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High expression of ETS2 predicts poor 
prognosis in acute myeloid leukemia and may 
guide treatment decisions
Lin Fu1,2,3†, Huaping Fu4†, Qingyun Wu2†, Yifan Pang5, Keman Xu6, Lei Zhou7, Jianlin Qiao2, Xiaoyan Ke1*, 
Kailin Xu2* and Jinlong Shi3,8,9*

Abstract 

Background:  ETS2 is a downstream effector of the RAS/RAF/ERK pathway, which plays a critical role in the develop-
ment of malignant tumor. However, the clinical impact of ETS2 expression in AML remains unknown. 

Methods:  In this study, we evaluated the prognostic significance of ETS2 expression using two relatively large 
cohorts of AML patients.

Results:  In the first cohort, compared to low expression of ETS2 (ETS2low), high expression of ETS2 (ETS2high) showed 
significant shorter OS, EFS and RFS in the current treatments including the allogeneic HCT group (n = 72) and the 
chemotherapy group (n = 100). Notably, among ETS2high patients, those received allogeneic HCT had longer OS, 
EFS and RFS than those with chemotherapy alone (allogeneic HCT, n = 39 vs. chemotherapy, n = 47), but treatment 
modules play insignificant role in the survival of ETS2low patients (allogeneic HCT, n = 33 vs. chemotherapy, n = 53). 
Moreover, gene/microRNA expression data provides insights into the biological changes associated with varying ETS2 
expression levels in AML. The prognostic value of ETS2 was further validated in the second AML cohort (n = 329).

Conclusions:  Our results indicate that ETS2high is a poor prognostic factor in AML and may guide treatment decisions 
towards allogeneic HCT.
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Background
Acute myeloid leukemia (AML) represents a group of 
myeloid malignancies with remarkably heterogeneous 
outcomes [1]. Finding effective prognostic biomark-
ers has been one of the most urgent clinical needs and 
research hotspots. So far, a few prognosticators have 
been established, including mutations in NPM1 and dou-
ble CEBPA that are associated with favourable outcomes; 

whereas FLT3-ITD is associated with poor prognosis. 
High expression levels of WT1 [2], miR-155 [3, 4], ERG 
[5, 6], BAALC [6], and MN1 [7] have also been shown to 
be poor prognostic factors in AML.

V-ets avian erythroblastosis virus E26 oncogene 
homolog 2 (ETS2), a downstream target for both the Ras/
Raf/MAP kinase and phosphatidylinositol 3-kinase/Akt 
pathways. ETS2 is one of the founder members of the E26 
transformation-specific (ETS) family located on human 
chromosome 21 [8]. ERG, one of the classic prognostic 
markers in AML, also belongs to the ETS family. ETS2 
and ERG had been shown to be overexpressed in AML 
patients with complex karyotypes involving chromosome 
21 [9]. Although ETS2 was initially characterized as a 
proto-oncogene acute megakaryocytic leukemia (AMKL) 
[10], however, the clinical impact of ETS2 expression in 
AML remains unknown.
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In recent years, many studies suggest that ETS2 exhibit 
both tumor-promoting and tumor-suppressive effects in 
malignancies. For example, ETS2 has been found to be an 
oncogene in patients with AML [11], but it also has tumor-
suppressive effects in non-small cell lung cancer [12]. Here, 
we demonstrate ETS2high as an adverse prognostic bio-
marker for AML based on analysis of two separate data-
sets and indicate ETS2high may guide treatment decisions 
towards allogeneic HCT; we also explore the distinctive 
gene/microRNA patterns associated with ETS2 expression.

Methods
Patients
The first cohort was derived from The Cancer Genome 
Atlas (TCGA) dataset, including 200 clinically annotated 
adult de novo AML samples [13]. In this cohort, RNA 
sequencing for 179 samples and microRNA sequencing 
for 194 samples had been previously reported. Detailed 
descriptions of clinical and molecular characteristics 
were also provided. All these data were publicly accessi-
ble from the TCGA website. The study was approved by 
the human studies committee at Washington University 
with written informed consent obtained from all patients.

