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Abstract: Adipose tissue (AT) represents a commonly used source of mesenchymal stem/stromal
cells (MSCs) whose proregenerative potential has been widely investigated in multiple clinical trials
worldwide. However, the standardization of the manufacturing process of MSC-based cell therapy
medicinal products in compliance with the requirements of the local authorities is obligatory and
will allow us to obtain the necessary permits for product administration according to its intended
use. Within the research phase (RD), we optimized the protocols used for the processing and ex vivo
expansion of AT-derived MSCs (AT-MSCs) for the development of an Advanced Therapy Medicinal
Product (ATMP) for use in humans. Critical process parameters (including, e.g., the concentration
of enzyme used for AT digestion, cell culture conditions) were identified and examined to ensure
the high quality of the final product containing AT-MSCs. We confirmed the identity of isolated AT-
MSCs as MSCs and their trilineage differentiation potential according to the International Society for
Cellular Therapy (ISCT) recommendations. Based on the conducted experiments, in-process quality
control (QC) parameters and acceptance criteria were defined for the manufacturing of hospital
exemption ATMP (HE-ATMP). Finally, we conducted a validation of the manufacturing process in a
GMP facility. In the current study, we presented a process approach leading to the optimization of
processing and the ex vivo expansion of AT-MSCs for the development of ATMP for use in humans.

Keywords: adipose tissue-derived mesenchymal stem/stromal cells; advanced therapy medicinal
product; cell-based therapy; good manufacturing practices; regenerative medicine

1. Introduction

Mesenchymal stem/stromal cells (MSCs) represent one of the most investigated type
of adult stem cells (SCs). MSCs can be isolated from many tissues, including bone marrow
(BM), adipose tissue (AT), mobilized peripheral blood, umbilical cord blood, umbilical cord
Wharton’s jelly, and dental pulp [1,2]. In 2006, the International Society for Cellular Therapy
(ISCT) proposed minimal criteria for defining MSCs of various origins, including (1) an
ability to adhere to plastic surfaces under standard culture conditions in vitro; (2) a specific
antigenic profile—the presence of CD73, CD90, and CD105 antigens (at least 95% of positive
cells) and a parallel lack of the following antigens: CD45, CD34, CD14 or CD11b, CD79α or
CD19, and HLA-DR (less than 2% of positive cells); and (3) the capacity to differentiate into
mesodermal lineages, including osteoblasts, chondroblasts, and adipocytes in vitro [3].

A number of different mechanisms of MSC action may be responsible for their pro-
regenerative activity in injured tissues, including their (1) direct differentiation capacity,

Cells 2021, 10, 1908. https://doi.org/10.3390/cells10081908 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-8088-6221
https://orcid.org/0000-0001-6814-6127
https://doi.org/10.3390/cells10081908
https://doi.org/10.3390/cells10081908
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10081908
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10081908?type=check_update&version=2


Cells 2021, 10, 1908 2 of 22

leading to direct cell replacement in a damaged tissue, and (2) paracrine activity relying
on the secretory capacity of MSCs, including the release of multiple soluble bioactive
molecules as well as extracellular vesicles (EVs), which, all together, may indirectly stim-
ulate endogenous processes of tissue repair [4]. MSCs of various origins predominantly
exhibit an ability to differentiate into various types of mesodermal cells, such as chondrob-
lasts/chondrocytes, osteoblasts, and adipocytes [5]. It has been shown that BM-derived
MSCs (BM-MSCs) differentiating into chondrocytes also secrete proteoglycans and colla-
gen II, which are essential components of the extracellular matrix in cartilage tissue [6].
Importantly, it has been also demonstrated that, upon intra-articular administration into
injured joint, BM-MSCs can induce cartilage replacement and be detected in the newly
formed tissue [7].

The paracrine factors released by MSCs may regulate several processes favoring
tissue repair, including angiogenesis and cell proliferation, migration, and survival; they
may also be able to reduce inflammation in damaged tissue [4]. The immunosuppressive
properties of native MSCs rely on the secretion of a number of anti-inflammatory molecules,
including, e.g., interleukin (IL) 6 and IL-10, transforming growth factor β (TGF-β), and
prostaglandin E2 (PGE2) [8–10]. Thus, native MSCs, due to their immunomodulatory
properties, may inhibit the maturation and functions of major classes of immunocompetent
cells, such as monocytes, granulocytes, lymphocytes B and T (CD8), and natural killer
cells, leading to a decrease in immune reaction [8–10]. However, it has been demonstrated
that MSCs are capable of sensing and responding to cytokines and factors present in a
specific microenvironment, including pro-inflammatory cytokines such as IL-1, IL-17, and
interferon γ (IFN-γ) [11–13]. Interestingly, MSCs treated and activated with IFN-γ may
express a higher level of HLA-DR molecules [14] or HLA-I antigens [15]. Surprisingly, it
has been shown that such IFN-γ-activated MSCs did not stimulate allo-reactive T cells but,
rather, enhanced their immunosuppressive capacity [13,14], suggesting that MSCs primed
with IFN-γ may be used for the treatment of allogeneic conflicts in patients, including
graft-versus-host disease [13]. Considering the phenomenon of cytokine sensing in the
MSC microenvironment, which may impact on the immunomodulatory properties of these
cells, an optimal process of propagation is required prior to their clinical use in humans.
Thus, the validation of optimal isolating and culturing protocols is needed before the
preparation of cell-based medicinal products for use in humans [16]; these products must
further undergo in-depth functional characterization to confirm their safety and efficiency.

Similar effects to MSC-derived soluble factors may be also mediated by EVs carrying
several bioactive molecules with a pro-regenerative capacity and regulating the biological
functions of various target cells in injured tissues [17]. The results obtained during the
TERCELOI clinical trial demonstrated that reiterative infusions of histocompatible BM-
MSCs (derived from pediatric donors) can improve the bone parameters and quality of
life of pediatric patients suffering from osteogenesis imperfecta (OI). Moreover, it has
been indicated that MSC therapy elicited a pro-osteogenic paracrine response in patients
enrolled in the clinical trial, confirming the efficiency of MSCs in the treatment of OI [18].
Importantly, because of the low immunogenicity of native, non-activated MSCs, they may
be administrated into the injured tissue not only in an autologous but also in an allogeneic
manner [19]. Due to the pleiotropic paracrine mechanism of action consisting of secretion
of bioactive soluble factors and EVs as well as the direct differentiation potential, MSCs
may play a pivotal role in regeneration of several injured tissue [20,21]. Thus, MSCs,
which are widely used in multiple clinical trials worldwide, represent a promising tool for
tissue regeneration.

