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The recurrence of glioma is a difficult problem in clinical treatment. The molecular markers
of primary tumors after resection cannot fully represent the characteristics of recurrent
tumors. Here, abundant tumor DNA was detected in tumor in situ fluid (TISF). We report
that TISF-derived tumor DNA (TISF-DNA) can detect genomic changes in recurrent
tumors and facilitate recurrence risk analysis, providing valuable information for
diagnosis and prognosis. The tumor DNA in TISF is more representative and sensitive
than that in cerebrospinal fluid. It reveals the mutational landscape of minimal residual
disease after glioma surgery and the risk of early recurrence, contributing to the clinical
management and clinical research of glioma patients.

Keywords: precision medicine, tumor in-situ fluid, circulating tumor DNA, spatiotemporal heterogeneity,
glioma progression
INTRODUCTION

Although the diagnosis and treatment of glioma has made great progress, the prognosis of patients
is still not ideal (1). Almost all gliomas will recur after surgery. The recurrent glioma is evolved from
the residual disease in vivo under natural and therapeutic pressure (2). Many studies have shown
that there is a great difference between the primary tumor and the recurrent tumor (3–5). This
complicates the development of effective treatment strategies and presents significant obstacles to
the development of new targeted therapies (3). At present, molecular pathology obtained after
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resection of glioma has been used to guide postoperative
treatment. However, due to the heterogeneity of recurrence
and primary tumor, real-time postoperative gene status of
glioma may be more accurate than that of tumor tissue in
guiding postoperative treatment. Tumor circulating DNA
(ctDNA) relapse is present in the early stage of tumor
recurrence (6–8), but has not been confirmed in glioma. Real-
time monitoring of residual disease progression after glioma
resection and detection of ctDNA recurrence before imaging
recurrence can realize clinical ultra-early treatment before
recurrence. Detection of molecular characterization after
recurrence of glioma in vivo can analyze the spatiotemporal
heterogeneity of glioma, provide better clinical treatment
strategies, and lay the foundation for breakthrough progress in
clinical research.

Tumor DNA was extracted in the tumor in situ fluid (TISF)
after glioma surgery. In our preliminary study, we reported that
TISF, the fluid within the local surgical cavity of glioma, is a novel
clinical source for real-time genomic profiling of glioma (9). Our
results suggest that TISF-DNA can detect the genomic
characteristics of early evolution of glioma after surgery and can
characterize the genetic characteristics of recurrent gliomas, which
may bemore sensitive than CSF-ctDNA. It canmonitor the clinical
course of glioma recurrence in real time and provide guidance for
early postoperative treatment and recurrence treatment.
MATERIALS AND METHODS

Patients and Sample
This retrospective cohort study was conducted on January 1,
2018, at the People’s Hospital of Henan Province on January 31,
2020. A total of 30 patients with brain glioma were diagnosed. A
fluid reservoir sac (Medtronic, USA, Supplementary Figure 1)
was placed during surgery and fixed between the periosteum and
Galea aponeurosis for collection of TISF (Figure 1). Primary
TISF samples from 30 patients were collected at two different
postoperative times: The first time (TISF-1, Figure 1BI/II) is the 1
to 2 months after operation. The second time (TISF-2,
Figure 1BIII/IV) is that tumor progression was found during
Frontiers in Oncology | www.frontiersin.org 2
postoperative follow-up (according to RANO standard, T1
enhancement increased by ≥25%, T2/FLAIR increased, and
new lesions and clinical manifestations deteriorated). Five
patients received supplementary sampling before progression
of the tumor. Cerebrospinal fluid samples were obtained from
14 patients at the time of tumor progression (Figure 1C). In
addition, the matched blood samples were obtained from each
patient, and a designed brain tumor map containing 68 genes
was used to screen tumor mutation genes. The average depth of
targeted sequencing of tumor tissue was 500X, the average depth
of paired blood sequencing was 250X, and the average depth of
TISF-DNA sequencing was 20,000X. Postoperative therapy was
performed according to NCCN guidelines for central nervous
system tumors. Fresh tumor tissue comes from surgical
resection, and HE staining specimens contain more than 70%
of tumor cells, which neuropathologists have confirmed. Grade
III–IV glioma patients were followed up every 4–6 weeks, and
grade II glioma patients were followed up every 2–3 months. All
patients underwent MRI at each follow-up evaluation.

