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Abstract

Background: Next-generation sequencing (NGS) approaches are commonly used to identify key regulatory
networks that drive transcriptional programs. Although these technologies are frequently used in biological studies,
NGS data analysis remains a challenging, time-consuming, and often irreproducible process. Therefore, there is a
need for a comprehensive and flexible workflow platform that can accelerate data processing and analysis so more
time can be spent on functional studies.

Results: We have developed an integrative, stand-alone workflow platform, named CIPHER, for the systematic
analysis of several commonly used NGS datasets including ChIP-seq, RNA-seq, MNase-seq, DNase-seq, GRO-seq,
and ATAC-seq data. CIPHER implements various open source software packages, in-house scripts, and Docker
containers to analyze and process single-ended and pair-ended datasets. CIPHER's pipelines conduct extensive
quality and contamination control checks, as well as comprehensive downstream analysis. A typical CIPHER
workflow includes: (1) raw sequence evaluation, (2) read trimming and adapter removal, (3) read mapping and
quality filtering, (4) visualization track generation, and (5) extensive quality control assessment. Furthermore, CIPHER
conducts downstream analysis such as: narrow and broad peak calling, peak annotation, and motif identification
for ChIP-seq, differential gene expression analysis for RNA-seq, nucleosome positioning for MNase-seq, DNase
hypersensitive site mapping, site annotation and motif identification for DNase-seq, analysis of nascent transcription
from Global-Run On (GRO-seq) data, and characterization of chromatin accessibility from ATAC-seq datasets. In
addition, CIPHER contains an “analysis” mode that completes complex bioinformatics tasks such as enhancer
discovery and provides functions to integrate various datasets together.

Conclusions: Using public and simulated data, we demonstrate that CIPHER is an efficient and comprehensive
workflow platform that can analyze several NGS datasets commonly used in genome biology studies. Additionally,
CIPHER's integrative “analysis” mode allows researchers to elicit important biological information from the
combined dataset analysis.
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Background

Understanding the precise regulation of transcriptional
programs in human health and disease requires the
accurate identification and characterization of genomic
regulatory networks. Next-generation sequencing (NGS)
technologies are powerful, and widely applied tools to
map the in vivo genome-wide location of transcription
factors (TFs), histone modifications, nascent transcrip-
tion, nucleosome positioning, and chromatin accessibil-
ity features that make up these regulatory networks.
Although NGS technologies can be used in diverse
ways to investigate numerous aspects of genome biol-
ogy, reaching sound biological conclusions requires the
exhaustive analysis of these datasets to recognize and
account for many potential biases [1] including abnor-
mal fragment size distribution due to sonication, bias in
enzyme digestion in MNase and DNase samples, PCR
amplification bias and duplication, sequencing errors,
incorrect software usage, and inaccurate read mappings.
These problems, combined with the unprecedented
amount of data generated by sequencing platforms, have
provided unique opportunities for the development of
computational pipelines to automate time-consuming data
analysis processes such as ChiLin [2], HiChIP [3], Galaxy
[4], MAP-RSeq [5], and bcbionextgen [6], among others
(Fig. 1).

Properly implemented pipelines are essential to genome
and chromatin biology studies, but often fail to implement
the features required to overcome five major challenges:
(1) quickly processing large batches of data with minimal
user input, (2) remaining highly customizable for different
experimental requirements, (3) conducting comprehensive
quality control assessments of sequencing datasets to
identify potential areas of bias, (4) reducing the issues
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associated with building, maintaining, and installing mul-
tiple pipelines and bioinformatics software, and (5) increas-
ing reproducibility among researchers.

Despite the many computational approaches that
already exist to analyze NGS datasets, there are no cur-
rently available tools designed to tackle all five chal-
lenges simultaneously. ChiLin, HiChIP, bcbio-nextgen,
and MAP-RSeq offer powerful command-line data ana-
lysis pipelines, but are limited to chromatin immunopre-
cipitation (ChIP) coupled with sequencing (ChIP-seq)
and whole transcriptome sequencing (RNA-seq) stud-
ies. Galaxy, an open, web-based platform for data ana-
lysis [4], offers an impressive number of bioinformatics
tools and workflows that can be used to process various
NGS datasets, but severely limits the size and number
of files that can be processed at once.

To overcome these previous obstacles, we devised
CIPHER, an integrated workflow platform that auto-
mates the processing and analysis of several commonly
used NGS datasets including ChIP-seq, RNA-seq, Global
Run On sequencing (GRO-seq) [7], micrococcal nuclease
footprint sequencing (MNase-seq) [8], DNase hypersensi-
tivity sequencing (DNase-seq) [9], and transposase-
accessible chromatin using sequencing ATAC-seq [10]
datasets. In addition, CIPHER also provides an easy-to-
use “analysis” mode that accomplishes complex bioinfor-
matics tasks such as enhancer prediction using a random
forest-based machine-learning model and provides
functions to integrate various NGS datasets together. By
combining Nextflow [11, 12] - a powerful workflow
language based on the Unix pipe concept, Docker [13] - a
container-based virtualization technology, open source
software and custom scripts, we provide a robust, and
powerful toolkit that simplifies NGS data analysis and
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Fig. 1 Table of several available workflows for processing sequencing data and their capabilities in comparison to CIPHER. T, Trimming; M,
Mapping; PC, Peak Calling; PA, Peak Annotation; MI, Motif Identification; V, Visualization; DG, Differential Gene Expression; GO, Gene Ontology;
TC, Transcript Calling
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provides a significant improvement over currently avail-
able pipelines in terms of flexibility, speed and ease of use.
CIPHER manages to overcome the five previously
mentioned obstacles by: (1) parallelizing all the steps in
a typical pipeline therefore taking full advantage of a
desktop’s or cluster’s available RAM and CPUs, (2)
providing command line flags to alter the majority of pa-
rameters at each step, (3) incorporating extensive quality
control software and providing detailed QC reports spe-
cific to each pipeline, (4) combining pipelines for several
of the most commonly used NGS techniques into a sin-
gle, standalone tool, and (5) using a lightweight Docker
containers to package all the required software depend-
encies to run CIPHER into a standardized environment.
In this report, we demonstrate that CIPHER is a fast,
reproducible, and flexible tool that accurately processes
and integrates NGS datasets by recreating the results of
two published studies, and comparing CIPHER’s speed
and ease of use to two other ChIP-seq and RNA-seq
pipelines. We further validate CIPHER’s built-in random-
forest based enhancer prediction model by identifying po-
tentially functional enhancers in various human cell lines.