Currently, there are 356 ongoing clinical trials for MSC-based therapies (retrieved from
ClinicalTrial.gov on 18 June 2021; studies found for “mesenchymal stem cells”) for human
diseases, including bone diseases [22], diabetes [23], multiple sclerosis [24], and cardiovas-
cular disorders [25]. Some of these are in phase II and are aiming at the evaluation of the
efficacy and safety of MSC-based therapy. However, the clinical use of MSCs is obstructed
by several important limitations, including the naturally low number of MSCs in tissues,
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the invasiveness of tissue-harvesting procedures, and the low expansion potential observed
by some investigators [26,27]. Moreover, the supplementation of medium for MSC culture
with serum such as fetal bovine serum (FBS) or other animal-derived components has
prompted safety concerns around the possible transmission of prions and viruses to the
recipient of the cell therapy [28]. Besides the optimization of the manufacturing process,
other logistic activities related to the cell-based product, including storage and transport
conditions, should be also evaluated before the first in-human trials are carried out. All
manufacturing actions must be validated and documented at the stage of early product
development to ensure the control of product quality and the fulfillment of the standards
detailed in The Tissue & Cell Directive (2004/23/EC) and/or Good Manufacturing Practice,
Annex I. Despite the lack of legal regulations concerning the standardization of cell-based
manufacturing processes, there are many recommendations and guidelines regarding qual-
ity assurance and the biological safety of such therapies, including the recommendations of
ISCT for defining MSCs or the statement of the International Federation for Adipose Thera-
peutics and Science (IFATS) for the culture of AT-derived MSCs (AT-MSCs) [29]. Therefore,
local regulatory authorities demand that the manufacturer determine the product’s crit-
ical quality attributes (CQA), in particular its lot-to-lot consistency, identify potentially
unsafe impurities by performing the quality control of raw materials, perform sterility and
endotoxin tests [30], etc. Thus, the optimization of the protocols used for the processing
and ex vivo expansion of AT-MSCs, the adjustment of the dose of cells necessary for the
intended use of a medicinal product, and the preparation of the final product formulation
so that it does not impact on the cells’ biological activity and supports MSCs’ capacity
for interaction/regeneration with the target tissue represent real challenges and influence
the efficiency of cell-based therapies. Taken together, for a prospective manufacturer of
MSC-based medicinal products, it is essential to: (1) standardize the manufacturing process
and prepare standard operating procedures (SOPs), (2) conduct in-process quality control
(QC) tests during the manufacturing of cell-based medicinal products, and (3) conduct the
manufacturing process in a GMP facility.

In our study, we isolated MSCs from AT collected as lipoaspirate, which was deter-
mined as the most suitable source of MSCs because there are fewer ethical concerns around
it and the collection procedure used may be relatively non-invasive for the patient (AT is
often medical waste from various surgical procedures). Although BM-MSCs are consid-
ered to be the gold standard of MSCs in research and clinical applications, the invasive
procedure used for BM harvesting and the lower yield of BM-MSC isolation (when com-
pared to the MSCs isolated from AT), especially in older donors, makes this an important
limitation for clinical applications [31,32]. Compared with embryonic stem cells (ESCs) or
induced pluripotent stem cells (iPSCs), MSCs, despite their lower plasticity, do not cause
the formation of teratomas and do not cause ethical concerns [33].

In the current study, using a process approach, we optimized the protocols for the
processing and ex vivo expansion of AT-derived MSCs (AT-MSCs) for the development
of Advanced Therapy Medicinal Products (ATMPs) for use in humans. We defined the
QC parameters required for Hospital Exemption-ATMP (HE-ATMP) manufacturing and
presented the initial specification of the final product containing QCA. Despite the lack of
marketing authorization for HE-ATMP in the Member States of the European Union, these
medicinal products are manufactured by industrial methods using good manufacturing
practice (GMP) rules according to the individual order of a physician for their intended use.

2. Materials and Methods
2.1. Lipoaspirate Collection

Human adipose tissue (AT) was collected from healthy donors. AT from 11 human
donors (age range: 26–54; nine females and two males; BMI range: 21.9–33.2) were used to
perform all experimental stages in the process approach required in this study. Informed
consent was obtained from all the subjects involved in the study. Approximately 50 mL
of subcutaneous AT was obtained with a Body-Jet Liposuction device (Human Med AG,
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Schwerin, Germany). Then, the aspirated AT was filtered, washed, and collected using a
FilterCollector (Corning, Tewskbury, MA, USA), from which it was retrieved with syringes
(Becton Dickinson, BD; Franklin Lakes, NJ, USA). Lipoaspirate in syringes closed with
Combi-Stoppers (B.Braun, Melsungen, Germany) were packed into a transport container
equipped with a temperature recorder and subsequently transported at 2–8 ◦C to the
laboratory. The isolation of stromal vascular fraction (SVF) cells was conducted on the
same day as the tissue harvesting. The lipoaspirate collection procedure as well as research
on isolated cells were conducted in accordance with the applicable regulations of human
welfare and were approved by the local ethics committee (Bioethics Committee in the
Regional Medical Chamber in Cracow, Poland; opinion no. 72/KBL/OIL/2017). According
to the European Commission Directive 2006/17/WE of 8 February 2006, AT was harvested
only from donors with negative results from lab screening for HIV, HBV, HCV, and syphilis.
All raw materials and reagents were verified for their compliance to GMP rules for use in a
manufacturing process and were delivered only by qualified producers/suppliers.

2.2. Isolation of SVF Cells

SVF cells were isolated from AT. Briefly, AT was washed with PBS solution w/o Ca2+,
Mg2+ (HyClone, GE Healthcare Life Sciences, Malborough, MA, USA) and supplemented
with 1% Antibiotic-Antimycotic Solution (ThermoFisher Scientific, Waltham, MA, USA).
Subsequently, SVF cells were isolated by enzymatic digestion with collagenase NB6 GMP
Grade (Serva Electrophoresis, Heidelberg, Germany) for 40 min (or 60 min) at 37 ◦C.
During the optimization of the enzymatic digestion conditions, the following collagenase
concentrations were tested: A1 (0.55 mg/mL), A2 (1.10 mg/mL), and A3 (1.65 mg/mL). The
activity of the collagenase was stopped by the addition of PBS and the tubes with AT were
cooled down during further centrifugation (370× g, 10 min, 16 ◦C). After centrifugation, the
pellet containing SVF cells was resuspended in complete cell culture medium ((DMEM/F12
supplemented with 10% FBS (both from Sigma-Aldrich, Merck, Darmstadt, Germany) and
1% Penicillin-Streptomycin solution (Gibco, ThermoFisher Scientific)) during the selection
of the optimal collagenase concentration or other tested media designed for the culture
of MSCs under GMP conditions (described in Section 2.5 during the selection of the
optimal culture medium), then passed through a 100-µm strainer (Corning) to remove the
remaining veins or tissue debris, washed with PBS solution w/o Ca2+, Mg2+ (HyClone,
GE Healthcare Life Sciences), collected in a new centrifuge tube, and centrifuged (350× g,
7 min, RT). Finally, the pellet containing SVF cells was resuspended in complete cell culture
medium, seeded in culture flasks (Corning), at a density of 5000–11,000 cells/cm2, and
further cultured under standard culture conditions (37 ◦C, 5% CO2, 95% humidity). Fresh
culture medium was added after 2 days post-seeding. AT-MSCs were passaged with Tryple
Select Enzyme (Gibco, ThermoFisher Scientific) when the confluence of cells reached close
to 80–90% (at app. 4–5 day of culture). AT harvested from three individual human donors
was used to replicate each step of the optimization of SVF isolation.

2.3. Modification of SVF Isolation Procedure by Adding the Step of Red Blood Cell Lysis

The standard optimized protocol for SVF isolation (described in Section 2.2) was
compared to alternative protocols with the modification that it included a stage of red
blood cell lysis using ZAPR™ Red Blood Cell Lysing Buffer (Incell, San Antonio, TX, USA).
Briefly, after the first centrifugation (370× g, 10 min, 16 ◦C) and cell suspension filtration
with a 100-µm strainer (Corning) to remove the remaining veins or tissue debris, 4 to
5 volumes of ZAPR™ Red Blood Cell Lysing Buffer were added to the cell suspension,
mixed, and incubated for 5 min (Alternative Protocol no. 1, AP no. 1) or 10 min (Alternative
Protocol no. 2, AP no. 2) at RT. Then, the cell suspension was diluted two times in
complete cell culture medium and centrifuged (350× g, 7 min, 16 ◦C). The cell pellet
was resuspended in complete culture medium and seeded in a culture flask (Corning)
at a density of 0.1–0.15 ×104 cells/cm2 and further cultivated under standard culture
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conditions (37 ◦C, 5% CO2, 95% humidity). The culture medium was changed every
2–3 days.