The second cohort was derived from a whole AML 
cohort (n  =  329) diagnosed and collected at Erasmus 
University Medical Center (Rotterdam) between 1990 
and 2008, approved by the institutional review boards 
at Weill Cornell Medical College and Erasmus Univer-
sity Center, and all subjects provided written informed 
consent in accordance with the Declaration of Helsinki. 
Microarray expression profiles were obtained by Affym-
etrix Human Genome 133 plus 2.0 and U133A Gene Chips 
from GSE6891 data. All experiments’ design, quality con-
trol and data normalization were in line with the standard 
Affymetrix protocols. All clinical, cytogenetic and molecu-
lar information as well as microarray data of these patients 
were publicly accessible at the Gene Expression Omnibus 
(GSE6891, http://www.ncbi.nlm.nih.gov/geo) [14]. All 
patients were uniformly treated under the study protocols 
of Dutch-Belgian Cooperative Trial Group for Hematology 
Oncology (HOVON, details of therapeutic protocol avail-
able at http://www.hovon.nl).

Statistical analyses
OS was defined as the time from the date of diagnosis to 
death due to any cause. EFS was defined as the time from 
the date of diagnosis to removal from the study due to the 
absence of complete remission, relapse or death. RFS was 
defined as the time from the date of diagnosis to removal 
from the study due to relapse.

Patients with higher than median ETS2 expression val-
ues of all patients were classified as ETS2high, and those 
with lower than median expression values were classified 

as ETS2low. To investigate the associations between ETS2 
expression levels and clinical, molecular characteristics, 
the Fisher exact and Wilcoxon rank-sum tests were used 
for hypothesis testing with categorical and continuous 
variables, respectively. The associations between ETS2 
expression and the OS, EFS and RFS were analyzed by the 
Kaplan–Meier method and the log-rank test. Multivariate 
Cox proportional hazard models were employed to study 
the associations between ETS2 expression levels and OS, 
EFS and RFS in the presence of other known risk factors. 
Student’s t test and multiple hypothesis correction (False 
Discovery Rate, FDR) was used to identify different gene/
microRNA between ETS2high and ETS2low groups. The 
statistical cutoff values were an absolute fold-change (FC) 
≥1.5 and an adjusted P value ≤0.05. All analyses were 
performed by the R 3.1.1 software packages.

Results
Expression of ETS2 in AML patients and normal controls
A microarray dataset of bone marrow (BM) samples was 
used for differential expression analysis, including 30 
AML BM and 17 normal BM (NBM) samples (GSE37307, 
http://www.ncbi.nlm.nih.gov/geo), and 62 AML BM and 
42 NBM samples (GSE63270, http://www.ncbi.nlm.nih.
gov/geo). Higher expression of ETS2 was shown sig-
nificantly in AML BM than NBM (P = 0.01, Fig. 1a and 
P = 0.05, Fig. 1b).

Relative expression of ETS2 in different National 
Comprehensive Cancer Network (NCCN) risk subgroups
In the first cohort, ETS2 showed averagely higher expres-
sion in the NCCN poor- and intermediate-risk patients 
than that in the good-risk group (good vs. intermediate 
P =  0, intermediate vs. poor P =  0.0181, and good vs. 
poor P = 0, respectively; Fig. 1c).

Associations between ETS2 expression and other classic 
prognostic biomarkers in AML
The first cohort were further divided into subgroups by 
the presence of FLT3-ITD and mutation status of NPM1 
and CEBPA. Levels of ETS2 expression were compared 
among different subgroups. ETS2 showed significantly 
higher expression in samples with FLT3-ITD compared 
than samples without FLT3-ITD (P = 0.006, Fig. 1d). No 
significant differences were revealed between NPM1-
mutated and wild-type samples (P = 0.0657) or between 
CEBPA-mutated and wild-type samples (P  =  0.2977, 
Fig. 1d).

