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Automating insect monitoring 
using unsupervised near‑infrared 
sensors
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Salena Helmreich1, Brittany D. Beck1, Christoffer Grønne1, Ludvig Malmros1, Knud Poulsen1, 
Frederik Elbæk1, Mikkel Brydegaard1,4,5,6, Jesper Lemmich1 & Thomas Nikolajsen1

Insect monitoring is critical to improve our understanding and ability to preserve and restore 
biodiversity, sustainably produce crops, and reduce vectors of human and livestock disease. 
Conventional monitoring methods of trapping and identification are time consuming and thus 
expensive. Automation would significantly improve the state of the art. Here, we present a network 
of distributed wireless sensors that moves the field towards automation by recording backscattered 
near-infrared modulation signatures from insects. The instrument is a compact sensor based on dual-
wavelength infrared light emitting diodes and is capable of unsupervised, autonomous long-term 
insect monitoring over weather and seasons. The sensor records the backscattered light at kHz pace 
from each insect transiting the measurement volume. Insect observations are automatically extracted 
and transmitted with environmental metadata over cellular connection to a cloud-based database. 
The recorded features include wing beat harmonics, melanisation and flight direction. To validate 
the sensor’s capabilities, we tested the correlation between daily insect counts from an oil seed rape 
field measured with six yellow water traps and six sensors during a 4-week period. A comparison of 
the methods found a Spearman’s rank correlation coefficient of 0.61 and a p-value = 0.0065, with 
the sensors recording approximately 19 times more insect observations and demonstrating a larger 
temporal dynamic than conventional yellow water trap monitoring.

Insecta is the most speciose class of terrestrial fauna1 and the majority of the world’s biodiversity is composed 
of this class2. In epidemiological and agricultural ecosystems, insects serve as both beneficial organisms3–5 and 
economic pests6,7. Data on insects can support biodiversity conservation8,9, human health protection10 and 
increased food production11.

Insects are monitored via established sampling methods including trapping, sweep netting, and portable 
aspiration12–14. These methods are imperfect resulting in biases towards size15–17 and stage18. Additionally, con-
ventional methods may be time-consuming, costly and prone to human error such as person-to-person vari-
ation in sampling execution19–21. New methods, like insect anesthetization sampling22, are being implemented 
to minimize these biases. Regardless of sampling method, insect identification is time consuming and requires 
specialized training.

In order to reduce the cost of insect monitoring and identification, automation of insect trapping23–27 and 
identification27–31 has been developed. While these methods could greatly improve monitoring via traps, they 
are unsuitable for monitoring a general insect population since trap designs and baits are generally biased in 
regard to species32,33.

Automation of insect monitoring without traps could reduce species bias of conventional methods and human 
error, thus greatly improving the state of the art. Insect identification has been automated as early as 1973 using 
wingbeat frequency34–36, and today remote insect sensing includes acoustic detection37, radar observations38–40 
and lidar41–43. Acoustic methods work best with a solid medium26,44, though acoustic monitoring of free fly-
ing insects has been demonstrated45–47. While radar technologies have much larger monitoring range16,40,48–50, 
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they are unsuitable for monitoring small insects, or insects around vegetation, such as a crop canopy. Optical 
methods were early used as to overcome many of these limitations51–53. Today, lidar can be used to record a large 
number of observations in a long transect54–58 and distinguish between species groups by wingbeat frequency 
(WBF)55,59. However, lidar equipment requires a trained operator and requires constant supervision due to eye 
safety restrictions.

Here we present an autonomous near-infrared sensor for monitoring of flying insects in the field. The sensor 
aims to minimize human biases, be usable by non-technical personnel, and be capable of unsupervised long-
term monitoring. Compared to existing entomological lidars, it has a smaller measurement volume but is eye 
safe and weatherproof.