2.4. Cell Counting and Viability Assessment
2.4.1. RD Phase

The number of SVF cells or AT-MSCs was counted using a ScepterTM 2.0 Cell Counter
(Millipore, Merck) equipped with Scepter Cell Counter Sensors 60 µm (Millipore, Merck).
The viability of the cells was examined using a manual dye-exclusion method. The cell
suspension was mixed (1:1) with 0.4% Trypan Blue solution (ThermoFisher Scientific) and
further (after 2–4 min) counted in a Burker chamber using an Olympus IX81 microscope
equipped with a MicroPublisher 3.3 RTV camera (Olympus, Tokyo, Japan).

2.4.2. Implementation Phase

To evaluate the number and viability of SVF cells or AT-MSCs, the automated fluores-
cence cell counter ADAM-MCTM (Nanoentek, Hwaseong-si, Gyeonggi-do, Korea), which
utilizes precision disposable microchips (Nanoentek), was employed. Cells in suspension
were stained with Accustain Solution T and Accustain Solution N (ADAMTM AccuChip Kit,
Nanoentek) and further applied to microchips according to the manufacturer’s protocol.

2.5. Culture of AT-MSCs

To select the optimal GMP-grade culture medium designated for MSC culture for
clinical applications, directly after isolation, as described in Section 2.2, SVF cells were
seeded in culture flasks and cultured in parallel in the following media: Medium A:
αMEM supplemented with 10% human platelet lysate MultiPL’30 (both from Macopharma,
Tourcoing, France), 2 IU/mL Heparinum WZF (Polfa S.A., Starogard Gdański, Poland),
and 1% Penicillin-Streptomycin solution (ThermoFisher Scientific); Medium B: complete
MSC NutriStem XF Medium (Biological Industries, Kibbutz Beit-Haemek, Israel) supple-
mented with 1% Penicillin-Streptomycin solution (ThermoFisher Scientific); Medium C:
complete StemPro MSC SFM medium (ThermoFisher Scientific) supplemented with 1%
Penicillin-Streptomycin solution (ThermoFisher Scientific). Cells were seeded at a density
of 2 × 106 per flask (175 cm2; Corning) and further cultured to assess their morphology,
confluence, and yield in culture after passage nos. 1, 2, and 3. The medium was changed
every 2–3 days.

To select the optimal culture flasks suitable for MSC culture for clinical applications,
directly after the isolation described in Section 2.2, SVF cells were parallel seeded on the fol-
lowing Polystyrene Tissue Culture Flasks with Vented Caps manufactured by (1) Corning,
(2) Eppendorf (Hamburg, Germany), or (3) TPP (Techno Plastic Products AG, Trasadin-
gen, Switzerland) in the culture medium (selected based on the assessment described
above): αMEM supplemented with 10% human platelet lysate MultiPL’30 (both from
Macopharma), 2 IU/mL Heparinum WZF (Polfa S.A.), and 1% Penicillin-Streptomycin
solution (ThermoFisher Scientific).

The morphology of AT-MSCs was visualized during cell culture using an Olympus
IX81 microscope equipped with a MicroPublisher 3.3 RTV camera (Olympus). The yield of
the culture (presented as the total number of cells detached from 1 cm2 of growth area) was
evaluated using a ScepterTM 2.0 Cell Counter (Millipore, Merck) according to the procedure
described in Section 2.4. The viability of AT-MSCs was evaluated using the Trypan blue
exclusion method, as described in Section 2.4. AT-MSCs isolated from AT harvested from
three individual human donors were used to replicate the optimization of the cell culture.

2.6. Kinetics of AT-MSCs Growth

To assess the kinetics of the growth of AT-MSCs necessary for the estimation of the
timeline of the manufacturing process used for cell-based medicinal products, AT-MSCs
were seeded on cell culture flasks (Corning; selected during the evaluation described in
Section 2.5) at concentrations of 3000, 4000, 5000, or 6000 cells per 1 cm2. The morphology
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and confluence of AT-MSCs were evaluated at day 2, 3, and 4 post-cell seeding using an
Olympus IX81 microscope equipped with a MicroPublisher 3.3 RTV camera (Olympus).

2.7. Antigenic Phenotyping by Flow Cytometry

To confirm the identity of the isolated AT-MSCs in accordance with the minimal crite-
ria for defining multipotent MSCs published by the ISCT [3], the cells were re-suspended
in standard staining medium (αMEM supplemented with 2% human platelet lysate Mul-
tiPL’30 (both from Macopharma) and 2 IU/mL Heparinum WZF (Polfa S.A.)) and further
immunolabelled with the following monoclonal antibodies against the following human
antigens: anti-CD45 (PE, clone: HI30, Biolegend, San Diego, CA, USA), anti-CD14 (FITC,
clone: MϕP9, BD Bioscences, Franklin Lakes, NJ, USA), anti-CD19 (FITC, clone: HIB19,
BD Bioscences), anti-CD34 (PE, clone: 581, BD Bioscences), anti-CD31 (PE, clone: WM59),
anti-CD44 (PE, clone: BJ18, Biolegend), anti-CD73 (PE, clone: AD2, Biolegend), anti-CD90
(PE, clone: 5E10, Biolegend), anti-CD105 (PE, clone: 43A3, Biolegend), and anti-HLA-DR
(PE, clone: L243, Biolegend). For each analyzed antigen, appropriate isotype control was
used as follows: mouse IgG1 (FITC, clone: MOPC-21, BD Bioscences), mouse IgG1 (PE,
clone: MOPC-21, BD Bioscences), mouse IgG2a (PE, clone G155-178, BD Bioscences), and
mouse IgG2b (FITC, clone: 27-35, BD Bioscences). Staining was performed according to the
manufacturer’s protocols for 30 min at 4 ◦C. Cells were further washed with PBS w/o Ca2+,
Mg2+ (HyClone, GE Healthcare Life Sciences) and analyzed using an BD LSR Fortessa flow
cytometer and the FACS Diva software (Becton Dickinson, Franklin Lakes, NJ, USA).

2.8. Trilineage Differentiation of AT-MSCs

In the case of the osteogenic and adipogenic differentiation of AT-MSCs, 5.0 × 103 cells
or 1.0 × 104 cells, respectively, were seeded per 1 cm2 in complete cell culture medium
(αMEM supplemented with 10% human platelet lysate MultiPL’30 (both from Macopharma),
2 IU/mL Heparinum WZF (Polfa S.A.), and 1% Penicillin-Streptomycin solution (Ther-
moFisher Scientific)) and further cultured to obtain 60% of their confluence. Subsequently,
the culture medium was replaced with a complete StemPro Osteogenesis Differentiation
Kit or StemPro Adipogenesis Differentiation Kit (Gibco, ThermoFisher Scientific), stimulat-
ing osteogenic or adipogenic differentiation, respectively. The cultures were refed every
2–3 days.

To induce the chondrogenic differentiation of AT-MSCs, micromass cultures were
generated by seeding 5-µL droplets of cell suspension (1.6 × 107 viable cells/mL) and incu-
bating them for 1 h under high-humidity conditions; further micromasses were flooded
with complete culture medium αMEM supplemented with 10% human platelet lysate
MultiPL’30 (both from Macopharma), 2 IU/mL Heparinum WZF (Polfa S.A.), and 1%
Penicillin-Streptomycin solution (ThermoFisher Scientific). After 24 h, the medium was
changed for StemPro Chondrogenesis Differentiation Medium (Gibco, ThermoFisher Scien-
tific). The cultures were refed every 2–3 days.