Differences in clinical and molecular characteristics 
between ETS2high and ETS2low groups
In the first cohort, ETS2high patients were more likely to 
be ≥60-year-old, and had higher WBC count, higher 

http://www.ncbi.nlm.nih.gov/geo
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peripheral blood blasts, more diagnosed with M0, M1, 
M3, or M5 FAB subtypes, and more FLT3-ITD and TP53 
mutation (P  =  0.004, P  =  0.05, P  =  0.01, P  =  0.001, 
P = 0.005, P < 0.001, P = 0.04, P = 0.01, P = 0.016, respec-
tively) comparing with ETS2low patients. No other asso-
ciations between ETS2 expression and other mutations 
were found. Additionally, ETS2high patients with AML 
were more likely to have a higher expression of MN1, 
miR155HG and WT1 than ETS2low patients (P  =  0.04, 
P < 0.001, and P = 0.009, respectively). See Table 1.

ETS2high was associated with adverse outcomes
ETS2high patients had markedly shorter OS (Fig.  2a, 
P  =  2e−6), EFS (Fig.  2b, P  =  1e−6) and RFS (Fig.  2c, 
P = 3.8e−5) comparing with ETS2low patients. Associations 
between ETS2 expression and prognostic significance 
within the allogeneic HCT group and chemotherapy group 
were also separately analyzed. Within the allogeneic HCT 

group (n =  72), significant differences were observed in 
OS (Fig. 2d, P < 0.001), EFS (Fig. 2e, P = 0.002) and RFS 
(Fig.  2f, P  =  0.012) between the ETS2high and ETS2low 
patients. In the chemotherapy group (n =  99), ETS2high 
patients had significantly shorter OS (Fig. 2d, P < 0.001), 
EFS (Fig. 2e, P < 0.001) and RFS (Fig. 2f, P = 0.002) than 
ETS2low patients. Moreover, ETS2high patients who 
received allogeneic HCT had significantly longer OS 
and EFS than chemotherapy-only (OS, P  <  0.002; EFS, 
P = 0.029, respectively), whereas treatment modules play 
insignificant role in the survival of ETS2low patients (allo-
geneic HCT vs. chemotherapy-only; OS, P = 0.067; EFS, 
P = 0.774; RFS, P = 0.148, respectively).

ETS2 expression was associated with shorter OS, EFS 
and RFS in multivariate analyses
To adjust for the impact of known clinical and molecu-
lar risk factors, we performed multivariate analyses to 
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Fig. 1  Differences in the expression of ETS2 in AML. a AML-BM cases (n = 30) compared with NBM samples (n = 17), b AML-BM cases (n = 62) com-
pared with NBM samples (n = 42), c relative expression of ETS2 in the different NCCN-risk subgroup (good, intermediate and poor) of AML cases, d 
associations between ETS2 expression and other classic prognostic biomarkers in AML cases (FLT3-ITD and the mutation of NPM1 and CEBPA)
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confirm the prognostic significance of ETS2 expression 
(Table  2). In the multivariate models for OS, EFS and 
RFS, ETS2high had adverse impacts on OS (P =  0.002), 
EFS (P  <  0.001) as well as RFS (P  <  0.001). Age was 
the only other factor negatively correlated with OS 
(P < 0.001) and EFS (P < 0.001).

Associations between genome‑wide gene‑expression 
profiles and ETS2 expression
To further assess the role of ETS2 in AML, we derived 
ETS2-associated gene expression profiles by high 
throughput sequencing from TCGA data. We first iden-
tified 368 up-regulated and 171 down-regulated genes 
that were significantly associated with ETS2 expression 
(P < 0.05, fold change = 1.5, Fig. 3a). With a more rigor-
ous analysis (fold change = 2, and profiles without appli-
cable values were all deleted), 359 genes were filtered 
out and the rest 180 genes were presented in an aberrant 
expression heat map (Fig. 3b).

