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Abstract

Background: Retinol isotope dilution (RID) is used to determine vitamin A total body stores (TBS) after an oral dose of a

vitamin A stable isotope. The generally accepted prediction equation proposed by Olson�s group in 1989 (Furr et al. Am J Clin

Nutr 1989;49:713–6) includes factors related to dose absorption and retention, isotope equilibration in plasma compared with

stores, catabolism during the mixing period, and the optimal time for measuring plasma isotope enrichment.

Objectives: The objectives were 1) to develop a modified RID equation and identify an earlier sampling time for predicting

TBS and 2) to improve prediction in individuals as well as groups.

Methods: Todevelop amodifiedRIDequation,weused results ofmodel-basedcompartmental analysis [theSimulation,Analysis and

Modeling software (WinSAAMversion3.0.8; http://www.WinSAAM.org)] of plasma [13C10]retinol kinetic data from32previously studied,

healthy young adults of European ancestrywhohadmoderate vitaminA intakes andwho ingested 2.95mmol [13C10]retinyl acetate.

Results:We examined the time dependence of factors in the prediction equation related to absorption/retention (Fa) and

isotope equilibration (S) and determined that 4 or 5 d postdosing was the optimal sampling time. TBS calculated by the

equation TBS = Fa x S x (1/SAp), where SAp is plasma retinol specific activity (fraction of dose/mmol), were highly

correlated with model-predicted TBS (r = 0.95 and 0.96 for 4 and 5 d, respectively; P < 0.001); predictions for individuals

were also highly correlated (Rs = 0.94 and 0.94; P < 0.001).

Conclusion: The equation TBS � 0.53 (1/SAp) accurately predicted vitamin A TBS in this group of 32 healthy young adults and its

individual members with the use of data from 1 blood sample taken 4 d after isotope administration. J Nutr 2016;146:2137–42.

Keywords: humans, interindividual variation, liver vitamin A, retinol isotope dilution technique, vitamin A status,

vitamin A stores, WinSAAM

Introduction

There continues to be keen interest among nutritionists and
public health experts in refining methods for assessing vitamin A

status (i.e., stores) in the field. The retinol isotope dilution
(RID8) technique, recently described (1) as the method that
provides ‘‘the most sensitive and accessible quantitative assess-
ment of body retinol stores across a wide range of vitamin A
status,’’ has been used extensively but, as currently applied, is
not fully satisfactory to researchers (see below).

The most commonly used form of the RID prediction
equation was developed in the late 1980s in Olson�s laboratory (2),
based on earlier work on the use of isotope dilution to estimate liver
vitamin A concentrations in humans and in animal models (3, 4).
Furr et al. (2) in Olson�s laboratory obtained liver biopsy samples
from 11 adults, determined liver vitamin A concentrations, and
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extrapolated those values to estimate total liver vitamin A content.

Within 1 wk of biopsy, a large dose (45 mg) of tetradeuterated

retinyl acetate in corn oil was administered orally to each patient,

and a blood sample was collected 10–47 d after tracer dosing

for the estimation of total liver vitamin A reserve by using the

isotope dilution equation shown below (Equation 1). When

predictions of the equation were compared with estimates based

on liver biopsies for 10 of the subjects, there was a linear correlation

(r = 0.88):

TLR ¼ F3 dose3 fS3 a3 ½ðH:DÞ21�g ð1Þ

where TLR was the total liver reserve of vitamin A, F was the
fraction of the orally administered dose of deuterated vitamin A

that was absorbed and retained, S was the ratio of specific

activity of retinol in plasma to that in liver after equilibration of

the dose with body stores, a was a correction for fraction of the

absorbed dose lost via catabolism,H:Dwas themeasured hydrogen-

to-deuterium ratio in plasma retinol after mixing was complete, and

21 adjusted for the mass of vitamin A added to stores by the

administered dose. Although the parameter calculated by Equation

1was called TLR by Furr et al. (2), it is now generally accepted that

what is actually determined is vitamin A total body stores (TBS),

because all of the normal body�s vitaminA is in dynamic equilibrium

(i.e., it is fully exchangeable) as originally shown by Rietz et al. (5)

and subsequently confirmed by Green and Green (6). Thus, when a

vitaminA tracer is administered, it will mix or interfusewith vitamin

A in all of the body�s exchangeable pools, and the dilution of the

tracer in a plasma sample obtained at an appropriate time after dose

administration will reflect TBS of the vitamin.
Since publication of the Olson equation in 1989, it has been