Cells were examined for adipogenic differentiation at the 11th day of differentiation
of the culture by direct microscope observation to identify oil droplets characteristic of adi-
pogenesis. In the case of osteogenic and chondrogenic differentiation, cells were examined
at 14 or 21 days of culture, respectively, following histochemical staining to identify the
cell phenotype.

2.9. Chondrogenic Differentiation of AT-MSCs in Microenvironment Resembling Conditions in
Human Joints

As described previously, chondrogenic differentiation was performed by seeding
5-µL droplets of cell suspension (containing 1.6 × 107 viable cells/mL), which was fur-
ther incubated under high humidity (under safety cabinet) for 1 h. Next, after 24 h of
being cultured in αMEM medium supplemented with 10% human platelet lysate Mul-
tiPL’30 (both from Macopharma), 2 IU/mL Heparinum WZF (Polfa S.A.) and 1% Penicillin-
Streptomycin solution (ThermoFisher Scientific) were exchanged for StemPro Chondrogen-
esis Differentiation Medium (Gibco, ThermoFisher Scientific) or fresh standard cell culture
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medium (αMEM supplemented with 10% human platelet lysate MultiPL’30 (both from
Macopharma), 2 IU/mL Heparinum WZF (Polfa S.A.), and 1% Penicillin-Streptomycin
solution (ThermoFisher Scientific)). Cells were cultured in the AVATAR System (Xcellbio,
San Francisco, CA, USA), which allows one to mimic the microenvironment of the human
joints by tuning the oxygen and pressure levels. Cells were cultured in the following
conditions: (1) 1 PSI, 21% O2; (2) 1 PSI, 5% O2; (3) 2 PSI, 5% O2; or (4) 5 PSI, 5% O2. The
cultures were refed every 2–3 days.

2.10. Histochemical Staining

At the 14th or 21st day of chondrogenic or osteogenic differentiation, respectively,
the cells were washed with PBS (HyClone, GE Healthcare Life Sciences) and fixed with
4% paraformaldehyde (POCH, Avantor Performance Materials Poland) for 30 min at RT.
To evaluate the calcium phosphate deposition, which appears around cells differentiated
into osteoblasts, after fixation the cells were rinsed with distilled water, stained with 2%
Alizarin Red Solution (Millipore, Merck) for 2–3 min, and subsequently washed with PBS
(Hyclone, GE Healthcare Life Sciences). To visualize the sulfated proteoglycans, which
appear during chondrogenic differentiation, fixed cells were rinsed with PBS (HyClone, GE
Healthcare Life Sciences) and stained with Alcian-Blue Staining Solution (EMD Millipore,
Merck) for 30 min. Subsequently, the cells were rinsed three times with 0.1 N HCl (POCH,
Avantor Performance Materials Poland) and then distilled water was added to neutralize
the acidity. After histochemical staining, the cells were visualized using an Olympus IX81
microscope equipped with a MicroPublisher 3.3 RTV camera (Olympus).

2.11. Validation of Manufacturing Process of HE-ATMP

According to the established in-process quality controls and acceptance criteria for
manufacturing of HE-ATMP (Table 1), the validation of the manufacturing process of
HE-ATMP (containing AT-MSCs as an active substance) as previously described in the
internal standard operating procedures (SOPs), was conducted by properly trained lab
technicians in the GMP facility (Cell & Tissue Culture Laboratory, Jagiellonian Center of
Innovation in Krakow, Poland) to verify whether the final product (QCA are described in
Table 2) met the proposed acceptance criteria. The manufacturing process was conducted in
A and B air cleanliness classes (classified according to EN ISO 14644-1). During the whole
aseptic process, the maximum permitted airborne particle concentration was monitored.
Aseptic conditions during the validation process were monitored using methods such as
surface sampling, settle plates, and volumetric air samples according to defined GMP SOPs.
During the validation of the manufacturing process, the AT harvested from two individual
human donors was used to manufacture three independent batches of the final product.

2.12. Stability Study of HE-ATMP

AT-MSCs were passaged as described in Section 2.2 and further washed with PBS w/o
Ca2+, Mg2+ (ThermoFisher Scientific). Then, a single dose of the final product containing
10 × 106 AT-MSCs resuspended in a carrier solution containing Ringer lactate (Fresenius
Kabi, Bad Homburg, Germany) supplemented with 1.0% human albumin (CSL Behring,
King of Prussia, PA, USA) and 2.5% glucose (Fresenius Kabi) were transferred to the selected
container closure system (BD syringe with luer-lock tip; BD; closed with CombiStopper,
B.Braun) and stored at 2–8 ◦C. The viability of the AT-MSCs was measured every 3 h, as
described in Section 2.4 (implementation phase).

2.13. Sterility Testing

During the validation of the manufacturing process of HE-ATMP for each manufac-
tured batch, the sample of starting material and the sample of the final product underwent
sterility testing using a direct inoculation method according to Ph. Eur. 2.6.1. The sterility
tests were performed in the Polish Stem Cell Bank.
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2.14. Endotoxins’ Testing

During the validation of the manufacturing process of HE-ATMP for each manufac-
tured batch, the sample of the final product was tested using the LAL method to evaluate
the level of bacterial endotoxins according to the Ph. Eur. 2.6.14. The endotoxins’ tests
were performed in the Polish Stem Cell Bank.

2.15. Statistical Analysis

Data are represented as means ± standard deviations (SDs). Statistical analyses
were performed using an ANOVA with Tukey’s post hoc test. p < 0.05 was considered
statistically significant.

3. Results
3.1. SVF Cells Were Effectively Isolated from Adipose Tissue

The designed experimental layout aimed at the optimization of the manufacturing
process of HE-ATMP containing AT-MSCs as an active substance, which was divided into
the following stages: (1) isolation of stromal vascular fraction (SVF) cells, (2) culture of
AT-MSCs, and (3) termination of AT-MSC culture, and formulation of the final cell-based
product followed by quality control (QC) tests of the released final product (Figure 1). The
critical process parameters (CPP) were identified (Figure 1) and a number of experiments
were conducted to select the optimal experimental conditions.

Figure 1. Overview of the HE-ATMP manufacturing process. In the diagram, we marked parameters that were assessed
during the RD phase and the GMP phase (validation of the manufacturing process). (*) CPP: critical process parameters; (#)
stability study was conducted during the validation of the manufacturing process; QCA: quality control attributes.