Implementation

Many previously described NGS workflows are devel-
oped using scripting languages such as Python or Perl as
a ‘glue’ to parse datasets, and automate the series of
commands that make up a processing pipeline. In con-
trast to these approaches, CIPHER was designed using
Nextflow, a specialized, and new workflow language that
is built around the Unix pipe concept [11]. By using
Nextflow as the underlying language for the CIPHER
platform, we gain access to several useful features, in-
cluding automatic parallelization, Docker and GitHub
support, the capacity to run locally on a desktop or on a
cluster, and the ability to seamlessly integrate custom
scripts in a variety of programming languages.

CIPHER can be run with default settings by specifying
the “—~mode”, “~config”, “~readLen”, “~lib”, “—fasta”, and
“—gtf” flags. The “—mode” flag indicates the type of NGS
pipeline you wish to run from the currently available
workflows (e.g. “—mode chip” for ChIP-seq analysis),
while the “—config”, “~readLen” and “-lib” flags provide
information regarding file locations, read length and
type of sequencing (e.g. single-ended or pair-ended),
respectively, so that the pipeline runs the appropriate
processes. Finally, the “—fasta” and “—gtf” flags indicate
reference annotation information that is required for
mapping and downstream exploration such as differen-
tial gene expression (DGE) analysis. In the case that the
user is not familiar with reference FASTA and GTF files
or where to acquire them, providing the “—download_-
data” flag will automatically download the appropriate
Ensembl/Gencode reference files for a specified organism,
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if it exists (e.g. “—download_data hgl9” will download
Gencode fasta and gtf files for the hgl9 human genome).

In addition, there are various other flags that can be
set to customize the analysis further. More information
regarding these flags can be found by setting the “~help”
flag or by visiting CIPHER’s online documentation
(available at: cipher.readthedocs.io). By default, CIPHER
will output processed files into a “/report” directory
(which can be changed by specifying the “—outdir” flag).
The output includes various files and is largely
dependent on the pipeline mode specified, but in general
provides quality control reports in pdf or html format,
gzipped fastq files of raw sequences after trimming and
adapter removal, sorted BAM files of mapped and
unmapped alignments along with various files that con-
tain detailed statistics regarding the number of unique,
multimapped, and low-quality reads, as well as normal-
ized track files in bigWig format for visualization.
Further pipeline dependent downstream analysis such as
narrow and broad peak calls for ChIP-seq, differential
gene expression lists for RNA-seq, nucleosome positions
and DNase hypersensitive sites (DHS) for MNase-seq
and DNase-seq respectively, unannotated transcription
units for GRO-seq, and chromatin accessible sites for
ATAC-seq are also output. Notably, unlike other pub-
lished pipelines (Fig. 1), CIPHER is the first platform that
merges multiple workflows and complicated bioinformat-
ics tools into a single, easy to use, parallelized, and scalable
toolkit, removing the obstacles that arise from finding,
building, maintaining, and updating multiple workflows.
This approach can be applied to data generated through
both pair-ended and single-ended sequencing to map
genomic elements and regulatory features in diverse
organisms.

CIPHER’s pipelines conduct extensive quality and
contamination control checks, as well as comprehen-
sive downstream analysis (Fig. 2). A typical CIPHER
workflow can be split into two major stages: a fastq
sequence filtering, adapter trimming, and read mapping
stage, and a downstream analysis stage. During the
‘sequence filtering, trimming, and mapping’ stage, raw
sequences are trimmed of adapters and low-quality
reads using BBDuk [14], and are then mapped to a refer-
ence genome (Fig. 2a). CIPHER allows the user to choose
between three different aligners for non-splice aware data-
sets: BBMap [14], the Burrow-Wheeler Aligner (BWA)
[15] and Bowtie2 [16], and three different aligners for
splice aware datasets: BBMap [14], STAR [17], and
HISAT?2 [18] via the “—aligner” flag. After mapping, the
‘downstream analysis’ stage consists of running the
samples through various steps to extract biological infor-
mation including peak calling for narrow (MACS2) and
broad binding domains (EPIC), peak annotation and motif
identification (HOMER) [19] for ChIP-seq; DGE analysis


http://cipher.readthedocs.io

Guzman and D’Orso BMC Bioinformatics (2017) 18:363 Page 4 of 16

a Fastq Files

Mapping
_— (BBMap, BOWTIE2, BWA, STAR, HISAT2)
Trimming
Adapters (BBDuk) e e E——
[— [— —
[ e—— [ e—— ]
— = - — _ _ ——
. me————m T — p—
I e . —] —]
I
(S
||: Reference Genome
Sorting and Indexing: (SAMTOOLS, SAMBAMBA)
Quality Control: (FastQC, QoRTs, ChIPQC) 1
b Visualization: (DEEPTOOLS) Downstream Analysis
1 1 1
ChlP-seq RNA-seq MNase-seq
Peak Calling Wild-type Nucleosome Free
(MACS2, EPIC) Region
—_— ‘h‘ |! l “li Nucleosome Peak
Narrow Broad Calling
(DANPOS2)
Peak Annotation

(HOMER) N i TR

Differential Gene

| TN conesonanayss Kok Nucieosomes Nucicosomes
RUVSeq, edgeR, DESeq2
158 ( q, edg q2)
Motif Identification
(HOMER)