Instrument design
The sensor is weatherproof, compact, and intended for field use by non-technicians. Like entomological lidar 
instrumentation, an air volume is illuminated, and light backscattered from insects entering the measurement 
volume is recorded by a high-speed photodetector. In addition, the instrument is equipped with a satellite naviga-
tion device, a camera for situational photos, and an environmental sensor monitoring temperature, humidity, and 
light intensity. An internal Global System for Mobile Communications (GSM) modem allows for communica-
tion and data transfer. The sensor can be powered by any 12 V power supply, including utility power, batteries, 
or solar power, and has a maximum power consumption of 30 W during monitoring. A photo of the sensor is 
shown in Fig. 1 and an internal block diagram is described in Fig. 2.

Emitter.  The emitter module consists of a rectangular array of LEDs emitting two spectral bands at 808 nm 
and 980 nm with total output of 1.6 W and 1.7 W, respectively. The two wavelengths are modulated in a square 
wave at 118.8 kHz and 79.2 kHz respectively. The LEDs are mounted in a checkerboard pattern to achieve a 
homogeneous beam profile. The total area of the checkerboard, and thus the beam size at the source, is 82 cm2. 
The light emitted from each diode is partially collimated by an asymmetrical lens and expands with 20° and 4° 
diverging angles ( θE ). The full width half maximum (FWHM) of the emitted light is 26 nm for the 808 nm band 
and 47 nm for the 970 band.

Receiver.  The backscattered light from insects entering the overlap between the beam and the receiver’s field 
of view (FoV) is collected by a near infrared coated aspheric lens (60 mm focal length, ø 76.2 mm aperture) 
onto a silicon quadrant photodiode (QPD) with a total area of 1 cm2. The receiver is focused at 1 m and has a 4° 
divergence angle ( θR ). Quadrant detection of insects allow for basic range and size estimation60,61 and can dif-
ferentiate ascending and descending insects as well as migrating insects with tailwind or host- or scent-seeking 
insects with headwind.

Figure 1.   Situational photo of the sensor. As insects fly into the measurement volume, the backscattered 
light is recorded by the receiver. Insect observations are automatically extracted and transmitted along with 
environmental data, location, and situational photos, to the cloud via a GSM connection. Using a solar panel 
and battery, the sensor is capable of unsupervised, long-term monitoring in remote locations.
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Signal processing.  Each quadrant of the QPD is amplified by a dedicated trans-impedance amplifier (TIA) 
with a bandwidth of 10 Hz–1 MHz and a gain of 0.75 V/µA around 100 kHz. The amplified signals are sampled 
by four analogue–digital converters (ADC) with 14-bit output at a rate of 6  MHz. The digital data-streams 
are sent into a field-programmable gate array (FPGA) where eight digital lock-in amplifiers are implemented 
in VHDL (Very High-Speed Integrated Circuit Hardware Description Language). This allows the two spectral 
bands to be recorded independently on each quadrant, resulting in an 8-channel data stream. The data is then 
filtered by a low-pass filter with a cut-off at 5 kHz and digitally sampled to a 20 kHz, 16-bit data stream before it 
is sent to a microcontroller unit (MCU) for event extraction and further processing (Fig. 3). Since insects gener-
ally have wing beat frequencies below 1 kHz, a 5 kHz cutoff allows us to resolve a minimum of five harmonics 
in the frequency spectra. The increase in bit depth is possible due to the oversampling of the unfiltered signal.

Measurement volume.  The measurement volume is defined by the overlap between the beam and the FoV. 
Its size and shape can be adjusted by changing the angle ( θS ) between the emitter and receiver.

The beam, FoV and the measurement volume have been mapped by a custom-built 3-axis robot covering a 
volume of 2 m × 1.5 m × 1.5 m. The robot is equipped with a photodetector, an illumination source, and a sphere 
dropping mechanism. The photo-detector and illumination source are used to map the emitted beam and FoV 
respectively while sphere dropping mechanism allow us to verify the signal intensity from a standard object at 
any point in the volume. Using these methods, the signal response from an arbitrary target can be estimated. 
The volumes were measured at 20 planes along the Z axis, from 30 to 1655 mm, each plane consisting of 56 × 56 
measurement points in a 12 mm grid. The calculated signals were then compared to actual measurement values 
by dropping black and white spheres. The white spheres were assumed to be 100% reflective and the black spheres 
had a 5% reflectivity.