In the first step of the isolation of SVF cells, lipoaspirate was washed with PBS
solution supplemented with antibiotics and antimycotic solution to remove red blood
cells (RBCs). It was shown that the washing of AT with PBS solution did not cause the
loss of a significant amount of adherent cells in both fractions (oil phase and PBS with
RBCs) removed from a tube containing AT following the washing stage (Figure 2a). At
9 d post-seeding in the oil phase and RBC pellet on culture flasks, we observed only a few
adherent cells per microscopic field (Figure 2a). This step may also allow us to remove
accidental contamination (e.g., with bacteria or fungi) to prevent the contamination of the
manufacturing environment.
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Figure 2. Optimization of the procedure of isolation of SVF cells from adipose tissue (AT). (a) Washing of AT with PBS
did not cause the loss of adherent cells of SFV. Representative images of a few cells isolated from PBS obtained after the
washing of AT 3 and 9 days post-seeding. PBS were centrifuged (300× g, 5 min, RT); the oil phase and, subsequently, pellet
containing RBCs and tissue sections were resuspended in complete culture medium (DMEM/F12 supplemented with 10%
FBS and 1% Penicillin-Streptomycin solution) and cultured for 9 days. (b) Examination of the suitability of selected collagenase
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concentrations for AT digestion. Yield of isolation is presented as the total number of SVF cells obtained per 1 g of
lipoaspirate. Viability of SVF cell is presented in the table. AT was incubated with A1, A2, or A3 concentrations of
collagenase for 40 min at 37 ◦C and, after a washing step, the number of cells isolated was counted. (c) Establishment of
primary culture for analyzed collagenase concentrations. SVF cells isolated from AT following digestion with A1, A2, or A3
collagenase concentrations were seeded on culture flasks in complete culture medium (DMEM/F12 supplemented with
10% FBS and 1% Penicillin-Streptomycin solution) and assessed by light microscopy at days 2, 4, and 8 (for A1, A2, A3
collagenase concentrations); day 5 (for A1 and A2 collagenase concentrations); or day 6 (for A3 collagenase concentration).
(d) Examination of the influence of an additional step of RBC lysis on the yield of the cell isolation and culture (presented
as the number of isolated cells or cells detached from 1 cm2 of cell growth area) directly after SVF isolation and two
consecutive passages. (e) Effect of RBCs’ lysis on SVF viability. Lysis of RBCs was conducted according to AP no. 1 or
2. (f) Morphology of adherent cells isolated using standard SVF isolation protocol and two alternative protocols (AP no.
1 or 2). Representative pictures were taken prior to the first passage. Scale bars: 50 µm. Results (b,d,e) are presented as
means ± SDs. n = 3 (biological replicates, corresponding to three individual human donors) and they were assessed by
an ANOVA model with Tukey’s post hoc test. The p values less than 0.05 (p < 0.05) were considered to be significant and
labeled by an asterisk p < 0.05 (*), p < 0.01 (**), p < 0.001 (***).

To select the optimal collagenase concentration suitable for effective AT digestion, the
yield of isolation of SVF cells was calculated as the number of SVF cells isolated from 1 g
of used lipoaspirate. The obtained results indicate that the greatest number of isolated
SVF cells (2.52 × 105 ± 0.34 × 105/1 g of lipoaspirate) were found after digestion with an
A3 collagenase concentration; subsequently, a slightly lower yield of SVF isolation was
observed for an A2 collagenase concentration (2.18 × 105 ± 0.05 × 105/1 g of lipoaspirate),
as presented in Figure 2b. We observed a statistically significant higher yield of SVF
isolation following AT digestion with an A3 collagenase concentration when compared
to digestion with an A1 collagenase concentration. Although no impact of the used
collagenase concentration on the viability of isolated SVF cells was detected (Figure 2b),
we observed the lowest cell growth rate of isolated adherent cells following digestion
with an A3 collagenase concentration, especially up to 5 d post SVF seeding. Interestingly,
extending the time of the enzymatic digestion from 40 to 60 min for three tested collagenase
concentrations did not result in increasing the yield of SVF isolation (Figure S1a), confirming
the total digestion of AT within 40 min. Importantly, the A2 collagenase concentration was
selected for further experiments.

Subsequently, the yields of the SVF isolation and AT-MSC culture for a standard SVF
isolation protocol (described in Section 2.2) were compared to the yield of the SVF isolation
and AT-MSC culture obtained following SVF isolation with alternative protocols of SVF
isolation (AP nos. 1 and 2, containing the step of red blood cells lysis; see Section 2.3).
The greatest number of isolated SVF cells which also exhibited the highest viability was
obtained for the standard SVF isolation protocol when compared to alternative protocols
AP nos. 1 and 2 (Figure 2d,e). AP no. 1 allowed us to isolate adherent cells that exhibited
an exponential increase in yield of culture (presented as the total number of cells detached
from 1 cm2 of cell growth area) over the course of time (Figure 2d) when compared to cells
obtained according to the AP no. 2 protocol.

Moreover, it was also shown that the cells isolated with the standard protocol exhib-
ited the greatest adherence capacity when compared with cells isolated with alternative
protocols AP nos. 1 and 2 (Figure 2f). Thus, the washing of AT with PBS solution represents
an efficient and safe step of RBC removal and the additional step of RBC lysis was not
included in the protocol of SVF isolation. To summarize, the stage of isolation of SVF cells
was successfully optimized.

3.2. AT-MSCs Were Efficiently Cultured in In Vitro Conditions in Accordance with
GMP Requirements

After the standardization of the SVF isolation protocol, AT-MSCs’ culture optimization
was subsequently conducted. Firstly, the effect of the culture media on the AT-MSC
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morphology and growth kinetics was examined. All tested media (Medium A, Medium
B, and Medium C) were animal component-free and designated for MSC culture for
clinical applications. Our results indicated that the isolated adherent fraction of SVF cells
represented spindle-shaped elongated cells possessing a fibroblast-like morphology in
all the tested media (Figure 3a). The AT-MSCs cultured in Medium A and Medium C
demonstrated a comparably high yield of cell growth (presented as the number of cells
detached from 1 cm2 of cell growth area) over the consecutive three passages, whereas
the yield of the cell culture in Medium B was the lowest, especially after the second and
third passages. Thus, Medium A was selected for further AT-MSC culturing. Finally, we
compared the confluence and number of AT-MSCs obtained in culture flasks (75 cm2)
produced by three different manufacturers. The number of cells obtained from the three
compared flasks delivered by the different vendors was comparable over the consecutive
three passages (Figure S1b). Thus, all the tested culture flasks may be used for the culture
of MSCs. However, during the selection of the most prominent flasks, it is also necessary
to compare the certificates of analysis (CoA) delivered by manufacturers.

Figure 3. Optimization of the culture conditions of AT-MSCs. (a) Selection of the optimal medium
for AT-MSC culture. Morphology of the AT-MSCs cultured in the following culture media: Medium
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A, Medium B, and Medium C. Efficiency of the AT-MSC culture in tested media presented as the
number of cells detached from 1 cm2 of the growth area at passages nos. 1, 2, and 3. (b) Analysis
of cell viability from the isolation to the third passage. (c) Analysis of the number of AT-MSCs
obtained in three consecutive passages. (d) Kinetics of the growth of AT-MSCs seeded on cell culture
flasks at concentrations equal to 3000, 4000, 5000, or 6000 cells per 1 cm2 at days 2, 3, and 4 post-cell
seeding by light microscopy. Scale bars: 50 µm. Results (a–c) are presented as means ± SD. N = 3
(biological replicates, corresponding to three individual human donors), and they were assessed by
an ANOVA model with Tukey’s post hoc test. The p values less than 0.05 (p < 0.05) were considered
to be significant; p < 0.05 (*), p < 0.01 (**), (*), p < 0.001 (***), p < 0.0001 (****).

To determine the timeline of the HE-ATMP manufacture and confirm the in-process
QC limits, we analyzed (1) the AT-MSC viability, (2) the yield of the AT-MSC culture, and
(3) the confluence of the AT-MSCs depending on the cell seeding density at consecutive
days of culture. The viability results confirmed that the AT-MSCs cultured in Medium A
on passages 1–3 exhibited a viability of over 85% (Figure 3b). This result was above our ac-
cepted lower QC limit, which was ≥70% (Table 1). The number of AT-MSCs detached from
1 cm2 of cell growth area was comparable between three consecutive passages (Figure 3c).
The analysis of the cell seeding density showed that AT-MSCs reached a 90% confluence
at day 3 when seeded at a density of 6 × 103/1 cm2 or at day 4 when seeded at a lower
density equal to 4 × 103/1 cm2 (Figure 3d). Such analysis allowed lab technicians working
in the GMP facility to design a timeline of the manufacturing process to release the final
product at the established day of the product application. Taken together, Medium A was
selected for further AT-MSC culture. Importantly, AT-MSCs growing in such medium
exhibited a proper morphology and proliferation rate and it was possible to manufacture a
few doses of the final product from one starting material (AT).