Targeted Sequencing Analysis of
Tumor-Associated DNA
All clinical TISF samples, CSF samples, and control tumor tissue
samples were detected by Next-generation sequencing. QIAamp
DNA Tissue and Blood Kit for Genomic DNA (Qiagen;
Germantown, MD, USA) extract. TISF sample, CSF samples,
and blood sample were centrifuged in EDTA tube at 1,900 g for
10 min, and the precipitate particles were frozen at −80°C. The
supernatant was centrifuged at 16,000 g for 10 min and
transferred to −80°C for preservation. CfDNA was extracted
from TISF and blood supernatant using Mag-MAX CellFree
DNA isolation kit (Thermo Fisher Scientific, Waltham, MA,
USA). Finally, all segregated DNAs were quantified using the
Qubit 2.0 Fluorometer with the Qubit dsDNA HS Assay kit (Life
Technologies; Carlsbad, CA, USA).

As described elsewhere, the isolated DNA was cut into 150–
200 bp fragments using Covaris M220 Focused-ultrasonicator™

Instrument (Covaris; Woburn, MA, USA). Following the
manufacturer’s direction (10, 11), we constructed Fragmented
DNA and ctDNA libraries with the KAPA HTP Library
Preparation Kit (Illumina platforms; KAPA Biosystems;
A B C

FIGURE 1 | The sample acquisition of tumor DNA. (A) Tumor in situ fluid samples were obtained. (The state of the tumor at the time of TISF sampling. (B-I/II) TISF-
1: sampled from early progression of residual disease. (B-III/IV) TISF-2: imaging showed tumor progression. TISF-a/TISF-b: Before MRI examination showed a
recurrence of the tumor). (C) The sample of cerebrospinal fluid was obtained.
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Wilmington, MA, USA). The DNA libraries were captured with
a designed panel of 68 genes for brain tumors (GenetronHealth;
Beijing, China), these containing major brain tumor-related
genes. The DNA sequencing was based on novaseq high-
throughput sequencing platform. After sequencing, we adopted
such criteria that a mutation had an allele fraction of ≥0.1%, and
a total of ≥4 reads were considered existing in liquid samples.
Known recurrent loci were further manually checked with
Integrative Genomics Viewer (IGV v2.3.34) in the target
sample comparing to the normal blood DNA. The dbNSFP
and the Exome Aggregation Consortium (ExAC) database
were used to exclude either benign mutations with pp2_hdiv
score <0.452 or polymorphic non-synonymous mutations sites.
At the end, all detected mutations were annotated for genes using
ANNOVAR, Oncotator and Vep.

Statistical Analysis
We assessed differences in clinical characteristics between TISF-
1-DNA and TISF-2-DNA patients using Fisher’s exact test for
categorical variables and Wilcoxon test and Mann-Whitney
(rank sum) test or Kruskal-Wallis test for continuous variables.
Correlation between Tumor tissue Mutational Burden and TISF-
DNA Number of mutations or TISF-DNA concentration was
assessed by Spearman correlation. Multivariate analysis was
performed using binary logistic regression analysis, and
Hosmer-Lemeshow method was used to test the model fitting
degree (p > 0.05 was highly fitting). We assessed the association
between TISF-DNA detection and PFS and OS by the log-rank
Frontiers in Oncology | www.frontiersin.org
)
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method. All statistical tests were two-sided, and p values < 0.05
were considered significant. Unless otherwise specified, SPSS
(version 23.0; Armonk, NY, USA, IBM Corp) and GraphPad
Prism (version 8.0c) were used for all analyses.
RESULTS

Abundant Genomic Profiling of
Glioma in TISF
We identified at least one tumor-derived TISF gene mutation
from all 30/30 patients (100.0%) with tumor characteristics
(Table 1), suggesting that TISF can be used to characterize
recurrent gliomas. As shown in the addendum (Figure 2A),
tumor tissue gene mutations were detected in 30 patients (30/30,
100.0%). There were 186 mutations, and the median of the
mutation was 4. TP53 (19/30, 63.3%) and IDH1 (16/30, 53.3%)
were the most common mutations. Abnormal gene
rearrangement or copy number was detected in seven patients,
and five cases occurred in glioblastoma (5/13, 38.5%). The most
common is CDK4 gene rearrangement or copy number
abnormalities (4/7, 57.1%); all were found in glioblastoma.