Downregulated Genes Upregulated Genes
Motif(. s)\ Gene Ontology EEETTEED

(clusterProfiler) m -m-

fon
‘ RZﬁ:r?‘Transpon
Death
Cell
@ 6
Response

T T T
DNase-seq GRO-seq ATAC-seq

. Cutting Sites
Peak Calling ; : / Peak Calling
(MACS2) ; ; (MACS2)

l . De-novo l Chromatin Accessible Peak

Antisense
DNase Hypersensitive " )
Transcript Calling

Site (DHS) (groHMM) [r—
— Peak Annotation '\

Peak Annotation RN ilg- HOMER
HOMER) l Wild-type ( )

l 35 w TSs
Differential Gene
. e o Expression Analysis
Motif Identification ‘ Knockout

(HOMER) (groHMM)

.

lMotif(s) ‘

Fig. 2 Brief visual representation of CIPHER's two stage workflows. a Fastq files are trimmed of adapters and low quality reads using BBDuk, and
then mapped to the reference genome using user’s preferred aligner. b Mapped reads are then run through a downstream analysis pipeline that
reveals biological functions and is dependent on the type of dataset input. See text for complete details

\

for RNA-seq (RUVSeq, edgeR, and DESeq2); analysis of (HOMER), and motif identification (HOMER) for
nascent transcription from GRO-seq (groHMM); DNase-seq; and chromatin accessibility peak calling
nucleosome positioning for MNase-seq (DANPOS2); (MACS2), and annotation for ATAC-seq (HOMER)
positioning/strength of DHS (MACS2), site annotation  (Fig. 2b). Overall, CIPHER ensures comprehensive,
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reproducible, customizable, and accurate automated
NGS dataset processing (see below).

Trimming

Trimming adapter sequences is a common pre-processing
step during NGS data analysis, as adapter contamination
can often disturb downstream examination. Many tools
exist for the removal of adapters such as Trimmomatic
[20], cutadapt [21], Trim Galore [22], and BBDuk [14].
CIPHER implements BBDuk, which is an extremely fast,
scalable, and memory-efficient decontamination tool to
remove [llumina, Nextera, and small RNA adapters from
raw sequencing data. By default, CIPHER will also filter
out low-quality (default: mapq <20) and short-length
(default: length < 10) reads as this has been shown to in-
crease the quality and reliability of downstream analysis
[23]. Additional adapter sequences can be added manually
to an “adapters.fa” file located in CIPHER’s “bin” directory.

Mapping

Mapping or alignment, while generally being the most
computationally intensive part of any pipeline, is also a
crucial and often confusing pre-processing step. Low
mapping efficiencies can be caused by numerous issues
including adapter or organismal contamination, poor
sequence quality, high-levels of ribosomal RNA con-
tent, poor library-preparation quality, and/or inappro-
priate parameter use, which can often lead to incorrect
or inefficient downstream analysis.

While several mapping software packages have been
developed to map reads to a reference genome, they are
typically designed to address a specific type of data or se-
quencing technology. For example, ChIP-seq data makes
use of splice-unaware aligners such as BWA [15], Bowtie2
[16], and BBMap [14] while RNA-seq data requires a
splice-aware aligner to avoid introducing long gaps in the
mapping of a read due to intronic regions, and thus lead-
ing to false mappings. Several splice-aware aligners exist
including BBMap [14], STAR [17], and HISAT?2 [18].

Notably, CIPHER integrates pipelines that require
splice-aware (RNA-seq) and splice-unaware mappers
(ChIP-seq, MNase-seq, DNase-seq, ATAC-seq and
GRO-seq), and supports both single-ended and pair-
ended sequencing datasets. Thus, to appeal a broader
audience, CIPHER allows the user to choose from five dif-
ferent aligners (BBMap, BWA, Bowtie2, HISAT2, and
STAR) to fit any experimental condition and dataset.

By default, CIPHER will map reads to a reference
genome using BBMap, a fast short-read aligner for both
DNA and RNA-seq datasets, that is capable of mapping
very large genomes containing millions of scaffolds with
very high-sensitivity and error tolerance. Because read
alignment often requires a large amount of flexibility for
specific datasets (e.g. removing the first 5 nucleotides from
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the 5" end of a read), CIPHER enables the user to set all
of an aligner’s parameters at the top level.

Quality control

To ensure properly sound biological conclusions, it is
crucial that the user accurately and thoroughly evaluates
the quality of their sequencing datasets. To this end,
CIPHER incorporates a number of quality control tools
to identify potential biases, contaminations, and errors
in NGS datasets.

All pipelines integrate FastQC [24], an open source
module that is used to analyze raw sequencing datasets
for any abnormalities such as high duplication levels or
adapter contamination, as well as low-quality and
short-length reads. ChIP-seq, DNase-seq, ATAC-seq,
and MNase-seq datasets are run through ChIPQC [25],
an R package that automatically computes several qual-
ity control metrics including the total number of reads
in each BAM file per sample, mapping statistics (e.g. num-
ber of successfully mapped reads, number of mapped
reads with a quality score less than N, multimappers),
estimated fragment length by calculating cross-coverage
score, and the percentage of reads that overlap called
peaks (known as FRIP) when possible.

Fingerprint plots that predict enrichment of ChIP-seq
datasets are generated to judge how well a ChIP experi-
ment worked using deeptool’s [26] “plotFingerprint”
function. For RNA-seq datasets, QoRTs [27] is used to
detect and identify various errors, biases, and artifacts
produced by single-ended and pair-ended sequencing.
Furthermore, RNA-seq data is run through Preseq [28]
to predict the yield of distinct reads from a genomic
library after an initial sequencing experiment. These
predictions can be used to examine the value of further
sequencing, optimize sequencing depth, or screen
multiple libraries to avoid low complexity samples by
estimating the number of redundant reads from a
given sequencing depth.

MultiQC [29] is used to aggregate the results from
various quality control files into a single, easy to read
HTML report, summarizing the output from numerous
bioinformatics tools such as FastQC so that potential
problems can be detected more easily and output can be
parsed by the user quickly.