Table 1. In-process quality controls and acceptance criteria for the manufacturing of HE-ATMP. During the manufacturing
process, we distinguished the following CPPs: the isolation of SVF cells, the culture of AT-MSCs, and the formulation of the
final product.

Stage I: Isolation of SVF Cells

Parameter Correct Result Incorrect Result Method

(1) Cell number Presence of SVF cells
(successful isolation)

Lack of SVF cells
(unsuccessful isolation)

Propidium iodide staining
method combined with
advanced image analysis
(ADAM-MCTM automated
cell counter)

(2) Cell viability
≥60%→ seeding SVF cells at
a density
5000–11,000 cells/cm2

<60%→ decrease in seeding
growth area

Propidium iodide staining
method combined with
advanced image analysis
(ADAM-MCTM automated
cell counter)

(3) Sterility of the starting
material Sterile→ culture of cells Non-sterile→ utilization of

cell culture
Direct inoculation
(BD Bactec FX400 system)

Stage II: Culture of AT-MSCs

Parameter Correct Result Incorrect Result Method

(1) Potential signs of infection
of cell culture

Orange or red-raspberry clear
culture medium→ culture of
cells

Yellow and/or turbid culture
medium→ evaluation of cell
morphology

Macroscopic observation,
light microscopy
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Table 1. Cont.

Stage II: Culture of AT-MSCs

Parameter Correct Result Incorrect Result Method

(2) Cell
morphology

Characteristic for MSCs
(spindle-shaped, elongated
cells possessing fibroblast-like
morphology)

Morphology different than
characteristic for MSCs→
utilization of cell culture

Light microscopy

(3) Confluence of cells ≥60%→ passage of AT-MSCs
<60%→ further cell culture

<10%→ evaluation of
presence of self-detached cells Light microscopy

(4) Presence of self-detached
cells (qualitative assessment) Lack of self-detached cells

Presence of a high amount of
self-detached cells→
utilization of cell culture

Light microscopy

(5) Cell number

At least 2× higher than
number of seeding cells→
continuation of
manufacturing process

Less than 2× higher than
number of seeding cells→
utilization of cells

Propidium iodide staining
method combined with
advanced image analysis
(ADAM-MCTM automated
cell counter)

(6) Cell viability ≥70%→ continuation of the
manufacturing process

<70%→ utilization of cell
culture

Propidium iodide staining
method combined with
advanced image analysis
(ADAM-MCTM automated
cell counter)

Stage III: Termination of AT-MSCs Culture and Formulation of the Final Product

Parameter Correct Result Incorrect Result Method

Parameters (1)–(4) from Stage II: Culture of AT-MSCs

Cell number 12 × 106 viable cells >12 × 106 viable cells→ the
final product is not released

Propidium iodide staining
method combined with
advanced image analysis
(ADAM-MCTM automated
cell counter)

Cell viability ≥70%→ preparation of the
final product

<70%→ the final product is
not released

Propidium iodide staining
method combined with
advanced image analysis
(ADAM-MCTM automated
cell counter)

Conduction of the tests listed in the specification of HE-ATMP.

3.3. The Identity of Isolated AT-MSCs Was Confirmed According to ISCT Recommendations

We found that AT-MSCs exhibited adhesion to the polystyrene surfaces of cell culture
flasks when maintained in standard culture conditions in vitro. AT-MSCs are spindled-
shaped cells that are fibroblast-like in morphology (Figure 4a). To confirm the mesodermal
origin of AT-MSCs, an analysis of their trilineage differentiation potential was conducted.
For such purpose, AT-MSCs were differentiated into chondroblasts or osteoblasts for 14 or
21 days, respectively, whereas AT-MSCs were differentiated into adipocytes for 11 days in
tissue-specific differentiation media. We found that AT-MSCs exhibited trilineage differen-
tiation potential (as shown in Figure 4b), which also confirmed their MSC phenotype, as
defined by the minimal criteria recommended by the ISCT [3]. By using a flow cytometry
platform, we subsequently demonstrated that our population of isolated adipose tissue-
derived cells exhibited a high expression of MSC-specific markers such as CD44, CD73,
CD90, and CD105 and did not express markers of hematopoietic cells such as CD45, CD14,
CD19, and CD34; endothelial cell-specific marker CD31; or HLA-DR antigen (Figure 4c).
Thus, based on the observed ability to adhere to plastic surfaces, the trilineage differenti-
ation potential, and the characteristic antigenic profile, we confirmed the identity of the
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isolated adipose tissue-derived cells previously described as AT-MSCs, representing a
subpopulation of MSCs.

Figure 4. Characterization of AT-MSCs according to the criteria defining multipotent MSCs proposed by the International
Society for Cellular Therapy and their chondrogenic potential. (a) Representative images of the morphology of AT-MSCs
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at passage 4 by light microscopy. (b) Trilineage differentiation potential of AT-MSCs. Representative images of AT-MSCs
differentiated into osteoblasts, chondroblasts, and adipocytes. AT-MSCs were cultured using a StemPro Osteogenesis
Differentiation Kit (for 21 days), StemPro Chondrogenesis Differentiation Kit (for 14 days), or StemPro Adipogenesis
Differentiation Kit (for 11 days). Post differentiation, AT-MSCs were fixed with paraformaldehyde and stained with Alizarin
Red S (red staining of deposits of calcium phosphate characteristic for osteogenic differentiation) or Alcian Blue (blue
staining of sulfated proteoglycans characteristic for chondrogenic differentiation), whereas oil droplets characteristic for
adipogenic differentiation were shown in unfixed and unstained AT-MSCs. Scale bars: 50 µm. (c) Antigenic profile of
AT-MSCs by flow cytometry. Representative histograms of the expression of MSC-negative markers (CD19, CD14, D45,
CD34, CD31), MSC-positive markers (CD44, CD73, CD90, CD105), and HLA-DR antigens on viable (7-AAD−) AT-MSCs.
(d) Chondrogenic differentiation potential of AT-MSCs in a microenvironment resembling the conditions in human joints.
Representative images of AT-MSCs cultured using the StemPro Chondrogenesis Differentiation Kit or standard cell culture
medium (Control) in a hypoxic (5% O2) or normoxic (21% O2) environment parallel exposed to normal (1 PSI) or high (2 or
5 PSI) pressure in the Avantar System. At 7, 14, and 21 days, AT-MSCs were fixed with paraformaldehyde and stained with
Alcian Blue. Scale bars: 50 µm.

Subsequently, to evaluate whether the microenvironment mimicking the conditions
in the human joints impacted on the chondrogenic potential of AT-MSCs, AT-MSCs were
cultured in the AVATAR system. The obtained results indicated that the AT-MSC culture
conditions, particularly under a high pressure of 2 PSI and 5 PSI in hypoxia in culture
medium dedicated to chondrogenic differentiation (StemPro Chondrocyte Differentiation
Kit), affected changes in cellular morphology. High pressure (2 PSI and 5 PSI) and hypoxia
impact on the aggregation of cells, which start to form micromasses characteristic of
chondrogenic differentiation in vitro. Furthermore, the AT-MSCs cultured in chondrogenic
differentiation medium under a high pressure formed the largest and the most solid
micromasses compared to the control conditions (cells cultured in standard culture medium
aMEM supplemented with 2% human platelet lysate MultiPL’30). Representative images
after 7, 14, and 21 days of AT-MSC culture are presented in Figure 4d.