The TISF-1-DNA sequencing detected tumor gene mutations
in 28 patients (93.3%, 28/30). The total number of mutations was
124, and the median was 2. The mutation rates of TP53 (43.3%,
13/30) and IDH1 (36.7%, 11/30) were still high, which was
different from what we expected. In the TISF-2-DNA
sequencing, the positive rate reached 100.0% (30/30), the
number of mutations was 518, and the median was 6.5. TP53
(19/30, 63.3%) and IDH1 (14/30, 46.7%) had high mutation
rates. In one case of diffuse astrocytoma, hereditary related gene
mutation of aCHEK2 was detected in three sequencings.

Genomic Characteristics of Primary
Glioma, Early Postoperative Tumor,
and Recurrent Glioma
TISF-1 represents the genomic signature of early postoperative
evolution of residual disease, and TISF-2 represents the genetic
signature of tumor progression.We compared the detection results
of tumor tissues andTISF-DNAdetections (Figures 2B–F). InTISF
and tumor samples, the percentage of shared mutations varies
widely between samples (0–100%,Figure 2F), and themedian total
mutation rates were 43.1% (TISF-1) and 45.8% (TISF-2),
respectively. In TISF-1 samples, the number of shared mutations
with tumor tissue was 61, accounting for 25.0% (Figures 2B, E). In
TISF-2 samples, there were more shared mutations (101,
Figure 2E), but the proportion of shared mutations was
significantly lower (16.9%, Figure 2C). The shared mutation of
TISF-1 and TISF-2 was 82, and themedian commonmutation rate
was 38.2%, accounting for 14.7% (Figures 2D, E).

At the time of tumor recurrence, the variant allele fractions
(VAFs) for TISF mutations were between 0.1 and 84.3%. For the
shared trunk mutations of the primary tumor and the recurrent
tumor, the increase of VAF was observed after the tumor was
excised to the time of recurrence (Figure 3A, p < 0.0001). The
TABLE 1 | Clinical characteristics.

Variable All (n = 32

Age, years
Median 53.2
Range 27-74
Sex, n (%)
Female 16 (53.3)
Male 14 (46.7)
Tumor grade (WHO), n (%)
II 7 (23.3)
III 9 (30.0)
IV 14 (46.7)
Histopathology, n (%)
Glioblastoma, IDH-wild 14 (46.6)
Anaplastic oligodendroglioma, IDH-mutant 6 (20.0)
Anaplastic astrocytoma, IDH-mutant 2 (6.7)
Diffuse astrocytoma, IDH-mutant 6 (20.0)
Oligodendroglioma, IDH-mutant 2 (6.7)
Aftertreatment, n (%)
Chemoradiotherapy 23 (76.7)
Chemotherapy 7 (23.3)
Location, n (%)
Frontal lobe 9 (30.0)
Frontotemporal lobe 1 (3.3)
Temporal lobe 5 (16.7)
Temporoparietal lobe 5 (16.7)
Parietal lobe 3 (10.0)
Parietal-occipital lobe 3 (10.0)
Deep brain 3 (10.0)
Cerebellum 1 (3.3)
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shared mutations occurring in TISF also showed an increase in
VAF (Figure 3B, p < 0.0001). We performed a longitudinal
analysis of the dynamics of DNA mutation spectrum detected in
30 patients, and found that the total mutation load in the TISF-2-
DNA spectrum increased when the tumor recurred (Figure 3C,
Frontiers in Oncology | www.frontiersin.org 4
p < 0.0001). When the tumor recurred, 24 patients developed
new mutations that were not present in the original tumor. They
contained common tumor-driven genes, such as ATRX, PIK3CA,
PTEN, NF1, RB1, SETD2, TP53 and other 12 mutation types
(Figure 3D). At the same time, tumor recurrence was
A

B

D E

F

C

FIGURE 2 | Mutant landscapes in tumor tissue and TISF. (A) Tumor DNA from the patient’s tumor in situ fluid was successfully isolated (n = 30). The following
histologies were included in our study: glioblastoma, anaplastic oligoastrocytoma, anaplastic astrocytoma, diffuse astrocytoma, oligodendroglioma. The most
frequently mutated genes included IDH1, TP53, NF1, EGFR, and FAT1. (B-D) Shared mutations in paired samples of tissue or TISF (n = 30). (E) Analysis of the
frequency of mutation detected for three times. (F) Analysis of mutation consistency in pairs of TISF samples and matched tumor tissues.
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accompanied by the increase of TISF-cfDNA concentration
(Figure 3E, p < 0.0001).