Peak calling

For our purposes, peak calling refers to the identification
of TF and histone binding domains, nucleosome positions,
DHS, and chromatin accessible sites (Fig. 2). There are
two major types of ChIP-seq binding profiles: narrow and
broad binding (Fig. 2b). Narrow peak calls are typically
accomplished by identifying locations with an extreme
number of reads as compared to an input, while broad
peak calls are more concerned with determining the edges
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or boundaries of these diffuse peaks. Because the mech-
anisms of discovery for these binding domains are very
different, CIPHER integrates, at difference to other
pipelines, two different software algorithms. For narrow
binding profiles, MACS2 [30] is used to identify candi-
date regions by using a dynamic Poisson distribution to
capture background levels, and scans the genome for
enriched overlapping regions which are then merged
into peaks. For broad binding profiles, EPIC [31], a fast,
parallel and memory efficient implementation of the
SICER [32] algorithm, is used. EPIC improves on the
original SICER by taking advantage of the advances in
Python data science libraries, such as the Pandas mod-
ule, to improve the algorithm’s proficiency and handle
the large amounts of data that the original software is
unable to.

By default, CIPHER will estimate the fragment length
for each sample using the SPP R package [33], and
bypass MACS2’s shifting model using the “—nomodel”
flag. Each read is extended in a 5’ - > 3" direction using
the “—extsize” flag set to the estimated fragment size.
CIPHER also will use false discovery rate (FDR) values
as a cutoff to call significant regions (default: “—qvalue
0.01”). Narrow peaks are called for samples with a con-
trol (e.g. Input) or without. All duplicate tags are kept
(that is all tags in the same orientation and strand)
using the “—keep-dup all” flag. Broad peaks are only
called for samples with a control. Similarly to MACS2,
reads are extended to estimated fragment size. EPIC
pools all windows with sequencing reads together and
estimates a composite score, allowing very long stretches
of broad signal (such as some chromatin domains) to be
detected. By default, CIPHER will scan the genome by
separating them into 200-bp windows. Enriched broad
regions are estimated and an FDR score is calculated for
each region, those that fall beneath the provided cutoff
(default: 0.01) are not reported.

Nucleosome positions are determined using the
DANPOS?2 software suite [34] (Fig. 2b). DANPOS?2 is a
toolkit for the statistical analysis of nucleosome posi-
tioning, including changes in location, fuzziness, and
occupancy. The “dpos” function from the DANPOS2
toolkit is used to identify nucleosome positions from
MNase-seq datasets. Fragment size is automatically
calculated by CIPHER as previously mentioned, and
several flags can be set to specify read density cutoffs,
window size, merge distance, wiggle step size, and wig
smoothing size to accommodate different datasets, as
explained in detail in the user manual available at
cipher.readthedocs.io.

DHS characterize chromatin accessible regions in the
genome where TFs can bind (Fig. 2b). While several
DNase-seq specific peak callers such as F-seq [35] have
been developed, studies have also shown that MACS2 can
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be used to accurately predict DNase hypersensitive po-
sitions [36]. Thus, to limit the number of dependencies,
CIPHER uses MACS2 to identify chromatin accessible
regions from DNase-seq data. DHS are predicted in a
similar manner to narrow ChIP-seq binding sites, ex-
cept a combination of the “—extsize” and “—shift” flags
are used to shift the ‘cutting’ ends (e.g. sites where
DNase cuts the DNA) and then reads are extended into
fragments. By default, reads are shifted by calculating
“-1 * one-half the estimated fragment size” as indicated
in the MACS2 manual.

A similar approach to the identification of chromatin
accessible sites from ATAC-seq data is used. CIPHER
takes advantage of MACS2 flexible algorithm to call
peaks in a similar manner to DHS. However, “—extsize”
of 73 and “—shift” of -37 is used since the DNA wrapped
around a nucleosome is about 147-bp in length.

Visualization

To visualize binding site, gene expression, chromatin
accessibility, and gene annotation information, various
visualization tracks (e.g. bedGraphs and bigWigs) are
produced. Deeptools [26] is used to generate bigWig’s
for every workflow. All tracks are normalized by reads
per genomic content (RPGC), which reports read coverage
normalized to 1X sequencing depth. Sequencing depth is
defined as the total number of mapped reads times the
fragment length divided by the effective genome size
(EGS). CIPHER automatically calculates EGS using EPIC’s
“epic-effective.sh” script. ChIP-seq, MNase-seq, DNase-
seq, and ATAC-seq datasets have their reads extended to
their estimated fragment size, while RNA-seq and GRO-
seq datasets do not. CIPHER outputs sense and anti-sense
bigWigs for RNA-seq and GRO-seq datasets indicative of
sense and anti-sense transcription. Furthermore, CIPHER
outputs RPM-normalized bedGraph files via MACS2 that
can be used in some “analysis” mode functions.

Differential gene expression

DGE analysis generally refers to the up- or down-
regulation of transcripts produced by a cell in response to
or because of an aggravation (e.g. knock-out of a gene/
genomic domain or knock-down of a certain factor).
CIPHER’s DGE pipeline is straightforward and includes
basic mapping, quantification, and DGE analysis steps. As
previously described, mapping is completed by the user’s
choice of aligner, while quantification is accomplished by
the featureCounts module [37] of the Subread suite. Fea-
turecounts is a fast, general purpose read summarization
program that counts mapped reads for genomic features
such as genes. Actual DGE analysis is completed by both
the edgeR [38] and DESeq2 [39] packages from Bioconduc-
tor, as they are the most commonly used DGE packages in
publications.
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Enhancer prediction

Enhancers are short DNA sequences that act as TF
binding hubs, and function in a spatio-independent
manner to fine-tune promoter activity at distances
ranging hundreds of bases to megabases. To predict en-
hancers, we developed and applied a random-forest tree
(RFT) machine-learning model that combines chromatin
accessibility (DNase-seq) and chromatin signature datasets
obtained from ChIP-seq (H3K4mel, H3K27ac, and
H3K4me3) (Fig. 3a). The RFT model (implemented in R
(version 3.3.1) using the randomForest package) was con-
structed using the classical concept of binary classification
trees, with each feature being the average coverage signal
of a marker within a set distance along a genomic element.
CIPHER takes RPM-normalized bedgraph files of DNase-
seq and ChIP-seq as input to build the RFT model.