Many genes known as unfavorable biomarkers were 
up-regulated, including leukemia-associated molecules, 

Table 1  Comparison of clinical and molecular characteris-
tics of de novo AML patients according to ETS2

Variable AML (TCGA dataset)

ETS2high (n = 89) ETS2low (n = 90) P

Median age, year (range) 0.01

 Median 61 54.5

 Range (18–88) (22–82)

Age group, n (%) 0.004

 <60 38 58

 ≥60 51 32

WBC count, X109/L 0.05

 Median 33.2 12.2

 Range 0.6–297.4 0.4–202.7

BM blasts (%) 0.6

 Median 74 72

 Range 32–100 30–100

PB blasts (%) 0.01

 Median 49 25

 Range 0–98 0–97

FAB subtype, no (%)

 M0 14 2 0.001

 M1 30 14 0.005

 M2 18 22 0.59

 M3 0 16 <0.001

 M4 16 19 0.6

 M5 6 15 0.04

 M6 1 1 1

 Others 4 1 0.21

FLT3-ITD, n (%) 0.01

 Present 25 12

 Absent 64 78

NPM1 (no FLT3-ITD), 
n (%)

0.33

 Mutated 12 17

 Wild-type 77 73

CEBPA, n (%) 0.24

 Single mutated 3 5

 Double mutated 1 4

 Wild-type 85 81

MLL-PTD, n (%) 0.33

 Mutated 6 3

 Wild-type 83 87

IDH1, n (%) 0.58

 Mutated 9 7

 Wild-type 80 83

IDH2, n (%) 0.78

 Mutated 9 8

 Wild-type 80 82

RUNX1, n (%) 0.08

 Mutated 12 5

 Wild-type 77 85

High ERG, BAALC, MN1, miR155HG and WT1 expression were defined as an 
expression level above the median of all samples, respectively

FAB French–American–British classification, FLT3-ITD internal tandem duplication 
of the FLT3 gene, MLL-PTD partial tandem duplication of the MLL gene

Table 1  continued

Variable AML (TCGA dataset)

ETS2high (n = 89) ETS2low (n = 90) P

DNMT3A, n (%) 0.21

 R882 mutated 16 7

 Non-R822 mutated 9 11

 Wild-type 64 72

TP53, n (%) 0.016

 Mutated 12 3

 Wild-type 77 87

ERG expression, n (%) 0.16

 High 49 40

 Low 40 50

BAALC expression, n (%) 0.07

 High 50 39

 Low 39 51

MN1 expression, n (%) 0.04

 High 51 38

 Low 38 52

miR155HG expression, 
n (%)

<0.001

 High 56 33

 Low 33 57

WT1 expression, n (%) 0.009

 High 53 36

 Low 36 54



Page 5 of 9Fu et al. J Transl Med  (2017) 15:159 

such as: (1) genes (Wnt2B and Wnt9A) of Wnt signal-
ing pathway involved in leukemogenesis; (2) independ-
ent adverse prognostic factors in AML including WT1, 

miR-155HG [3, 4], SOCS2 [15], TCF4 [16], MAP7 [17], 
ID1 [18] and MSI2 [19]. However, some tumor suppres-
sors were down-regulated, such as: (1) CDH13, silenced 
by aberrant promoter methylation, similar silencing had 
been found to be involved in the pathogenesis in chronic 
myeloid leukemia (CML) [20]; (2) VSTM1, which had 
also been found down-regulated in bone marrow cells 
from leukemia patients and played an important role in 
the pathogenesis of leukemia [21]; (3) CEBPA-dependent 
HK3 expression, its decrease promoted primary AML 
[22]; (4) Fez1, its absence impaired Cdk1/Cdc25C inter-
action during mitosis and in mouse models could pre-
dispose mice to cancer development [23]; (5) TGM3, a 
candidate tumor suppressor gene that contributed to 
human head and neck cancer [24]; (6) ITPKA, its down-
regulation by early aberrant DNA methylation was also 
found in a mouse model of acute myeloid leukemia [25].

