observation of PVA/g-C3N4 Nanocomposites

As shown in Figure 4a–c, the similar morphologies are observed for the PVA and PVA/g-C3N4

nanocomposites with g-C3N4 content of 0.25 wt% and 0.50 wt%, indicating that the g-C3N4 nanosheets
are well embedded in the matrix of these two nanocomposites. As illustrated by XPS (Figure S2),
there exist –OH, –NH2 and –COOH on the surface of g-C3N4 nanosheets, which could form hydrogen
bonding with the –OH groups on PVA macromolecules (as illustrated in Figure 2). As a result,
the interfacial interaction would be quite strong in the PVA/g-C3N4 nanocomposites, leading to the
good filler dispersion in the PVA matrix. However, as seen in Figure 4d,e, some g-C3N4 aggregates are
exposed on the fractured surface of the nanocomposites, indicating the deteriorated filler dispersion in
the matrix when more than 0.50 wt% g-C3N4 nanosheets are added. Moreover, voids are observed in
the nanocomposites with g-C3N4 content of 0.75 wt% and 1.00 wt%, demonstrating the severe stress
concentration and poor stress transfer in these nanocomposites caused by the filler aggregates.
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Figure 4. SEM images of tensile fractured surface for (a) pure PVA and PVA/g-C3N4 nanocomposites
with g-C3N4 content of (b) 0.25 wt %, (c) 0.50 wt %, (d) 0.75 wt % and (e) 1.00 wt %.

3.3. XRD of PVA/g-C3N4 Nanocomposites

XRD curves of g-C3N4 nanosheets, pure PVA and PVA/g-C3N4 nanocomposites with various
g-C3N4 contents are shown in Figure 5. As a typical semi-crystalline polymer, the diffraction peak at
19.5◦ for the pure PVA should be due to the crystalline phase of the polymer [7]. The XRD patterns
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of PVA/g-C3N4 nanocomposites with various g-C3N4 are similar to that of pure PVA, suggesting
that the incorporation of g-C3N4 nanosheets into the PVA matrix will not dramatically change the
crystal structure of PVA. In addition, the diffraction peaks at 27.7◦ and 12.8◦ associated with g-C3N4

nanosheets disappear, which should be due to the relatively low content of filler in the nanocomposites.
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3.4. DSC Analysis of PVA/g-C3N4 Nanocomposites

The glass transition temperature (Tg), melting temperature (Tm) and melting enthalpy (∆Hm)
of the pure PVA and PVA/g-C3N4 nanocomposites were obtained from the DSC curves, as shown
in Figure 6. It was found that the Tgs of the PVA/g-C3N4 nanocomposites were all higher than that
of pure PVA and increased with the increasing g-C3N4 content. By adding only 1.00 wt% g-C3N4,
the Tg significantly increased from 57.2 ◦C for pure PVA to 65.5 ◦C for the nanocomposite. Such an
increase should be ascribed to the strong mobility restriction of PVA chain segments by the g-C3N4

nanosheets. Moreover, as shown in Figure 6, there exhibits little difference for the Tm between the pure
PVA and PVA/g-C3N4 nanocomposites. By taking 138.6 J/g as the melting enthalpy for the perfect
crystalline PVA [22], the calculated crystallinities of the nanocomposites are illustrated in Figure 6.
With the increase of g-C3N4 content, the crystallinity of PVA/g-C3N4 nanocomposites first increases
until reaching a maximum of 25.9% at 0.50 wt% g-C3N4 content and then dropped to 22.2% at 1.00 wt%
g-C3N4 content, still higher than that of pure PVA (20.5%). Such results may be rationalized as follows:
the increased crystallinity for the composites with a relatively low content of nanoparticles is often
observed, as widely reported in the literature [23–25], because the small number of nanoparticles,
serving as nucleating agents, could promote polymer crystallization. However, when more g-C3N4 is
incorporated, these nanosheets might gather to form aggregates and weaken their promotion effect
on the PVA crystallization, leading to a slight decline in crystallinity. Therefore, the crystallinity of
PVA/g-C3N4 nanocomposites first rises and then declines with the increasing g-C3N4 content.
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3.5. Mechanical Performance of PVA/g-C3N4 Nanocomposites