RFT model construction underwent two stages: training
and testing. In the ‘training’ stage, a forest is constructed
using two classes of genomic elements (one class contain-
ing a previously determined set of enhancer elements
from the Encyclopedia of DNA Elements (ENCODE)
project [40] and a second class with an equal number of
promoter regions (-1/+1 Kb from the transcription start
site (TSS)). In the ‘testing’ stage, a third of the classes and
their classifications that are not used for training are
selected to test the accuracy of the generated RFT-model.
The accuracy of the model was tested using a confusion
matrix from the caret package in R. Notably, CIPHER’s en-
hancer prediction-model accuracy achieved slightly above
93%, which means that the majority of ‘true’ enhancers
were identified during our ‘testing’ stage, indicating reliably
efficient enhancer identification functionality.

The provided reference genome is split into 200-bp bins,
and the enhancer prediction model categorizes each
window into “enhancer” or “non-enhancer” bins (Fig. 3b).
Bins that are within 1-bp of each other are further merged
to form a single continuous region. To account for false-
positive enhancer predictions, we set a strict cut-off using
DHS peaks whereby a DNase associated peak must
overlap the predicted enhancer by at least a single bp
(q < 0.01, MACS2) to be considered a ‘validated’ enhancer
and output as a result (Fig. 3¢c).

Analysis mode

CIPHER'’s “analysis” mode was created to take advantage
of CIPHER’s broad NGS data processing workflows. In
“analysis” mode, CIPHER can run several functions that
integrate various input files and combines them to answer
a more specific or typically more complex biological ques-
tion. Currently, CIPHER contains two main analysis func-
tions. We have already touched on CIPHER’s enhancer
prediction functionality, but “analysis” mode also contains
a “geneExpressionNearPeaks” function that calculates
fragments per kilobase per million mapped reads (FPKM)
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and transcripts per kilobase per million mapped reads
(TPM) normalized expression values of genes near an
input list (e.g. list of peaks or enhancers). This is accom-
plished by taking the Stringtie [41] output file from an
RNA-seq experiment and a list of MACS2/EPIC called
peaks from ChIP-seq and identifying the nearest gene to
each peak and then merging the information. By taking
advantage of this “analysis” mode we hope CIPHER
provides a much more integrative tool-kit that expands
beyond simple data processing.

Results

To validate CIPHER’s potential in NGS data analysis,
we used data from the Gene Expression Omnibus re-
pository (GEO) to re-create two previously published
studies: a ChIP-seq study from McNamara et al. [42]
and a GRO-seq study from Liu et al. [43]. Furthermore,
we briefly compared CIPHER’s speed, and ease of use
to alternative pipelines such as HiChIP and MAP-RSeq.
Next, we used real and simulated data to evaluate and
describe how to compare the performance of various
adapter decontamination tools (BBDuk, Cutadapt and
Trimmomatic) and DNA mappers (BBMap, BWA, and
Bowtie2) using ENCODE datasets. Finally, we confirm
CIPHER’s enhancer-prediction model by calling en-
hancers in three human cell lines. Performance tests
were run on a 32 core, dual-core Intel Xeon E5 with
128GB RAM WhisperStation.

Validating CIPHER's pre-processing abilities and accuracy
To determine if CIPHER’s workflows are appropriate for
typical NGS studies, we downloaded the raw data from
two studies [42, 43] and ran them through CIPHER to
attempt reproduce their conclusions.

The first study by McNamara et al. consisted of several
ChIP-seq datasets, and provided evidence that KAP1, also
known as TRIM28, acts as a scaffold to recruit the 7SK
snRNP complex to gene promoters to facilitate productive
transcription elongation in response to stimulation. Their
bioinformatics analysis showed that 70% of all genes in
the human genome containing a form of RNA polymerase
II (Pol II) that is paused at promoter-proximal regions
(defined as -250/+1000 from the known TSS), also
contained the KAP1-7SK snRNP complex as revealed by
co-occupancy of KAPI and three subunits of the 7SK
snRNP complex (HEXIM, LARP7, and CDK9). The same
authors also published a thorough methods paper that
provided a detailed experimental description and analysis
of ChIP-seq datasets [44], in which mapping to the UCSC
hgl9 genome was completed by Bowtie [45] and peak
calling was accomplished by MACS2. The study led to the
identification of 14,203 target genes in the human genome
containing this regulatory complex.



Guzman and D’Orso BMC Bioinformatics (2017) 18:363 Page 8 of 16

a Entire Dataset

NGS data collection . . . . . . Enhancers
(ChIP-seq + DNase-seq) . . . . . .Non-enhancers

l CIPI{IER

CIPHER Input . Random Forest Model CIPHER Output
Regulatory features is generated against training dataset Predicted Enhancers
from NGS data and enhancer prediction model is run

ChiP-seq  (__H3Kdme1 )=
ChiP-seq (__H3K27ac )=

|

DNase-seq —_> ° Coree® Predicted I_Enhancer1
—~ @D () CO8D
Ly
© @8

Predicted Enhancer n

b DH Reference genome is split into 200 bp windows and each
S window is classified using the random forest-based model
H3K4me3 AA Aa 0:0:00000000000.000:
vware Ao e
@ Enhancer Enhancer windows within 1 bp of each other
. Non-enhancer are merged together to form continuous

enhancer elements

H3K4me1 ll 'l

C
Genes ARHGEF16 MEGF6
DHS l
e dasdenud a " A i i sl i o "y A L
Enhancers i ni o L P 1 ]

H3K27ac
ry L“ T apTyee Y v
H3K4me1 “ NI I | | I “
e L "