TISF Is a More Sensitive Source of Glioma
DNA Than the Cerebrospinal Fluid
In the cases matched with CSF, 100% (14/14) of tumor DNA was
detected in TISF at the time of recurrence. In contrast, ctDNA was
detected in only four patients (28.6%, 4/14) in CSF (Figure 4A).
There were only one to three shared mutations in CSF with the
primary tissue, and the results were similar to the mean of shared
mutations in TISF-2 (mean 3.15), with a mutation consistency rate
of 0.75–66.7% (Figures 4B, D). The shared mutations of CSF and
TISF-2 have a high consistency (Figure 4C), with a consistency rate
of 30.77–85.71% (Figure 4D), which also reflects the difference
between the recurrence tumor and the primary tumor.
Interestingly, we found a huge difference in cfDNA content
between CSF and TISF samples. The concentration of cfDNA in
TISF samples ranged from0.9 to 346.5 ng/ml, while that inCSFwas
only 0.55–16.23 ng/ml (Figure 4E, p < 0.0001). The level of shared
mutation VAF was higher than that of CSF in TISF (Figure 4F, p <
0.0001). There was no difference in the acquisition time of CSF and
TISF samples (Figure 4G, p = 0.414). We found that the shared
mutation VAF was lower than TISF in four patients who tested
positive for CSF (Figures 4H–K).

Before the recurrence, 93.3% (28/30) of the patients were able
to detect early evolution of glioma after surgery through TISF.
Tumor DNA was found in 100.0% (30/30) of the patients at the
time of tumor recurrence, while tumor DNA was found in only
four patients (28.6%, 4/14) in CSF. These results are sufficient to
Frontiers in Oncology | www.frontiersin.org 5
indicate that TISF has higher tumor DNA content, higher
detection positive rate, and higher clinical practicability.

Tumor DNA in TISF and the Risk of
Detection
To determine the risk factors for TISF tumor DNA detection, we
compared TISF-DNA test results in patients grouped according
to different clinicopathologic characteristics. Two positive TISF-
DNA tests were not associated with tumor grade. Two patients
without mutations in tumor tissue were removed. In TISF-1, the
positive rate of TISF-DNA in grade IV patients was 92.8% (13/
14), compared with 88.9% (8/9) in grade III patients and 100.0%
(7/7) in grade II patients, and there was no difference in the
positive rate of tumor DNA mutation (p = 1.000). In TISF-2, the
positive rate of TISF-DNA was 100.0% (30/30). In contrast, there
was no significant difference in the positive rate of different
tumor grades (Figure 5A).

We compared the two TISF-DNA mutation loads of different
grades of glioma. In TISF-1 and TISF-2, there was no difference
in statistical results (p = 0.835, p = 0.575). Interestingly, it was
found that the number of TISF-2-DNA mutations was higher
than that of TISF-1-DNA in patients with grade IV and II (p =
0.001, p = 0.016). However, this difference was not found in
patients with grade III (p = 0.161). The change of cfDNA
concentration in TISF-1 and TISF-2 test samples was very
significant; there was significant difference (p < 0.0001). TISF-
1-cfDNA concentration was 0.60–48.50 ng/ml, and the median
concentration was 3.20 ng/ml. The concentration of TISF-2-
cfDNA was 0.90–346.00 ng/ml, and the median concentration
A B

D E

C

FIGURE 3 | Longitudinal analysis of tumor DNA from TISF in different stages. (A) VAF changes in primary and recurrent tumor trunk mutations (p < 0.0001).
(B) VAF of TISF shared mutation is elevated when tumor progression (p < 0.0001). (C) Elevated mutation load at tumor progression (p < 0.0001). (D) Twelve novel
genotypes were detected in TISF-2 at tumor recurrence. (E) The concentration of TISF-cfDNA increased during tumor progression (p < 0.0001).
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was 37.25 ng/ml. We analyzed the changes of cfDNA
concentration in TISF-1 and TISF-2 test samples of patients
with different grades. The cfDNA concentrations of TISF-1-
DNA and TISF-2-DNA in patients with grade IV, III, and II
were significantly different (p = 0.001, p = 0.005, p = 0.012). The
cfDNA concentration in TISF may be higher with the
progression of tumor. The difference of cfDNA concentration
in different tumor grades was significant. In TISF-1 (p = 0.007),
the median cfDNA concentration was 7.20 ng/ml in grade IV,
3.02 ng/ml in grade III, and 1.07 ng/ml in grade II. In TISF-2 (p =
0.005), the median cfDNA concentration in patients with grade
IV was 57.80 ng/ml. In contrast, the median cfDNA
concentration in patients with grade III was 40.40 ng/ml, and
that in patients with grade II was 5.95 ng/ml; there was
significant difference.