3.4. Validation of Manufacturing Process of HE-ATMP

Based on the results obtained, firstly, we defined in-process QC tests including accep-
tance criteria and subsequently prepared the standard operating procedures (SOPs) for
the manufacturing of HE-ATMP containing AT-MSCs as an active substance. The defined
QC parameters are presented in Table 1. The manufacturing process was divided into the
following stages: (1) isolation of SVF cells; (2) culture of AT-MSCs; and (3) termination of
AT-MSCs culture and formulation of the final product. The parameters examined during
the stage of SVF cell isolation (stage I) include the cell number (number of isolated SVF
cells), their viability, and the sterility of the starting material. During the stage of culture of
AT-MSCs as the adherent fraction of SVF (stage II) as well as the termination of the AT-MSC
culture (stage III), we identified the following parameters of QC: the presence of signs of
potential infection of cell culture, cell morphology and confluence, the presence of self-
detached cells, cell number, and cell viability. Moreover, we also defined the specification
of the final product (containing QCA), which is presented in Table 2.

Based on the defined QC tests, the designed specification of the final product, and
the prepared SOPs containing protocols for the isolation and culture of AT-MSCs, the
validation of the manufacturing process of HE-ATMP was conducted in the GMP facility.
The obtained batch analysis data for validation series are presented in Table 3. The obtained
results confirmed that the manufactured cell-based products met all the criteria listed in
the specification (Table 2).
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Table 2. Quality specification of the HE-ATMP. The parameters included in the table are the QCA of the final
cell-based product.

Specification of the HE-ATMP

Parameter Limit or Range Method Additional Information

(1) Cell morphology

Characteristic for MSCs
(spindle-shaped, elongated
cells possessing fibroblast-like
morphology)

Light microscopy Parameter tested before the last
passage

(2) Endotoxins <2.5 UI/mL LAL method
(Endosafe®-PTS™ system)

Parameter tested before the last
passage; the product is released
before completion of the test

(3) Sterility of the final
product Sterile Direct inoculation

(BD Bactec FX400 system)

Sample is collected at the last
passage and after the final
product formulation; because of
the short life-time of the
product, the product is released
before completion of the test

(4) Cell number per dose 10 × 106 viable cells

Propidium iodide staining
method combined with
advanced image analysis
(ADAM-MCTM automated
cell counter)

Parameter tested after the last
passage

(5) Cell viability ≥70%

Propidium iodide staining
method combined with
advanced image analysis
(ADAM-MCTM automated
cell counter)

Parameter tested after the last
passage

Table 3. Batch analysis for three validation series of HE-ATMP.

Validation of Manufacturing Process of HE-ATMP

Parameter Limit or Range Results

(1) Cell morphology
Characteristic for MSCs
(spindle-shaped, elongated cells
possessing fibroblast-like morphology)

Batch no. 1: Correct
Batch no. 2: Correct
Batch no. 3: Correct

(2) Endotoxins <2.5 UI/mL
Batch no. 1: Correct
Batch no. 2: Correct
Batch no. 3: Correct

(3) Sterility of the final
product Sterile

Batch no. 1: Sterile
Batch no. 2: Sterile
Batch no. 3: Sterile

(4) Cell number per dose 10 × 106 viable cells

Batch no. 1: 10 × 106

viable cells
Batch no. 2: 10 × 106

viable cells
Batch no. 3: 10 × 106

viable cells

(5) Cell viability ≥70%
Batch no. 1: 98%
Batch no. 2: 96%
Batch no. 3: 98%

Moreover, the stability of the final product packed in the container closure system
and subsequently stored at 2–8 ◦C was analyzed. We confirmed a high viability (>90%) of
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AT-MSCs up to 24 h after the final product formulation (Figure 5a) at the temperature of
2–8 ◦C (Figure 5b).

Figure 5. Stability of AT-MSCs solution. (a) Viability of AT-MSCs post-product formulation. A total of 10 × 106 AT-MSCs
were resuspended in carrier solution, transferred into container closure system, and stored at 2–8 ◦C. Viability of AT-MSCs
was measured every 3 h up to 24 h post-product formulation by an automated cell counter ADAM. (b) Storage temperature
of AT-MSC solution during the stability test. Results are presented as means ± SDs, n = 3 (independent validation batches).

4. Discussion

According to the European Medicines Agency (EMA) regulatory framework, “ad-
vanced therapy medicinal products (ATMPs) are medicines for human use that are based
on genes, tissues or cells” providing “groundbreaking new opportunities for the treatment
of disease and injury”. Within types of ATMPs, we can distinguish, among others, tissue-
engineered medicines, which “contain cells or tissues that have been modified so they can
be used to repair, regenerate or replace human tissue” (https://www.ema.europa.eu). Due
to the excellent biological properties of MSCs, including their wide differentiation potential,
paracrine activity, and immunomodulatory potential, MSCs represent an ideal candidate
for medicinal products for the treatment of tissue injury [8]. Thus, the major goal of the
current study was to optimize the protocols for the processing and ex vivo expansion of
AT-MSCs for the development of ATMPs for use in humans.

By employing a process approach, we designed protocols for the isolation and ex vivo
expansion of AT-MSCs according to GMP requirements and applicable legal regulations.
Subsequently, we conducted the optimization of the isolation and culture of AT-MSCs and
transferred the developed methods from the RD laboratory to the manufacturing site (GMP
facility). The whole process of isolation and ex vivo expansion of AT-MSCs was divided
into the following stages: release of the starting material (AT) to the manufacturing process,
processing of AT to isolate of SVF cells, expansion of AT-MSCs, and the termination of the
culture and formulation of the final product (HE-ATMP).

First, in collaboration with a surgeon who performs liposuction procedures, we
established a method for the collection of AT that will ensure the sterility of the harvested
biological material and will not reduce the viability of cells by applying a high negative
pressure during the tissue collection. Next, we prepared sets dedicated for the collection
and transport of AT. ATs were transported at the temperature of 2–8 ◦C, which allowed us
to maintain the optimal tissue quality for the isolation of SVF cells and the expansion of
AT-MSCs [34].

At the beginning of the AT processing, lipoaspirate was washed with PBS supple-
mented with a mixture of antibiotics and antimitotic solution to remove RBCs and any
accidental contamination (to protect the manufacturing environment from bacterial/fungal
contamination). In our study, RBCs were, in large part, removed following AT washing
with PBS. The additional step of the removal of RBCs with lysing buffer (ZAPR™ Red
Blood Cell Lysing Buffer) allowed us to remove the remaining RBCs but also decreased the

https://www.ema.europa.eu
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viability of the SVF cells and their adherence to plastic culture surfaces, as well as the yield
of the isolation of SVF and further AT-MSCs. It has been shown by other investigators
that the use of lysing buffer may decrease the rate of proliferation of AT-MSCs [35]. To
ensure the high biological potential of AT-MSCs, we resigned from the additional step of
RBCs’ lysis. Subsequently, we confirmed that the A2 collagenase concentration (during a
40-min digestion) enabled the effective isolation of SVF cells to maintain their high viability.
Collagenase-based AT digestion was shown to be the most effective in terms of cell recovery
when compared to the mechanical isolation of SVF cells [36]. AT-derived SCs, including
MSCs, tend to be localized in these perivascular niches [37]. In the case of mechanical
methods of isolation, the disruption of the extracellular matrix was significantly reduced
compared to enzymatic methods, resulting in many of the desired cells being left in larger
tissue fragments, which were subsequently discarded [38].