Fig. 3 Outline of the random forest machine learning process for enhancer prediction by CIPHER. a Enhancer elements can be identified de novo
in a preferred cell line by using select histone modification and chromatin accessibility data and inputting it into CIPHER, which will then output
a list of predicted enhancer elements by applying the model to the cell line. Genomic features (histone modification and chromatin accessibility
data) are calculated for defined enhancers obtained from the ENCODE project. Non-enhancer elements are promoter regions —/+ 1 Kb from the
TSS of all known genes. A subset of all enhancer and non-enhancer elements is split into two groups: (1) a testing and (2) a training dataset. The
training dataset is used to generate the machine-learning model where decision trees are generated until the model can effectively separate
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To determine whether we could reproduce McNamara et~ bowtie2” flag in CIPHER) but all other settings were left as
al’s results using CIPHER, we processed six of their ChIP-  default. CIPHER processed all ChIP-seq datasets (~30
seq datasets (Pol II, KAP1, HEXIM, LARP7, CDK9 and In-  million reads per dataset) in 7 h and 23 min. We then iden-
put). Given that CIPHER does not include a Bowtie aligner,  tified ~26,000 promoter-proximal regions (defined as in the
we used the more recent Bowtie2 aligner (“—aligner original manuscript (-250/+1000-bp from known TSS))
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and conducted co-occupancy analysis of called peaks.
Our analysis revealed 14,397 KAP1-7SK snRNP target
genes as opposed to the original manuscript’s 14,203
(Table 1) (Additional file 1: Table S1).

The second study by Liu et al. consisted of several
GRO-seq datasets to explore the role of two human fac-
tors (JMJD6 and BRD4) on the activation of the Pol II
paused form in a process called ‘Pol II pause release’
[43]. The study is quite elaborate, but does include a
number of DEG that are central to the paper for either
the JMJD6 (386 down-regulated; 1722 up-regulated)
and/or BRD4 (744 down-regulated; 1805 up-regulated)
complex subunits. According to their methods, all reads
were aligned to the hgl9 RefSeq genome by Bowtie2,
and feature counting was completed by HOMER. EdgeR
was used to compute actual DEG at a FDR of <0.001.

We decided to reproduce one important section of this
previous study by processing six GRO-seq datasets: 2
non-target (NT) replicates, and 4 Brd4 knockdown (KD)
replicates. As previously done, we left all settings at default
except for altering the “—aligner” flag to use Bowtie2. CI-
PHER processed all six GRO-seq datasets (~50 million
reads per dataset) in approximately 10 h. DGE analysis of
NT versus BRD4 KD resulted in 2528 differentially
expressed genes at an FDR < 0.001 (Table 1). We then
overlapped both gene sets and found that CIPHER called
98% of the same genes as reported in the Liu et al. study,
providing compelling evidence that CIPHER can be used,
even with default settings, to accurately process and
analyze various NGS datasets.

Ease-of-use and speed comparisons of CIPHER versus
alternative pipelines

The adoption of new software is largely dependent on
proper documentation, and how easy the new software
is to install and use when compared to other alterna-
tives. Here we briefly examined and compared the speed
and ease-of-use of CIPHER versus two other pipelines
(HiChIP for ChIP-seq and MAP-RSeq for RNA-seq).

We first downloaded and installed both HiChIP and
MAP-RSeq standalone versions. While both pipelines pro-
vided virtual machines (VM) that already came packaged
with all the necessary software and dependencies, we
found that these VMs were clunky, slow and only really
meant to demonstrate the pipeline for testing purposes.
While both pipelines provided detailed instructions on

Table 1 Comparing CIPHER's output with original publication

results

CIPHER Original Publication
KAP1-7SK snRNP Target Genes 14,397 14,203
BRD4-KD DGE Genes 2528 2549

A table of re-created results from original publication data using CIPHER
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how to manually install all the software and dependencies
that were required, users who are unfamiliar with bash or
Unix commands would have significant trouble installing
them. Furthermore, both pipelines provided a version of
their pipelines that could only be run exclusively on a SGE
cluster, greatly limiting their use.

In comparison, CIPHER only requires the manual in-
stallation of Nextflow and Docker, greatly reducing the
number of obstacles a new user may encounter during
their setup. By default, CIPHER will automatically fetch
Docker containers that hold all the required software
and dependencies that are needed to run the pipeline,
without the slow-down that comes with a typical VM. In
cases where the user does not or cannot use/install
Docker, we have provided detailed instructions on how
to download all the software required to run CIPHER
using the Anaconda package manager in our documen-
tation (cipher.readthedocs.io). Importantly, CIPHER can
be easily run on several cluster services including SGE,
SLURM, LSE, PBS/Torque, NQSII, HTCondor, DRMAA,
DNAnexus, Ignite, and Kubernetes without altering the
original script, thus vastly increasing the flexibility and
usage of our workflow platform.

We next compared the difficulties in running each of
the pipelines on several ChIP-seq and RNA-seq samples.
We discovered that HiChIP required three configuration
files and MAP-RSeq required four configuration files that
need to be modified and completed before the workflow
can be run, leading to an extremely tedious pipeline setup
process. In contrast, CIPHER only requires the creation of
a single configuration file that contains the merge ID,
sample ID, path(s) to fastq(s), control ID, and marker ID
for each sample vastly reducing the time and complexity
of the initial startup.

Finally, we ran each of the pipelines on single and mul-
tiple in-house datasets to test their speed. For ChIP-seq
we first ran a single sample and its associated input (~30
million reads each) and then conducted another run that
included five samples and their associated input (~30 mil-
lion reads each). We found that for the single sample data-
set, HIChIP took approximately 2X longer than CIPHER
(~8 h versus ~4 h, respectively). However, the difference
in run time became vastly more noticeable when the
pipelines were run on multiple datasets (6 samples), in
which HiChIP took approximately 4X longer to finish
than CIPHER (~30 h versus ~8 h, respectively).

Fairly similar results were obtained with the MAP-RSeq
pipeline, where processing a single RNA-seq sample (~50
million reads; no DGE analysis) took approximately 1.5X
as long using MAP-RSeq than CIPHER (~8 h versus
~6 h), while processing 18 samples (~50 million each; no
DGE analysis) took approximately 15X as long using the
MAP-RSeq pipeline (~126 h, run was stopped after 72 h
versus ~8 h). These speed differences are likely the result
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of CIPHER’s innate ability to process a large number of
datasets in parallel, while both HiChIP and MAP-RSeq
have to process datasets serially (e.g. one at a time). To-
gether this demonstrates the ease-of-use and speed of CI-
PHER compared with other pipelines.