The measurement volume properties for targets with various optical cross sections (OCS) at different angles 
are shown in Table 1. The size of the measurement volume is dependent on the minimum acceptable sensitivity, 
which is related to the noise in the instrument. In the following results, the edge of the volume is defined as the 
limit where the signal to noise ratio (SNR) is larger than 10 for typical noise levels in a field installation. The 
signal to noise ratio is defined as the maximum value of the recorded signal divided by the peak-to-peak noise. 
The volumes for a 10 mm2 target are shown in Fig. 4.

Data processing.  Automated event extraction.  The sensor records intervals of 10  min (4 quadrants, 2 
spectral bands, 16 bit and 20 kHz sample rate after demux of carrier frequency) and automatically extracts in-
sect observations from each recording. The event extraction is inspired by earlier work but modified to reduce 
computational load42,43,59,62. The event extraction algorithm was developed during prior experiments in various 

Figure 2.   General measurement principle. Light is emitted and collimated from the LED board at 808 nm 
and 980 nm and modulated at different carrier frequencies. The backscattered light from an insect entering 
the measurement volume is collected by a lens and focused onto a QPD. The four QPD-quadrants are 
independently amplified by a TIA and sampled. The digital data streams are sent to the FPGA, where 8 digital 
lock-in amplifiers individually amplify each wavelength in the digital signal processing (DSP) unit. The resulting 
8-channel data stream is analyzed by the MCU which extracts events from the data stream. The events can then 
be stored locally or sent via GSM modem to a cloud database. Created using Power Point 365.
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conditions. In simple terms, it aims to quantify the noise level and subsequently multiply it with a signal-to-noise 
factor to yield a threshold. All events that exceed this threshold are then extracted.

In the chosen implementation, the signal in each channel was downsampled to 2 kHz and a rolling median 
boxcar filter with a width of 2 s and 50% overlap was used to estimate the quasi-static baselines (the baselines can 
change with environmental conditions, static objects in the beam etc.). A 2 s window width makes the median 
estimation insensitive to insect observations, which has an average transit time of ca 100 ms. The standard devia-
tion of the baseline was measured with an identical filter, applied to all datapoints below the median. The selection 
of values below the median reduces the influence of rare events, such as insects, on the noise level estimation.

The interpolated median signals were removed from the full resolution data and we employed a Boolean 
condition for insect detection when the time series exceed ten times the estimated standard deviation. A high 
threshold factor rejected weak observations which could yield unreliable results in the downstream feature 
extraction. The Boolean time series were eroded by 500 µs and dilated by 30 ms. The erosion rejects short spikes, 
outliers and insect signals to short to be interpreted and the dilation includes insect observation flanks. The 
logical OR function was applied across all QPD-quadrants and spectral channels. Extracted observations are 
transmitted to a cloud database along with metadata such as baseline and noise level, via GSM connection or 
stored locally until a connection is available. An example of the event extraction process is shown in Fig. 5, and 
the insect event is shown in greater detail in Fig. 6.

Each insect observation, along with its associated timestamp and device identifier, is automatically uploaded 
to the cloud via one-way AMQP (Advanced Message Queuing Protocol), with unique connections for each 
device. Virtual computing is then used to further process, analyze, and securely store data for further use and 
aggregation.

Feature extraction/data interpretation.  The QPD segments collect backscattered light from different 
sections of the measurement volume. For a single object passing through the measurement volume, the signal 
strength within each QPD-quadrant is related to the object’s OCS as well as its position. As the OCS varies with 
each wingbeat, the wingbeat frequency can be resolved. Many methods have been used to extract the wingbeat 

Figure 3.   Frequency diagram. The wide beam yields long insect transit times, and the corresponding frequency 
resolution is high enough to accurately capture most species. The frequency response curve (red) is flat in the 
wingbeat frequency region and the effect of the LP filter at 5 kHz is indicated. The 5 kHz bandwidth allows a 
minimum of 4 harmonic overtones to be recorded even for mosquitoes with very high wingbeat frequencies.