We have found that the trunk mutation VAF is elevated in
most gliomas with recurrence, but not in all. In patients we
sampled multiple times (n=5, Figures 5B–F), patients 1 and 2
had lower levels of the shared mutated gene VAF when the
tumor recurred (<5.0%), and patients 5, 6, and 9 showed a
sustained increase in VAF. However, their levels of cfDNA
concentration continued to rise as the tumor progressed, and
no abnormal changes were found.
Frontiers in Oncology | www.frontiersin.org 6
Higher cfDNA Concentration From TISF
Sources Was Associated With Worse
Progression-Free Survival
TISF-1 represents genomic signatures for early postoperative
evolution of glioma, while TISF-2 represents genomic signatures
for tumor progression. We evaluated whether the early detection
of TISF-DNA was related to the progression of glioma. We found
that cfDNA concentration (TISF-1) was negatively correlated
with PFS (p < 0.0001, Spearman’s rank correlation coefficient r =
−0.844, Figure 6A), but the number of mutations in TISF-1 was
not correlated with PFS (p = 0.242, Figure 6B). The patients were
divided into early progression group (n = 13, grade IV 9, grade
III 3, grade II 1) and early progression-free group (n = 17, grade
IV 5, grade III 6, grade II 6) according to the presence or absence
of the tumor progression within 180 days after surgery
(Figure 6C). In the early progression group and early
progression-free group, there was no difference in the number
of mutations (p = 0.170, the median number of mutations were
two and three). The high concentration of TISF-cfDNA in the
early postoperative stage may mean patients at high risk of
recurrence, because we found that the median cfDNA
concentration in the early progressive group (16.5 ng/ml) was
6.3 times higher than that in the early non-progressive group (2.6
A B

D E

F G

IH J K

C

FIGURE 4 | TISF is a more abundant source of tumor DNA. (A) The gene mutation profiles of the paired samples were in CSF and TISF. (B, C) Shared mutations in
paired samples of CSF, tissue, or TISF (n = 14). (D) Mutation consistency analysis of CSF and matched tumor tissue and TISF samples. (E) cfDNA concentration in
CSF and TISF-2. (F) CSF and TISF-2 mutated gene VAF. (G) The time interval between sample acquisition. (H–K) The four patients with positive CSF were found to
have recurrent tumors with close communication with the ventricle and cistern, and the tumor burden was large. VAF of the trunk mutation was elevated at
progression, but VAF was lower in CSF than in TISF.
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ng/ml) (p < 0.0001). The median PFS in the early progressive
group and the early progression-free group was 108 days and 468
days, respectively.

In the multivariate analysis of this study, considering the
patient’s age, tumor grade, tissue mutation number, TISF-1-
DNA mutation number, and TISF-1-cfDNA concentration, it
was found that the early postoperative cfDNA concentration was
a high risk factor for worse PFS (<180 days, p = 0.026, OR =
1.638, 95% CL, 1.061–2.528, Table 2). The high concentration of
cfDNA (TISF-2) at recurrence was also related to worse OS.
Among the 19 patients who were followed up to OS (Figure 6D),
the concentration of TISF-2-cfDNA (median concentration:
159.00 ng/ml) in patients with OS < 600 days was significantly
higher than that in patients with OS > 600 days (median
concentration: 20.00 ng/ml, p = 0.013). Even in each
pathological type of glioma, TISF-1-cfDNA concentration was
much higher in the early progression group than in the early
progression-free group (Figures 6E, F).
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