During the next stage, we selected the following optimal cell culture medium: basal
medium αMEM supplemented with human platelet lysate MultiPL’30 (PL) dedicated to
the culture of MSCs for clinical application. It was shown that PL increases the doubling
of the human BM-MSC population (from passages 1 to 3) and that the cells are more
spindle shaped, are more elongated, and have denser cell bodies than MSCs from FBS-
supplemented cultures. Moreover, PL does not affect the BM-MSC immunophenotype,
trilineage differentiation potential, immunomodulatory properties, relate telomere length,
or chromosomal stability when compared to FBS-supplemented cultures [39,40]. During
the selection of manufacturer of PL, it is necessary to verify the quality specification of
the PL according to the aspects presented by Oeller et al. [41]. Although on the market
there are a few chemically defined media [42] and some of them were tested during our
optimization research, we did not select one of them for use in our manufacturing process
to simplify work (minimize the amount of manipulation it was necessary to conduct) in
the cleanroom and to slightly reduce the manufacturing costs. To ensure the high quality
of AT-MSCs, as the active substance of HE-ATMP, we conducted numerous cell seeding
density assays to design a timeline of the manufacturing process. This approach will allow
us to release the final product at an established day of the medicinal product application.

The identity of the AT-derived cells isolated as MSCs was confirmed according to the
ISCT recommendations [3]. Moreover, we also confirmed the capacity of the AT-MSCs
to differentiate into chondroblasts/chondrocytes in the microenvironment mimicking the
conditions in human joints, which confirmed the intended use of the designed HE-ATMP
product. Importantly, this particular product optimized in this study was designed for
applications in cartilage and bone injuries. However, it should always be considered that,
depending on the desired use of MSCs in distinct tissue injury treatments, such proto-
cols would need to be set up and specifically optimized to obtain MSCs with the most
optimal biological properties and therapeutic potential. This should be considered espe-
cially in the context of the immunomodulatory properties of MSCs cultured in different
microenvironments. Although native MSCs predominantly exhibit anti-inflammatory
properties [8–10], it has been shown that, in the presence of pro-inflammatory cytokines,
they may accommodate pro-inflammatory features [43]. This phenomenon may depend
on their microenvironment. For example, MSCs induced with low IFN-γ concentrations
adopt a pro-inflammatory phenotype and lead to the activation of naive CD4+ T cells
and the induction of CD8+ T cells in vitro and in vivo, while high IFN-γ levels downreg-
ulate HLA-DR expression in MSCs [43]. An increased expression of HLA-I antigens in
IFN-γ-treated MSCs has also been shown; however, their surface expression was further
downregulated via endocytosis. This phenomenon, called the “plasticity of MSCs”, relies
on regulating the surface expression of HLA-I antigens to allow them to elicit a weaker
immune response [15]. Moreover, Waterman et al. demonstrated that MSCs primed with
the TLR4 agonist (e.g., lipopolysaccharide) adopted a pro-inflammatory phenotype, and
they produced mediators able to induce T lymphocyte activation [44]. In contrast, MSCs
primed with the TLR3 agonist (e.g., poly(I:C)) adopted an immunosuppressive phenotype
expressing factors known to play a key role in the T cell-inhibiting effects of MSCs [44].
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Interestingly, Lombardo et al. demonstrated that the activation of TLRs 2, 3, 4, and 9 on
human AT-MSCs induced molecules in the nuclear factor κB (NF-κβ) pathway, result-
ing in the better engraftment and survival of these cells in inflammatory conditions or
injured tissues [45]. In such circumstances, MSCs may accommodate pro-inflammatory or
anti-inflammatory phenotypes, which needs to be carefully considered when these cells
are propagated for clinical applications. Thus, the process of the optimal isolation and
culturing is required prior to the preparation of MSC-based medicinal product for specific
use in humans [16], depending on the tissue and the type of injury.

Based on the results obtained during RD studies, in-process QCs and acceptance
criteria for the manufacturing of HE-ATMP were established. During the first stage of
manufacturing, the following parameters were verified: sterility of starting material (AT)
and number and viability of isolated SVF cells. During the second and third stages, we
verified the presence of any signs of potential infection of cell culture, cell morphology
and confluence, the presence of self-detached cells, the cell number, and the cell viability.
Importantly, in the specification of the final product, HE-ATMP, we included the following
QCA: cell morphology, endotoxins, cell number per dose, cell viability, and the sterility
of the final product. In our study, HE-ATMP was designed and the validation of the
manufacturing process was conducted to prepare the manufacturing site and manufacture
the prototype of the further AMTP product to be tested during the clinical trials planned in
the project. However, the number of tests necessary to conduct for a product for clinical
trial (Advanced Therapy Investigational Medicinal Product, ATIMP) is much greater than
that for HE-ATMP, as described by Le Chanteur et al. [46].

Besides the optimization of the processing and ex vivo expansion of AT-MSCs, we
also prepared the protocols for the formulation of the final product and selected the carrier
solution for these cells. Subsequently, during a stability study we confirmed the high
viability of the AT-MSC solution packed in the container closure system up to 24 h post-
product formulation. This assay allowed us to estimate the expiration date of the product
(24 h). In the case of a cell-based medicinal product, the viability of cells represents a major
parameter that influences the outcomes of patients after the administration of the medicinal
product. During the formulation of the final product, AT-MSCs were resuspended in a
carrier solution containing, among other things, human serum albumin (HSA) acting as a
rich nutrient source ensuring the high viability of AT-MSCs. It has been shown that MSCs
resuspended in Ringer solution supplemented with 1% HSA exhibit a high viability up
24 h post-product formulation. Similar results were observed for AT-MSCs resuspended in
Ringer lactate or Hypo Thermosol when compared to AT-MSCs resuspended in only 0.9%
NaCl. Thus, the type of carrier solution used represents an important factor that influences
the maintenance of stability of MSC-based medicinal products [47]. In our approach,
AT-MSCs do not undergo a cryopreservation procedure (except for the preparation of
reference samples of the final product) in relation to other investigators, who added a
cryopreservation step to the manufacturing procedure, as summarized by Mazini et al. [48].

In the manufacturing site, the validation of the manufacturing process of HE-ATMP
containing AT-MSCs as an active substance was successfully conducted. The three man-
ufactured validation batches fulfilled the release criteria included in the specification of
the final product (HE-ATMP), confirming the good preparation of the SOPs throughout
the whole manufacturing process. The exemplary SOPs for the isolation and culture of
AT-MSCs from fat pads in the GMP facility were presented by Aghayan et al. [49]. To
ensure the standardization of the manufacturing process of ATMP, some investigators have
introduced automatic closed systems, such as the CliniMACS Prodigy Adherent Cell Cul-
ture System [50]. This solution may be effectively used for the large-scale manufacturing of
MSCs, e.g., in the case of allogenic applications. In the case of autologous application, the
manufacture of HE-ATMPs in open systems represents a less cost-effective approach.

To summarize, in the current study we presented a process approach leading to the
optimization of the processing and ex vivo expansion of AT-MSCs. We identified CPPs
and conducted multiple experiments to propose the optimal mode of action during the
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manufacturing process of cell-based medicinal products. Moreover, we defined in-process
QCs and their acceptance criteria. To ensure the high quality and safety standards of cell-
based medicinal products for clinical use, the manufacturing process must be accomplished
in certified facilities following SOPs. The designed manufacturing process of HE-ATMP,
which served as a prototype of an ATMP product in the clinical trial, was successfully
validated in the manufacturing site.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10081908/s1: Figure S1: Optimization of isolation and culture of AT-MSCs.
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