Table 1.   Measurement volume parameters at different angles for different target OCS. The target OCS values 
correspond roughly to a small midge, a small beetle, and a honeybee.

θS (deg)
SNR at 25 cm for 10 mm2 
target (dB) Far limit (10 mm2 target) (cm)

Measurement volume for 
1 mm2 target (L)

Measurement volume for 
10 mm2 target (L)

Measurement volume for 
100 mm2 target (L)

5 28.6 > 1650 8 52 100

12.5 31.5 130 7 27 87

20 32.3 95 5 16 70
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Figure 4.   Measured FoV, beam, and measurement volume for the three angles. Each volume is mapped at 20 
planes along the Z axis and each plane consists of 56 × 56 measurement points with 12 mm spacing. For the FoV 
and beam, all measurement points below 2% of the maximum value are excluded. For the measurement volume 
all points with a SNR < 10 for a 10 mm2 target are excluded. A low angle yields a longer and larger, but less 
sensitive, measurement volume. The FoV is identical in all configurations.

Figure 5.   An example of the event extraction process in a single channel for visibility. (a) The data, in the 
810 nm band of a single QPD segment after the rolling median has been removed. The part of the signal above 
the event threshold is marked in grey, and the final insect event after erosion and dilation of the binary map is 
marked in green. (b) Intensity distribution of the data.
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frequency from insect observations62–64 and most are based on identifying the fundamental frequency in the 
frequency domain, as shown in Fig. 6b.

In addition to the wingbeat frequency, the body and wing contribution can be measured from each time 
signal which allows calculation of additional features such as body-to-wing ratio. Additional features can be 
calculated by comparing the relative intensity of the body and wing signals in the two spectral bands. These bands 
differentially index melanin absorption65–67 and may yield some sensitivity to wing interference patterns66,68,69, 
although not enough to uniquely determine wing membrane thickness. Together these features can be used to 
quantify the morphology of different insect groups and allow remote classification of insects according to order, 
family, genus or species32,64,69,70.

Field validation
Methodology.  The sensor was field-tested against a conventional insect monitoring method, yellow water 
traps (22 cm diameter)33,71, in an organic oilseed rape (Brassica napus L.) field in the vicinity of Sorø, Denmark 
(55° 29′ 04.3″ N 11° 29′ 34.6″ E). During a four-week period (04/22/20–05/22/20), insects were monitored with 
six sensors and six yellow water traps. The water traps were filled with water and soap, immediately drowning 
any insects landing in the trap. Sensors and traps were placed in a grid pattern, consisting of four linear transects 
30 m from and perpendicular to the field’s southern-most edge. This is illustrated in Fig. 7. Each transect con-
sisted of three monitoring points (either sensors or traps) with 45 m spacing, and a separation of 22.5 m between 
transects. The first and third transect consisted of sensors and the second and fourth were yellow water traps. 
During the field study presented in this work, θS was set to 20° in order to maximize the signal strength of small 
targets at close range.

Fundamentally the two methods observe different insect behaviors. While the sensor looks at insects fly-
ing above the crop canopy, the yellow water traps look at insects that occur within it. Further confounding the 
comparison, yellow is attractive to some insects33. Therefore, some proportion of insects will be attracted to 
the yellow water traps, resulting in overrepresentation of some species72,73. However, water traps constitute the 
standard practice for pest monitoring in oilseed rape for many species.

Data analysis.  The water traps were emptied daily, except for Sundays and 7 additional days (3 sample days 
in late April and 4 days in mid May) where we were unable to empty the traps. Sensor data was recorded continu-
ously. All insects in the traps were collected, but to allow for a more direct comparison of methods, non-flying 
insects and thrips found in water traps were excluded from further analysis.