applied by a number of research groups to estimate vitaminA status

[see references in (7) as well as references 8 and 9], and the equation

has been extensively discussed (7, 10, 11). In one study, Haskell

et al. (12) showed that, compared with estimates based on liver

biopsies, the equation did a good job of predicting mean TBS in a

group of 31 Bangladeshi subjects with low liver vitamin A

concentrations; however, the prediction for individual subjects

was not very good.
Here we present a different version of the original RID equa-

tion, that to our knowledge addresses some of the limitations in

the original method, including the long time (;3 wk) between

dosing and sampling as well as the inability to estimate TBS in

individual subjects. The current article was preceded by prelim-

inary work described in reference 13 in which we had begun to

explore the values assigned to the factors in the original equation

as well as conditions that may affect RID results. The new

equation presented here uses data collected at 4 or 5 d after dose

administration, and it provides accurate estimates of TBS in

individuals. To develop the new equation, we used results from

compartmental analysis of vitamin A kinetics in a group of

healthy young adults of European ancestry (14); this allowed us

to determine individual subject values for the coefficients in

Equation 1 and to validate the new equation by comparing its

prediction to TBS from the compartmental model. The use of

data collected sooner after dose administration not only provides

better discrimination between different vitamin A statuses in

both groups and individuals but may also increase subject

availability/compliance and ensure a lower likelihood of changes

in health status during the test (e.g., development of infections).

Methods

Subjects, design, and compartmental analysis. References 14 and 15
contain details related to subject characteristics, informed consent, stable

isotope doses, and analyses. The current study is based on data from 32

healthy young-adult subjects (see Results) whose results for plasma [13C10]
retinol kinetics after the oral ingestion of [13C10]retinyl acetate (2.95 mmol)

were suitable for steady state model-based compartmental analysis.

As described in reference 14, 11 blood samples were collected from

each subject from baseline until 14 d after dose administration;
plasma [13C10]retinol was determined by LC–tandem mass spectrom-

etry (LC-MS/MS) and plasma [12C]retinol was determined by HPLC.

Data on the fraction of the oral dose (FD) in plasma [13C10]retinol

compared with time for each subject were analyzed by model-based
compartmental analysis with the use of WinSAAM version 3.0.8, the

Windows version of the Simulation, Analysis and Modeling software

(WinSAAM; http://www.WinSAAM.org) (16–18), in light of a 6-component
model (Figure 1) developed by Cifelli et al. (19) as described in reference 14.

Data for each subject were fit to the model, and values for the fractional

transfer coefficients [L(I,J)s; or the fraction of retinol in compartment J that is

transferred to compartment I each day] were determined by using weighted
nonlinear regression analysis. Then, the estimated plasma retinol pool size

[mean concentration3 estimated plasma volume; M(5) orMp] was used in a

steady state solution to predict compartment pool sizes [M(I)] and, in

particular, vitamin A TBS [M(6) or Ms; the mass of vitamin A in
compartment 6 (Figure 1)]. The model was also used to simulate values for

the coefficients in Equation 1 over time, extending predictions beyond the

experimental time to 28 d.

Statistical methods. Data were managed by using Microsoft Excel;

graphing and least-squares regression analyses were conducted by

KaleidaGraph (version 4.1; Synergy Software) and GraphPad Prism
(version 6; GraphPad Software). Pearson�s correlation coefficients (r),

FIGURE 1 Compartmental model for retinol kinetics in humans. Circles

represent compartments; component 3, shown as a rectangle, is a delay

element, and interconnectivities between compartments [L(I,J)s] are

fractional transfer coefficients, or the fraction of retinol in compartment J

that is transferred to compartment I each day. Compartments 1–4

(including component 3) correspond to vitamin A digestion and absorption,

chylomicron production and metabolism, liver uptake of chylomicron

remnant retinyl esters, and hepatic processing of retinol. Compartment 5

represents plasma retinol bound to retinol-binding protein and transthy-

retin; this retinol exchanges with vitamin A in 1 extravascular pool

(compartment 6), which includes liver vitamin A stores. The asterisk (*)

represents the site of input of orally administered [13C10]retinyl acetate, and

U(1) represents dietary vitamin A input. L(I,J), fractional transfer coefficient.

Adapted from reference 19 with permission.
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Spearman rank correlation coefficients (Rs), the coefficient of determination

(R2), and CV% were determined. P < 0.05 was considered significant.