Associations between genome‑wide microRNA profiles 
and ETS2 expression
An analysis of microRNA genome-wide profiles revealed 
145 microRNAs that were strongly associated with ETS2 
expression (P < 0.05, Fig. 3c). ETS2high was positively cor-
related with levels of miR-10a, miR-155, miR-146b and 
miR-1. Notably, in the profiles we generated, miR-155-3p 
and miR-155-5p were up-regulated (Fig. 3d). In previous 
reports, these microRNAs were shown to have important 
tumor-promoting properties. For example, overexpres-
sion of miR-10a was associated with poor OS in AML 
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Fig. 2  The prognostic value of ETS2 expression in AML patients from TCGA data. a OS and b EFS and c RFS of the entire AML patients (n = 179). d 
OS and e EFS and f RFS of the AML patients of ETS2high group (n = 86), ETS2low group (n = 88), allogeneic HCT group (n = 72) and chemotherapy-
only group (n = 100). Allo allogeneic HCT, Chemo chemotherapy

Table 2  Multivariable analysis with OS and EFS in the pri-
mary cohort of 179 AML patients (TCGA dataset)

OS overall survival, EFS event-free survival, RFS relapse-free survival, HR hazard 
ratio, CI confidence interval

Variables in final model by end point HR 95% CI P value

OS (all AML, n = 179)

 ETS2 expression, high vs. low 1.79 1.23–2.59 0.002

 Age, per 10-year increase 1.46 1.27–1.68 <0.001

 CEBPA mutation vs. wild 1.75 0.85–3.58 0.13

 NPM1 mutation vs. wild 1.1 0.73–1.66 0.65

 FLT3-ITD, presented vs. others 1.24 0.78–1.96 0.37

EFS (all AML, n = 179)

 ETS2 expression, high vs. low 1.88 1.32–2.68 <0.001

 Age, per 10-year increase 1.34 1.18–1.53 <0.001

 CEBPA mutation vs. wild 1.2 0.92–3.57 0.08

 NPM1 mutation vs. wild 1.2 0.83–1.78 0.3

 FLT3-ITD, presented vs. others 1.4 0.9–2.15 0.1

RFS (all AML, n = 177)

 ETS2 expression, high vs. low 2.23 1.41–3.5 <0.001

 Age, per 10-year increase 1.13 0.96–1.33 0.14

 CEBPA mutation vs. wild 0.4 0.94–4.48 0.07

 NPM1 mutation vs. wild 0.25 0.81–2.15 0.26

 FLT3-ITD, presented vs. others 1.47 0.86–2.53 0.16
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patients [26]. Up-regulation of miR-155 was an inde-
pendent risk factor associated with an unfavorable clini-
cal outcome in cytogenetically normal-AML (CN-AML) 
[3]. Knockdown of endogenous miR-146b would result in 
increased transcription of tumor suppressors and inhibi-
tion of cell proliferation in chronic lymphocytic leukemia 
(CLL) [27]. MiR-1-2 modulation was vital for EVI1-asso-
ciated tumor proliferation in acute myeloid leukemia [28].

ETS2high was negatively correlated with levels of miR-
223, miR-142, miR-30e and miR-197. These microRNAs 
had been shown to exhibit tumor suppressive proper-
ties. Low miR-223 expression was associated with worse 
outcome in AML [29]. MiR-142-3p was a key regulator 

of normal myeloid differentiation; its reduced expres-
sion was involved in the leukemogenesis of AML [30]. 
MiR-30e induced apoptosis and could sensitize cell lines 
to imatinib via regulation of the BCR-ABL protein [31]. 
MiR-197 induced apoptosis and suppressed multiple 
myeloma by targeting MCL-1 [32].

Association between ETS2high and adverse outcomes was 
confirmed by the second cohort
We studied the second cohort of 329 previously untreated 
AML patients. Firstly, ETS2high AML patients (n = 164) 
had significantly shorter OS (P = 0.006, Fig. 4a) and EFS 
(P  =  0.001, Fig.  4b) than ETS2low patients (n  =  165). 
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Secondly, in the NCCN intermediate-risk AML patients, 
ETS2high (n  =  86) also had significantly shorter OS 
(P =  0.049, Fig.  4a) and EFS (P =  0.045, Fig.  4b) than 
ETS2low patients (n  =  87). Thirdly, ETS2high CN-AML 
patients (n = 78) had significantly shorter OS (P = 0.02, 
Fig. 4c) and EFS (P = 0.004, Fig. 4d) than ETS2low patients 
(n = 78). Fourthly, for patients in the European Leukemia 
Net (ELN) Intermediate-I category, ETS2high (n  =  60) 
also had significantly shorter OS (P = 0.01, Fig. 4c) and 
EFS (P = 0.008, Fig. 4d) than ETS2low patients (n = 61).