The sensor data was aggregated according to the collection time of the water traps. Insects trapped during 
Sundays were added to the following days count and the number of collected insects was normalized by the 
number of trapping days. One day, April 30th, was excluded due to instrument malfunction. The average number 
of recorded insect observations per sensor per day and per hour was calculated. The calculated numbers were 
normalized by sensor uptime, which was on average 90% throughout the measurement period. Observations 
during heavy rainfall and without any distinguishable wingbeat frequency, ca 1% of the observations, were 
automatically removed from the data using a classification algorithm.

Figure 6.   Insect event example. (a) The 810 nm signal for a single insect event in of one of the QPD segments. 
The insect wingbeats appear as undulating spikes. The minimum envelope of the signal is interpreted as the 
insect body contribution to the signal. (b) The Welch spectral density of the event. The fundamental wingbeat 
frequency and harmonics are seen in the event signal. This event has a fundamental wingbeat frequency of 
160 Hz and an average body-to-wing ratio of 0.4.
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Results
The insect activity recorded by the sensors and traps respectively are shown in Fig. 8. Insect counts from sensors 
and traps cannot be directly equated due to differences in measurement subject (insect flights vs insect landings) 
and non-homogeneous insect distribution; however, they serve to visualize similarities in gross changes in insect 
activity over the sample period. The results demonstrate a significant correlation between the sensor and trap 
results, specifically with a Spearman’s rank correlation coefficient of 0.61 and a p-value = 0.006574. Over the course 
of the season, an average of 1122 ± 242 (SE) insect observations per day were collected per sensor (excluding 
downtime), compared to an average of 63 ± 6 (SE) insects caught per water trap per day over the same period.

Discussion
Here we present a sensor for automated unsupervised field monitoring of insect flight activity. The sensor illumi-
nates an air volume and records the backscattered light from insects that fly through the measurement volume. 
Discrete insect observations are automatically extracted from the continuous raw data flow and transmitted 
over a cellular connection to a database in the cloud. Field validation showed the number of recorded insect 
observations correlates with the number of individual insects trapped by a conventional insect monitoring 
method. Furthermore, the sensor recorded an order of magnitude more insects than the conventional method 
over the same period.

The automation of insect monitoring has the potential to reduce monitoring bias, cost, and human labor, 
potentially resulting in an increased ability to collect large quantities of biodiversity, public health, and economi-
cally relevant insect data. Additionally, the observations from the sensors were available in real time, whereas 
emptying and counting insects from traps required a significant amount of labor. While this work was limited 
to comparing total insect counts from the traps, it is possible for a skilled expert to identify these insects to the 
sub-species level. This is an area were the traps currently have a strong advantage over this sensor and similar 
instrumentation. Developing and evaluating species specific insect classification algorithms is therefore a major 
focus. Significant work is still needed prior to field implementation to test possible use cases and limitations of 
this system.

One of the most striking differences in monitoring methods is the day-to-day variability in the number of 
data points collected (Fig. 7). While the yellow traps catch a similar number of insects each day, the difference 
between low and high flight activity days were more visible in the sensor. Early analysis of the trap and sensor 

Figure 7.   Layout of sensors and traps on the field. Sensors and traps were placed in a grid pattern ca 30 m from 
the field edges. The four north–south transects are separated by ca 22 m and consists of either sensors or water 
traps, spaced by 45 m. Image data from Google Earth 2021, Aerodata International Survey Mapdata 2021.
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data indicates that the peak recorded during May 7–11 is due to a pollen beetle (Brassicogethes aeneus) activity 
spike. This will be the subject of further studies.

Another marked difference between the sensor and the water traps is the number of data points collected over 
the same collection period. Each sensor observed ~ 19× more insect observations than insects collected in the 
water trap. While in general the correlation between the two values is considered more relevant than the absolute 
number, one advantage of a much higher observation is the ability to get statistically sound data aggregated with 
very high temporal resolution. In this work, the data was aggregated to match the collection times of the traps but 
it could easily be aggregated down to hourly activity. The higher temporal resolution and continuous monitoring 
during unsociable hours allows for the comparatively easy and low-labor collection of data on insect circadian 
rhythms, as well as direct weather interactions.