Results

Subject characteristics. Table 1 in reference 14 presents
information on 30 of the 32 participants; 2 other subjects from
reference 15 were included here so that the group was composed
of 15 men and 17 women with a mean 6 SD age of 24 6 4 y, a
mean BMI (kg/m2) of 23 6 2, and moderate intakes of
preformed vitamin A (444 6 481 mg/d) as determined by an
FFQ. The mean plasma retinol concentration during the study
for all subjects was 1.52 6 0.27 mmol/L.

Preliminary considerations. To develop a modified RID equa-
tion that would provide more accurate predictions of TBS in
individual subjects, we began by reviewing previous work and
examining the assumptions in the original RID equation (2)
(Equation 1 above). We concluded the following: 1) it would be
ideal to have an equation that accurately estimated TBS on the basis
of data collected during the firstweek after isotope administration; 2)
the factor 21 that was included in the original equation to correct
calculated TBS for the mass of vitamin A in the dose should be
eliminated because the measured variable was H:D, not (H+D)/D,
rendering the 21 an error; 3) we also wanted to express the factor
‘‘dose3H:D’’ more generally because some researchers use [13C] for
RID studies and because, for vitamin A modeling studies, plasma
data are typically expressed as FD. Expressing current data for
plasma [13C]retinol as an FD, [12C]retinol/[13C]retinol FD = 1/SAp,
where SAp is the specific activity of plasma retinol. Finally, we
concluded that 4) factor awas already taken into account in factor F
so F was replaced with Fa going forward. See Discussion for
additional details on points 1 and 4.

Factor Fa. Factor Fa, the fraction of the administered dose that was
absorbed and is still in stores, is equivalent to the fraction of the dose
in model compartment 6 (Figure 1). Figure 2 shows simulated data
for plasma and stores vs. time for 1 representative subject. (Note
that, although the data in Figure 2 are presented as specific activities,
the patterns would be the same for FD because retinol masses were
constant over this time period.) The curve for compartment 6 (Fa)
rises as the isotope begins to appear in stores and it crosses over the
curve for compartment 5 at ;2.7 d, when the tracer reaches a
maximum in compartment 6 and tracer input balances output; the
curves then become parallel by day 7. The magnitude of factor Fa
depends on the irreversible loss (catabolism) of vitamin A [i.e., the
system fractional catabolic rate (FCRsys), which is reflected in the
terminal slope of the plasma tracer response curve and as L(10,6) in
Figure 1]: a higher FD in stores (i.e., a larger Fa) is equivalent to a
lower FCRsys and vice versa. Figure 3A shows Fa vs. time for
representative subjects with low, moderate, and high FCRsys

(2.6%, 5.5%, and 10.7%/d, respectively). As shown in Figure 3B,
L(10,6), the model-predicted fractional loss was highly inversely
correlated with Fa during the time frame of this study (r = 0.99 on
day 5 and r = 1.00 on day 14; P < 0.001 for both days).

Factor S. In the original RID equation (2), S was defined as the
ratio of specific activity (tracer:tracee) of retinol in plasma to that
in liver after equilibration of the dose with body stores. If subjects
consume no vitamin A after dose administration, then S would
equal 1 after the dose equilibrates (isotopic equilibrium). If vitamin
A is ingested during the equilibration period, then Swill be affected
by the dilution of the tracer-to-tracee ratio as unlabeled vitamin A

(tracee) enters the system from the diet and tracer and tracee are
lost by catabolism. For more insight into the most appropriate
value for factor S, we used modeling results for the current subjects
as follows. Because plasma isotope data were expressed as FD,
specific activity is the FD divided by mass of the tracee (M).
By using that nomenclature, S would be written as follows:

S ¼ �
FDp

�
Mp

��ðFDs=MsÞ ð2Þ

where the subscripts p and s are ‘‘plasma’’ and ‘‘stores,’’ respec-
tively. In the model (Figure 1), compartment 5 is plasma retinol
and compartment 6 is extravascular vitamin A stores. When we
calculated and simulated data for S,we noted large interindividual
variations at very early times (i.e., <3 d) after dosing. The value for
S decreased to 1 at 2.7 d after dosing (range: 1.7–4 d) and reached
a plateau (Figure 2) at ;7 d, when S = 0.72.