Discussion
Identifying the prognostic factors for AML is important 
for the development of new targeted therapies and risk-
stratified treatment strategies. Recent studies had shown 
that high expression of ERG and ERG amplification, the 
most frequent copy-number alteration (CNA), are all 
the worse prognostic markers in AML patients [5, 6, 33]. 
ETS2, one of the members of the ETS family as ERG, 
was previously characterized as a proto-oncogene in 
AMKL children that is Down-syndrome and non-Down-
syndrome-related [10], but the expression and clinical 
prognosis of ETS2 in AML remains unknown. Here, we 
have demonstrated the aberrant expression of ETS2 in 
AML patients. First, we found that ETS2 expression was 

up-regulated in AML cohorts and was overexpressed 
in the NCCN intermediate- and poor-risk groups of 
patients, compared to the good-risk group. These find-
ings indicated that ETS2 might promote leukemogen-
esis. We also found that ETS2 showed higher expression 
in monocytes using publicly available expression data 
which suggest that ETS2 might play an important role in 
the function of monocytes [34] (Additional file 1: Figure 
S1). Second, in the first cohort, our study demonstrated 
that ETS2high was associated with shorter OS and EFS. 
Notably, ETS2high patients had longer OS and EFS after 
receiving allogeneic HCT than chemotherapy-only, but 
similar differences between treatment modules were not 
observed in ETS2low patients. Its presence may direct 
treatment decisions towards allogeneic HCT.

To further confirm the prognostic significance of ETS2, 
we analyzed the second cohort of uniformly treated AML 
patients. ETS2high also acted as an independent poor 
prognostic factor in the entire cohort, NCCN Interme-
diate-risk subgroup, CN-AML subgroup, as well as the 
ELN Intermediate-I subgroup. The above results denoted 
that ETS2high was an independent, poor prognostic fac-
tor in AML. It could be employed to improve the risk 
stratification of ELN Intermediate-I category and NCCN 
Intermediate-Risk group.
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Fig. 4  The prognostic value of ETS2 expression in the second cohort. a OS and b EFS of 329 AML patients and the subgroup of 173 patients with 
NCCN intermediate-risk. c OS and d EFS of the 156 CN-AML patients and 121 AML patients in the ELN Intermediate-I category
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Gene and microRNA-expression profiles derived from 
the first cohort gave us some insight regarding the role of 
ETS2 in AML leukemogenesis. Tumor protein 53 (TP53) 
is one of the most frequently inactivated tumor suppres-
sor genes in human cancer and its mutations predict a 
poor prognosis in patients with acute myeloid leukemia 
(AML) [35]. Recent studies have shown that mutations in 
the TP53 (mTP53) protects ETS2 from degradation and 
mTP53 disrupts ETS family target gene regulation, pro-
moting cancer [36]. In our study, we found that ETS2high 
was associated with mTP53.

The expression of miR-155 has been found to be inde-
pendently associated with poor clinical outcome in AML 
[3, 4]. In addition, we found that ETS2high was associ-
ated with over-expression of miR-155HG, miR-155-3p 
and miR-155-5p. This result is in accordance with recent 
studies which have found that ETS2 is an important tran-
scription factor regulating miR-155 [37].

Conclusions
In summary, ETS2high is an independent poor prognostic 
factor in AML patients and its presence should favor allo-
geneic HCT over chemotherapy-only in AML. In AML 
patients, distinctive gene/microRNA expression profiles 
associated with ETS2 expression may explain the role of 
ETS2 in the leukemogenic process.
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