Adapter decontamination tool performance tests on
down-sampled ENCODE datasets

We downloaded ChIP-seq (H3K4mel) from the ENCODE
project in human colonic cancer cells (HCT116) to obtain
real quality distributions. We then down-sampled the ori-
ginal fastq files into three different datasets containing
1 M, 5M and 10 M reads using BBMap’s “reformat.sh”
script. Using a dataset of 25 Ilumina TruSeq adapters we
randomly added adapters to the reads using the “addadap-
ters.sh” script from the BBMap suite with “qout = 33” and
“right” flags set, to ensure that adapters will be 3’-type
adapters. This ensures that adapters will be added at a
random location from 0 to 149, and possibly run off the
3" end of the read, but the read length always stays at 150.
If the adapter finishes before the end of the read, random
bases are used to fill in the rest. Using this approach,
about 50% of all reads get adapters. Once the adapter is
added, each of the adapter nucleotides is possibly changed
into a new nucleotide, with a probability from the read’s
quality score for that nucleotide to simulate sequencing
error.

Speed tests were conducted using the “time” Unix
command for 1 M, 5 M and 10 M reads and averaging
the completion times over 3 runs. Accuracy was esti-
mated by replacing each read’s original name with a syn-
thetic name indicating the read’s original length and
length after trimming. For example, “@0_150_15" means
that the read was originally 150 bp long and 15 bp after
trimming because an adapter was added at position 15
(0-based). This allows BBMap’s “addadapters.sh” script
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(with the “grade” flag set) to quantify both the number
of bases correctly and incorrectly removed, as well as
the percentage of true-positive adapter sequences
remaining and non-adapters removed.

Performance tests showed that BBDuk outperforms the
speed category by a large margin, with Trimmomatic not
far behind, and Cutadapt being extremely slow (Fig. 4a)
while accuracy tests revealed that Cutadapt removes more
correct adapters, with BBDuk following closely behind
and Trimmomatic at the end (Fig. 4b). However, Cutadapt
removed two times more incorrect adapter sequences
than other trimmers resulting in a higher amount false-
positive adapter trimming (Table 2). Taken together, the
combined speed and accuracy of BBDuk, along with its
easy to use parameters, and ability to work on single-
ended as well as pair-ended sequencing, make it a great
choice for read trimming and adapter removal.

Alignment tool performance tests on simulated datasets
To compare mappers against each other, we generated
a dataset using Teaser [46], which is a tool that can be
used to analyze the performance of various read map-
pers on simulated or real world datasets. We simulated
a single human Illumina-like read set assuming a gen-
omic SNP frequency of 0.1% and a 0.3% probability for
the occurrence of insertions and deletions. Read length
for the simulated dataset was set to 100 bp and
assumed a sequencing error of 0.6%. To reduce com-
puting times, we had Teaser randomly sample 0.01% of
non-overlapping sequences from the genome. The sim-
ulated reads were then mapped to the entire UCSC
hg38 reference genome and mapping statistics were
evaluated (Fig. 5). All mappers were run in Teaser’s
default mode with no additional parameters unless other-
wise indicated.

Results showed that BBMap and BWA-MEM correctly
mapped more simulated reads (83.889% and 82.863%,
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Table 2 Summary of performance statistics for various trimming
tools and number of reads

Tool Number of ~ Speed  Adapters False
Reads (sec) Remaining (%) Positives (%)

BBDuk ™ 1.2

BBDuk 5M 23 372 0.0099

BBDuk 10M 35

Cutadapt ™ 208

Cutadapt 5M 1037 10.1 2.1059

Cutadapt 10M 2084

Trimmomatic 1M 25

Trimmomatic  5M 93 57.7 0.0004

Trimmomatic 10 M 145

A table of performance tests and statistics between various trimming tools.
Each tool was tested on datasets with 1 M, 5 M or 10 M reads. Speed tests
were averaged across three replications. Adapters remaining and false
positives tests were only conducted on 5 M read datasets, as the difference
between 1 M, 5 M, and 10 M datasets was minimal

respectively) than Bowtie2 (56.545%) (Fig. 5a). All three
tools mapped ~7-10% of reads incorrectly (defined as
reads that mapped to incorrect loci), but Bowtie2 was
not able to map 35% of simulated reads to the human
genome at all compared to the ~7-10% of unmapped
reads for BBMap and BWA-MEM. Teaser also reported
the precision (fraction of correctly mapped reads com-
pared to all mapped reads) and the recall rate (fraction
of correctly mapped reads if compared to correctly
mapped reads and non-mapped reads) for each mapper.
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Not surprisingly, BBMap achieved the highest precision
and recall rating at 90.47% and 92.03% respectively,
with BWA-MEM close behind at 89.24% precision and
92.07% recall and Bowtie2 performing significantly
worse (88.18% precision and 61.19% recall rating) (Fig.
5b).

BBMap, BWA-MEM and Bowtie2 appear to perform
on par in terms of accuracy, performance tests for mem-
ory usage and speed indicated that BBMap was slower
and used larger amounts of RAM than either of the
other two programs (Fig. 5¢ and d). However, BBMap
builds its index on the fly and thus its resulting time is
not indicative of its pure mapping speed. In conclusion,
we propose that all three mappers perform compara-
tively well on our simulated dataset, with Bowtie2
showing slightly lower performance test results in several
sections. It is important to keep in mind that all aligners
can be altered quite significantly to achieve higher sensi-
tivity, and improve mapping results, and in our case, we
only tested the mappers using their default settings and
levels of stringency. Taken together, CIPHER offers
ample alignment/mapping opportunities giving the user
a broad spectrum of pipelines to be selected depending
on their specific needs and biological questions to be
answered.