Modified RID equation. In light of the foregoing, the original
RID equation can be restated as follows:

TBS ¼ Fa3 S3
�
1
�
SAp

� ð3Þ

Fa and S can be assigned values as in past applications of the Olson
equation, or the factors can be determined for individual subjects by
compartmental modeling as described below. SAp is determined
analytically, optimally at a time when the other factors combined
(Fa 3 S) have the smallest interindividual variation (see later).

Model-predicted values for factors Fa and S. Because the
study from which current kinetic data were obtained was short
compared with other retinol turnover experiments (19), we
simulated our model to 28 d and calculated Fa, S, and 1/SAp over
that time (Figure 4A). Mean values for Fa peaked at 3 d and
decreased substantially by 28 d after dosing; S was high right
after dosing (7.4 on day 1), and then it decreased to reach a
plateau by day 7. For 1/SAp, simulation indicated that the value
increased steadily over the 28 d, because plasma retinol is
constant whereas tracer concentration decreases due to mix-
ing with stores, catabolism of labeled retinol, and intake of
unlabeled (dietary) retinol. The CVs for Fa 3 S (Figure 4B)
decreased from 42% at day 1 to 21% at day 3 and 15% at days
4 and 5; the CV then linearly increased to 53%at day 28, indicating
that 4 or 5 d after dosing was the ideal time to most accurately
predict both individual and groupmean values for TBS.Mean values

FIGURE 2 Model-simulated data for retinol specific activity in

plasma and in stores vs. time for 1 representative healthy young-adult

subject with moderate vitamin A intake. The model is shown in

Figure 1. SA, specific activity.
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for the factors at days 4 and 5 were 0.61 and 0.58 for Fa, 0.78 and
0.74 for S, and 0.48 and 0.43 for Fa 3 S, respectively.

Using model-predicted Fa 3 S to calculate TBS for the

population and its individuals. When the mean value for
Fa 3 S on day 4 and each individual�s 1/SAp were used in
Equation 3, TBS were 1226 68 mmol; with the use of the day-5
value for Fa3 S, TBS were 1226 70 mmol. These values are not
significantly different from the model-predicted population
mean value for Ms [M(6)] of 120 6 70 mmol.

Linear regression analysis also indicated that Equation
3–derived values for TBS for individual subjects in this group
were highly correlated with model-predicted values [r = 0.95 for
day 4 data (Figure 5) and 0.96 for day 5 (data not shown), P <
0.001 for both analyses]. The least-squares lines (y = 0.98x + 1.12
for day 4 and y = 0.96x + 2.44 for day 5) were not significantly
different from y = x (P = 0.74 for day 4 data and P = 0.49 for day
5). As indicated by the 95%CIs for the individual estimates shown
in Figure 5 for day 4, values for TBS calculated by Equation 3 for a
given individual were within620 mmol (1 SD) or 16% of model-
predicted values for M(6). The rankings of TBS and M(6) for
individuals were highly correlated, as indicated by Spearman rank
correlation coefficients (Rs = 0.94, P < 0.001, for both times). The
ratio of calculated (TBS) to model-predicted [M(6)] values ranged

from 0.76 to 1.4 for the 32 individuals. In addition, the relative
accuracy of the prediction [TBS/M(6)] was not significantly
affected by the size of vitamin A body stores (P > 0.26).

To better understand why Equation 3 provided such a good
estimate of mean and individual TBS, we investigated the
contributions of the factors 1/SAp, S, and Fa in the prediction
equation at 4 and 5 d. We used the compartmental model to
estimate each variable for each subject on both days. When we
plotted M(6), the model-predicted TBS, compared with 1/SAp

and fit the data to a linear equation (data not shown), the
coefficient of determination (R2) was 0.91 at 4 d and 0.92 at 5 d;
when Fa 3 S was included in the regression equation, the
remaining variance was accounted for. In other words, >90% of
the variation in M(6) was accounted for by the variance in 1/SAp

at 4 or 5 d; most of the remaining 8–9% was accounted for
by variance in S. In contrast, at later times, the contributions of
1/SAp, Fa, and S changed, such that at 14 d, they were 72%,
25%, and 3%, respectively. In addition it is worth noting that,
when we calculated TBS over time with the use of Equation 3
and the model-predicted values for Fa, S, and 1/SAp, TBS were
constant.