The mechanical performance for pure PVA and PVA/g-C3N4 nanocomposites is presented in
Table 1, and the stress–strain curves for these nanocomposites are shown in Figure 7. Compared to
those of the pure PVA, the elastic modulus, yield strength and tensile strength of the PVA/g-C3N4

nanocomposite with g-C3N4 content of 0.5 wt% increase by ~66.7%, ~69.5% and ~70.7%, respectively,
while the elongation at break declines by ~8.9%. With further increasing g-C3N4 content to 1.00 wt%,
the elastic modulus, yield strength and tensile strength slightly decrease, but still higher than those
of pure PVA. Usually, higher crystallinity corresponds to the higher elastic modulus and strength.
Therefore, the change of mechanical performance of PVA/g-C3N4 nanocomposites is similar to that
of the crystallinity as a function of the g-C3N4 content. The PVA/g-C3N4 nanocomposite containing
0.50 wt% g-C3N4 has the highest crystallinity, leading to the strongest elastic modulus and strength.
When the applied strain beyond the yield strain, the irreversible forced high-elastic deformation takes
place, which originates from the forced motion of the polymeric chain segments under stress. For
PVA/g-C3N4 nanocomposites, such motion may be restricted by the presence of g-C3N4 nanosheets.
In addition, the good dispersion of g-C3N4 nanosheets in the nanocomposites with a relatively low
content from 0.25 wt% to 0.50 wt% also results in the good stress transfer, facilitating the excellent
reinforcement. Moreover, as shown in Table 2, ~70.7% improvement of the tensile strength in our
work is comparable with or even higher than those of the PVA nanocomposites filled with various 2D
nanofillers in the previous reports. Therefore, the g-C3N4 nanosheets exhibit an exciting potential as
the filler for the reinforcement of polymeric materials.

Table 1. Mechanical performance of pure PVA and PVA/g-C3N4 nanocomposites.

Content of g-C3N4 (wt %) 0 0.25 0.50 0.75 1.00

Elastic modulus (GPa) 2.28 ± 0.12 3.66 ± 0.17 3.80 ± 0.14 2.62 ± 0.09 2.48 ± 0.08
Yield strength (MPa) 55.1 ± 1.7 75.6 ± 2.1 93.4 ± 3.8 69.4 ± 1.9 63.6 ± 2.2

Tensile strength (MPa) 51.2 ± 2.8 82.3 ± 3.2 87.4 ± 2.6 74.3 ± 1.9 66.8 ± 2.3
Elongation at break (%) 124 ± 8 123 ± 7 113 ± 5 143 ± 11 129 ± 7
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Figure 7. Stress–strain curves of pure PVA and PVA/g-C3N4 nanocomposites.

Table 2. Comparison of the improvement in tensile strength for the PVA nanocomposites filled with
2D nanofillers.

Filler Content (wt%)
Tensile strength (MPa)

Improvement (%) Reference
Pure PVA Nanocomposite

graphene a 3.0 17.0 42.0 ~147 [26]
0.5 27.0 ~58.8

graphene b 1.8 33.5 113 ~237 [7]
0.7 67.6 ~101
0.3 65.0 ~94.0

GO 2.0 22.5 45.7 ~103 [6]
0.5 32.1 ~42.7

BN 0.8 77.0 91.0 ~18.2 [27]
BN 2.0 46.0 99.2 ~115 [28]

0.5 81.5 ~77.1
LDH 1.0 58.9 114 ~93.0 [8]

0.5 88.1 ~49.6
LDH b 2.0 28.3 47.0 ~66.0 [29]
MoS2 5.0 84.0 105 ~24.0 [30]
montmorillonite 1.0 ~62.0 ~68.5 ~10.5 [31]
g-C3N4 0.5 51.2 87.4 ~70.7 Our work

a The mass fraction was converted from the volume fraction according to the related density mentioned in the
reference; b the filler was modified by the organic component.

4. Conclusions

In this work, an attempt has been made to evaluate the effect of using g-C3N4 nanosheets on
the mechanical performance of polymer composites. After thermal condensation of melamine, the
as-prepared bulk g-C3N4 were ultrasonically exfoliated in water to form a stable aqueous suspension
of g-C3N4 nanosheets. The successful exfoliation of g-C3N4 nanosheets was observed by AFM and
TEM. The mixture of aqueous PVA solution and g-C3N4 nanosheets suspension was cast to prepare
the PVA/g-C3N4 nanocomposites. As demonstrated by SEM, the g-C3N4 nanosheets were well
dispersed in the PVA matrix. Moreover, by introducing g-C3N4 nanosheets in the PVA matrix, the
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nanocomposites exhibited the higher glass transition temperature and crystallinity as compared to
the pure PVA, resulting in the improved mechanical performance. Therefore, the present study
demonstrates that the g-C3N4 nanosheets could be applied as a promising filler to effectively reinforce
polymer to achieve high-performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/4/610/s1,
Figure S1: (a) XRD and (b) FTIR curves of melamine, bulk g-C3N4 and g-C3N4 nanosheets; Figure S2: XPS (a)
survey scan, (b) N1s, (c) C1s and (d) O1s of g-C3N4 nanosheets.
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