Enhancer-identification model validation
Enhancers are short DNA-sequences that can regulate
basal gene transcription over distances ranging from a
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Fig. 6 Definition of enhancer states and validation of enhancer-prediction model. a Enhancer states and their corresponding chromatin
signatures, DNase hypersensitive sites (DHS), and eRNA levels. Red and blue indicate sense and antisense eRNAs, respectively. b Heat maps

of DNase, H3K4me1, H3K27ac, H3K4me3, and GRO-seq (red: sense eRNAs, blue: antisense eRNAs) signal at active enhancers centered on the
middle of all enhancers and extended 3 Kb in either direction. ¢ Heat maps of DNase, H3K4me1, H3K27ac, H3K4me3, and GRO-seq (red: sense
eRNAs, blue: antisense eRNAs) signal at primed enhancers centered on the middle of all enhancers and extended 3 Kb in either direction.

d Genome browser view of predicted enhancers and their associated genome features. e Heat maps of Hela active enhancers centered

on the middle of all enhancers and extended 3 Kb in either direction. f Heat maps of Hel.a primed enhancers centered on the middle of

all enhancers and extended 3 kb in either direction

few kilobases to megabases. Enhancers are characterized by
the presence of various genomic features including: (1) an
accessible chromatin landscape, (2) distinct chromatin sig-
natures, (3) TF binding, and (4) bi-directional transcrip-
tional activity as revealed by the presence of enhancer-
derived non-coding RNAs (eRNAs) based on GRO-seq
data [47, 48].

Previous studies have shown that it is possible to accur-
ately predict enhancer elements using machine-learning
models by combining these various regulatory features
[49-53]. However, most of this enhancer-prediction mod-
eling is bundled into software that is highly technical in
nature and often requires specialized paid software such
as MATLAB to use. To simplify enhancer identification,
CIPHER implements a random-forest based classifier
similar to the model developed by Bing Ren’s group at
UCSD [50] (Fig. 3). Our model predicts transcriptional
enhancers based on a combination of chromatin signa-
tures (H3K4mel, H3K27Ac, H3K4me3) and DNase-seq
information.

To validate CIPHER’s enhancer prediction functionality,
we identified enhancer elements in two cell lines (HCT116
and HeLa). Using ChIP-seq and DNase-seq datasets from
the ENCODE project, we generated average coverage pro-
files for H3K4mel, H3K27ac, H3K4me3, and DNase-seq.

), o«

These coverages profiles were fed into CIPHER’s “analysis”
mode.

Enhancer activity can be inferred from the presence or
absence of histone markers. Enhancers are typically
marked with high levels of H3K4mel, in contrast to pro-
moters that are marked with higher levels of H3K4me3.
More recently, H3K27ac and high eRNA content have
been found to distinguish functionally active from primed
or latent enhancers [47, 54] (Fig. 6a). Thus, predicted
enhancers were further divided into active and primed
enhancer ‘states’ based on their H3K27ac levels or lack
thereof, respectively. CIPHER predicted 18,877 active and
11,460 primed elements in HCT116 and 38,045 active and
10,600 primed elements that contained the expected
DNase-sensitivity pattern (DNase-seq), chromatin signa-
tures (ChIP-seq), and transcriptional activity content
(GRO-seq) (Fig. 6b and c).

Chromatin state profiles were evaluated by constructing
heatmaps for active and primed enhancers ranked by
decreasing levels of chromatin accessibility (Fig. 6b and c).
This analysis revealed accessible chromatin at the center
of all predicted enhancers as shown by DNase-seq, and
chromatin signatures surrounding the nucleosome free
region (NFR) in a ‘peak-valley-peak’ pattern that is consist-
ent with traditional enhancer signatures [55] (Fig. 6d).
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Furthermore, while both active and primed enhancers
contained comparable levels of H3K4mel, active en-
hancers contained larger H3K27ac levels (average cover-
age: 0.72 versus 0.099), and stronger eRNA sense (6 versus
1) and anti-sense (5 versus 1) read coverage compared
with primed enhancers, consistent with increased enhan-
cer activity (Fig. 7a and b). Moreover, as expected, active
enhancers contain lower levels of the active promoter sig-
nature (H3K4me3) compared with the associated gene
pair (average coverage: 0.247 and 1.712, respectively).

Using CIPHER in combination with our previous strin-
gent cut-off, we also predicted enhancers in other cell
lines: 38,045 active and 10,600 primed enhancers in HeLa
(Fig. 6e and f), and 38,551 active and 2292 primed
enhancers in K562 cells (data not shown). Collectively,
these results demonstrate that our enhancer-recognition
model can reliably detect enhancer elements using ChIP-
seq and DNase-seq datasets in a broad range of cell lines.

Conclusions
CIPHER is a robust, and comprehensive NGS data analysis
workflow suite with numerous functions and quality con-
trol metrics. It integrates pipelines for several of the most
commonly generated datasets used in current genome biol-
ogy studies and features an “analysis” mode that conducts
complex bioinformatics challenges such as enhancer identi-
fication and integrative dataset analysis functions. CIPHER
is extremely easy to run and makes use of Docker con-
tainers so there are no dependency issues. Entire datasets
can be reproduced among researchers starting from raw
data in a single command. Here we re-created the results of
two published studies, briefly compared CIPHER’s ease of
use and speed to two other automated pipelines and pro-
vided performance metrics for several adapter decontamin-
ation and mapping tools. We further validate CIPHER’s
enhancer-prediction model in various human cell lines.
Although CIPHER has combined several comprehen-
sive and thorough pipelines for commonly used NGS
approaches, there are still quite a few challenges that
remain to be addressed. CIPHER’s current RNA-seq
pipeline is largely optimized for typical two-type ex-
perimental designs (e.g. WT versus KO) and must be
rewritten to ensure multi-design experiment DEG ana-
lysis and time-series analysis. We also plan to include
pipelines for genome-wide association studies (GWAS)
and de novo transcriptome assembly in the near future.
Additionally, CIPHER currently only runs entire work-
flows, but we are aware that individuals may prefer to
use only a subset of tools to complete certain tasks,
thus it will be beneficial to allow this type of modular
tool selection in the near future. As new or improved
methods/software become available, the modular de-
sign of CIPHER will enable their smooth integration
into our existing pipelines.
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Additional file 1: Table S1. [List of KAP1-7SK snRNP target genes
identified by CIPHER] (TXT 489 kb)
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