Discussion

In this study, we used results from model-based compartmental
analysis of data on plasma [13C10]retinol kinetics to modify and
improve the RID equation (‘‘Olson equation’’; Equation 1),

FIGURE 3 (A) Factor Fa vs. time for 3 representative healthy

young-adult subjects with moderate vitamin A intakes and either low

(2.6%/d), moderate (5.5%/d), or high (10.7%/d) system fractional

catabolic rates [L(10,6); Figure 1]. (B) Factor Fa compared with model-

predicted L(10,6) at 5 and 14 d. Data were fit to the following mono-

exponential equations: y = 0.74423e–4.2299x for day 5 (r = 0.99) and

y = 0.73988e–12.782x for day 14 (r = 1.00), where y is Fa and x is

L(10,6). Fa, the fraction of the orally administered dose of stable

isotope–labeled vitamin A that was absorbed and retained.

FIGURE 4 (A) Model-predicted values (means 6 SEMs) for Fa, S,

and 1/SAp compared with time based on modeling of plasma retinol

response data for 32 healthy young-adult subjects of European ancestry

with moderate vitamin A intakes. (B) Variance in Fa 3 S over time for

the same subjects. Fa, the fraction of the orally administered dose of

stable isotope–labeled vitamin A that was absorbed and retained; S,

the ratio of specific activity of retinol in plasma to that in stores; SAp,

plasma retinol specific activity.
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which has been used to estimate vitamin A status and to evaluate
the efficacy of vitamin A supplementation programs by numer-
ous researchers over the past 25 y. Our goal was to determine
whether a modified equation could accurately predict total body
vitamin A stores in individual subjects as well as in groups by
using data collected within 1 wk after administration of labeled
vitamin A. In the original RID study (2), when TLR calculated
by using Equation 1 was compared with extrapolated liver
vitamin A concentrations based on biopsy, the ratio was 1.10 but
values varied over a wide range (0.47–2.01; n = 10). When
Equation 3 predictions are compared with model-predicted TBS
in our study, agreement was excellent (ratio of 1.03) and the
range was tighter (0.76–1.4; n = 32), so that predictions for
individuals were very good.

In the original RID equation (2) (Equation 1 above), there
was overlap in the definitions of factors F (the fraction of the
orally administered dose of deuterated vitamin A that was
absorbed and retained) and a (a correction for fraction of the
absorbed dose lost via catabolism). We combined F and a into an
aggregate factor, Fa, with the use of the following logic. The
value for factor a in Equation 1 was calculated as follows:

a ¼ e-kt ð4Þ

where k = (ln 2)/140 d [140 d is the estimated half-life (t1/2) of
liver vitamin A] and t = days since the dose was administered. In
fact, t1/2 will be dependent on vitamin A stores and will be much
shorter in individuals with low stores. A careful review of the
work upon which the original equation was based (4) showed
that a is actually already taken into account in factor F. That is,
because F was defined as the fraction of the dose that was
absorbed and retained (i.e., was still in stores at the time of blood
sampling), all loss due to degradation is incorporated into
F. Thus, we combined factors F and a into factor Fa.

With regard to Fa, it is important to emphasize that this
factor depends on, among other processes, vitamin A absorption

efficiency. Currently, only limited information is available on the
absorption efficiency of an oral dose of vitamin A in individual
subjects. Thus, in future work, it will be important to determine
absorption efficiency, especially if the goal is to obtain accurate
values of TBS in individuals.

One of our objectives in the present work was to determine
whether the original RID equation could be modified to use
plasma isotope enrichment data from a blood sample collected
earlier than at ;21 d after dose administration as has been
typically done (20, 21). Twenty-one days has been assumed to be
optimal for tracer to thoroughly mix with body vitamin A pools
(3, 22). However, researchers have suggested several potential
benefits to earlier sampling, including improved subject availability
and compliance and a lower likelihood of changes in health status
during the test (e.g., development of infections). In addition, Adams
and Green (23) reported that the optimal TBS prediction time in
rats with a wide range of liver vitamin A concentrations was 3 d
after dosing. The early sampling time improved sensitivity of the
prediction, allowing for better discrimination between different
levels of vitamin A status.

In view of these considerations, several researchers previously
used early postdose data to predict vitamin A status by isotope
dilution. For example, Ribaya-Mercado et al. (24) found that
decreased plasma D:H ratios measured 3 d after dosing reflected
improvements in vitamin A status in Filipino children who had
received vitaminA supplementation; these researchers recommended
the development of a 3-d prediction equation. Later, Tang et al.
(25) measured D:H in serum 3 d after dosing, extrapo-
lated that to a 21-d ratio, and used Equation 1 to predict TBS.
In addition, Haskell et al. (26) used postequilibrium plasma
isotope ratios and a modified Equation 1 to predict TBS in
Peruvian children. These authors then developed a regression
equation to predict TBS on the basis of the isotope ratio at 3 d.
Finally, preliminary work with this data set (13) indicated that
data from an early time (3 d) indeed held promise for estimating
TBS. The current work further supports the benefit of using early
data for determining both individual and mean TBS, because we
found (Figure 2) that the mixing of tracer and tracee (interfu-
sion) was complete by ;1 wk after dose administration (i.e.,
much earlier than previously assumed).