We hypothesize that the sensors observe different insect behaviors compared to conventional monitoring 
methods since only airborne (flying or jumping) insects are recorded. Therefore, we did not expect a perfect cor-
relation between the sensors and the conventional methods. Sweep netting is likely the most similar monitoring 
method since it also catches insects in flight above the crop. However, sweep netting, which also collects insects 
on plants, occurs at a point measurement in time and is typically performed along a transect, rather than at a 
fixed point in the field19. Also, each trapping method is biased towards different insects, influencing catch15,17.

Trapping methods, such as the water traps used in this study, monitor insects landing, walking, or jumping 
to a specific point and do not record insects in flight. Also, each trapping method is biased towards different 
insects, with the trap color influencing the trap catch33. It would therefore be beneficial to include multiple trap 
types in the ground truthing in future work. Additionally, both the sensors and the conventional ground truthing 
methods assume that the recorded insect activity in one specific point in the field is representative of the insect 
activity in the near surroundings.

Although we do not fully understand in what manner, the sensor is also most likely biased towards report-
ing certain species groups. Most primarily, its only capable of recording airborne insects and unsuitable for 
monitoring during rain. Insect vision is focused towards the visual or ultraviolet spectrum and not capable of 
resolving infrared light and we believe the emitted beam has very little influence on insect behavior75. However, 
in a homogeneous landscape such as an agricultural field, any foreign object placed above the canopy could 
serve as an attractant to insects. Finally, the size of the measurement volume varies with the OCS of the insects 
and larger insects will be over-represented. To provide a complete picture of the insect population, this should 
be considered. Along with species specific observations, this is an area where we expect significant progress.

Automated insect monitoring has the potential to facilitate pest prevention, public health studies and bio-
diversity monitoring. Compared to alternative methods, such as automated traps, the sensor described in this 
paper comes at a higher cost per unit and with higher power requirements. Compared to previously described 
entomological lidars, we record fewer observations, but with a longer transit time and higher sampling frequency. 
We believe the advantage of entomological lidars, such as the sensor described in this paper, is the ability to 
potentially monitor and discriminate between multiple species using a single instrument.

In further work we will explore the possibilities of unsupervised long-term monitoring of insect activity and 
species recognition.

Figure 8.   Sensor-trap comparison. (a) Average insect counts across sensors per day. Errorbars indicate the 
standard deviation between the sensors. (b) Average insect count across yellow traps per day. Errorbars indicate 
the standard deviation between the traps. (c) Sensor vs trap counts during days where both sensor and trap data 
were available. The red line is the linear least square fit (LSTQ) with a Spearman correlation coefficient of 0.61.
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Conclusions
In this work, we have introduced an unsupervised automated sensor for insect monitoring. The measurement 
principle is similar to entomological lidar setups but is optimized for near-field measurements. This simplifies 
the installation process and increases the robustness of the sensor, allowing it to be operable by non-technical 
experts and enables long-term unsupervised monitoring.

The sensor automatically extracts insect events from the raw data and transmits these via a built-in modem 
for further processing. From the recorded observations, features such as the wingbeat frequency, body-wing 
ratio, and melanisation factor are computed and used to predict the insect classification down to species. Dur-
ing a 4-week deployment in an oilseed rape field, the detected flight activity was shown to be correlated with a 
conventional monitoring method.

The capabilities, standardization, and scalability of this sensor-based method has the potential to improve 
the state of the art in insect monitoring. To date, 119 similar units have been deployed in field and in 2021 the 
cloud database encompassed > 18 million insect observations. The sensor can be used to explore areas such as 
biodiversity assessment, insecticide resistance, and long-term monitoring of remote areas, facilitating research 
studies currently difficult or impossible to conduct with conventional methods.
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