In the original publication of the RID equation (2), values for
the factors F, a, and S were assigned on the basis of previous
research. Specifically, F was assigned a value of 0.5 on the basis
of work in rats by Rietz et al. (4) and S was set at 0.65 on the
basis of studies of the metabolism of vitamin A in rats as a
function of liver vitamin A stores (27). Factor a would equal
0.98 at both 4 and 5 d (based on k = 0.005 in Equation 4). Given
these values, the product of factors F, a, and S in Equation
1 would be 0.32, compared with model-derived values of 0.48
on day 4 and 0.43 on day 5 (Fa = 0.61 and 0.58 on days 4 and 5,
respectively, and S = 0.78 and 0.74).

Given the time dependence of these factors as shown in Figure
4A, our results show that there will be improved prediction of
individual and group mean TBS if Fa 3 S is determined when
variance in the coefficients is lowest (Figure 4B). We found that
the interindividual variance in the aggregate factor Fa 3 S was
lowest (15%) at 4–5 d after dose administration. In addition, the
results shown in Figure 3A indicate that irreversible loss of
vitamin A has less influence on interindividual differences in Fa at
these earlier times and an increasing effect later [i.e., the curves for
L(10,6) and Fa diverge with time]. Thus, predictions of TBS for
individual subjects will be less affected by variance in the factor
Fa if the method is applied at earlier sampling times. In
addition, the prediction of M(6) (i.e., TBS) is most sensitive to

FIGURE 5 Model-predicted values for M(6) compared with TBS.

Values for TBS were predicted by Equation 3 : TBS = Fa 3 S 3 (1/SAp),

where the coefficients Fa and S were determined from the model

(Figure 1) and 1/SAp, the specific activity of retinol in plasma, was

determined analytically in plasma samples and then the model was used

to calculate the value on day 4. The least-squares regression line was

M(6) = 0.983 TBS (4 d) + 1.12 (r = 0.95, P, 0.0001). Curved confidence

bands are 95% CIs for the regression line, and straight prediction bands

are 95% prediction intervals for individual subjects. Fa, the fraction of the

orally administered dose of stable isotope–labeled vitamin A that was

absorbed and retained; M(6), vitamin A mass in compartment 6; S, the

ratio of specific activity of retinol in plasma to that in stores; SAp, plasma

retinol specific activity; TBS, vitamin A total body stores.
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variance in the measured variable (specific activity in plasma)
at 4 or 5 d. Taken together, these results indicate that it is
important to sample near 4 or 5 d, when variance in Fa3 S has
less influence in, and 1/SAp is most sensitive to, the prediction
of mean and individual TBS.

In conclusion, RID is an accurate and relatively simple
technique for determining TBS of vitamin A in intervention and
assessment trials in the field. Here we show that, with the use
of data from a plasma sample collected 4 or 5 d after isotope
administration, the equation TBS = Fa 3 S 3 (1/SAp) (Equa-
tion 3) accurately predicts individual and mean vitamin A TBS
in healthy young adults of European ancestry who had normal
plasma retinol concentrations and moderate vitamin A intakes.
Specifically, mean TBS predicted by Equation 3 (122 mmol) were
within 2% of, and not significantly different from, the model-
predicted value (120 mmol); for individual subjects, the esti-
mates were within 620 mmol (1 SD) of model predictions. The
very simple equation TBS� 0.53 (1/SAp) [or TBS� 0.53 dose/
(tracer:tracee ratio)], where 0.5 is approximately the product of
Fa (0.61) and S (0.78), gives an adequate estimate of individual
vitamin A TBS at 4 d. If researchers are able to estimate the
population mean value for Fa 3 S at a time when variance in
these factors is minimal (e.g., at 4 or 5 d after dosing),
Equation 3 will predict TBS for an individual in that popula-
tion with reasonable accuracy. If the values for factors Fa and S
were determined for individuals over time by using model-
based compartmental analysis or other methods, then TBS can
be estimated at any time after tracer administration.
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