Residual disease after surgery is inevitable because of the diffuse
growth of gliomas along blood vessels and white matter bundles,
leading to almost all gliomas that eventually recur. At present, for
glioma, molecular targeted therapy and early diagnosis of tumor
DNA level recurrence are promising research projects, which are
of great importance for the improvement of clinical treatment
effect. Due to the special location of glioma, it is difficult to detect
markers in the blood, and research in this field is quite limited
at present. We found that TISF contains a large amount of
tumor DNA, has a high positive rate (up to 93.3% positive at
the early stage of tumor resection and 100% positive at tumor
progression), and is even more sensitive than cerebrospinal
fluid derived ctDNA, which can be used to characterize the
genetic status of gliomas in real time. Due to the diffuse growth of
glioma and the impossibility of 100% surgical resection,
postoperative residual glioma is almost inevitable. The results
A

B

D

E F

C

FIGURE 5 | Relationship between tumor DNA derived from TISF and tumor progression. (A) Patients with different tumor grades detected positive for TISF.
(B, C) Patients with increased cfDNA concentration and low VAF level when tumor progression. (D–F) The concentration of TISF-cfDNA and VAF continued to
increase before imaging tumor progression.
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of TISF-DNA detection in the early postoperative period showed
that only 25% of the mutant genes were the same as those in the
primary tissue, while only 16% of the mutant genes were the
same as those in the primary tissue at the time of tumor
recurrence, indicating the heterogeneity of recurrent tumors
Frontiers in Oncology | www.frontiersin.org 8
and primary tumors. At the time of tumor recurrence,
increased VAF and mutation load were found in the common
trunk mutation, and new mutated genes not present in the
primary tumor were found in 24 patients. Many studies have
found that circulating tumor DNA (ctDNA) is a reliable
A B

D

E

F

C

FIGURE 6 | Analysis of tumor DNA derived from TISF and patient survival. (A) cfDNA concentration was inversely correlated with patients’ PFS (p < 0.001,
Spearman’s rank correlation coefficient r= −0.844). (B) There was no correlation between the number of mutations in TISF-1 and patients’ PFS. (C) Progression-free
survival in the early progression group and the early progression-free group. And the median cfDNA concentration at each time point. (D) Overall survival of 19
patients. (E) Progression-free survival of gliomas was observed for each pathological type. (F) For each pathological type of glioma, cfDNA concentration was still
significantly higher in the early progression group.
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biomarker for residual tumor diseases and can be used to identify
high-risk patients with tumor recurrence. These findings have
been confirmed in tumors outside the nervous system, such as
breast cancer (12), colon cancer (13), lung cancer (14, 15),
esophageal cancer (16), and prostate cancer (17). But because
of the existence of blood-brain barrier, the detection of ctDNA in
blood is very limited. Although cerebrospinal fluid (CSF) may be
a better source of ctDNA for glioma than blood (18–23), many
related studies have shown that not all CSF can find ctDNA, the
high negative rate is an undeniable fact, which brings difficulties
to clinical application and dynamic follow-up research. The
positive of CSF-ctDNA detection in brain tumors needs to
meet the tumor progression, diffusion to the ventricle or
subarachnoid space (20, 21, 24). This means that CSF-ctDNA
is not a representative source of glioma ctDNA, and important
information will be lost in the monitoring of tumor progression.
In one study, the positive rate of CSF-ctDNA in 85 glioma
patients receiving lumbar puncture after glioma resection was
only 49.4% (20). In one study of medulloblastoma of the central
nervous system, only 23.1% (3/13) of patients tested positive for
CSF-ctDNA at postoperative follow-up (23). Wang Y et al. found
that tumors adjacent to CSF or cortical surface are more
common CSF-DNA mutations (25). Changcun Pan et al.
found that tumors not directly adjacent to CSF cannot detect
CSF-ctDNA mutation (19).

TISF is directly derived from possible postoperative residual
tumor disease or tumor tissue that recurs in situ, so the use of
TISF as a sample of glioma DNA is closest to the detection of
tumor tissue itself. The spatial fluidity of local DNA in TISF is
small, and it cleverly avoids the blood-brain barrier and the
circulation of cerebrospinal fluid, so there is sufficient
information of tumor DNA.

Only 28.6% (n = 4) of the 14 matched CSF-ctDNA cases were
positive at the time of recurrence. The positive rate of TISF-DNA
was 100% (30/30), and 93.3% (28/30) at the time of early
recurrence. The content of cfDNA and the level of shared
mutation VAF in TISF were higher than those in CSF, which
indicated that the content of cfDNA in TISF-cfDNA from
tumors was higher, and its sensitivity and effectiveness may be
better than CSF-ctDNA. Early postoperative TISF level can
reflect residual disease or early progress, which can be used as
the baseline for subsequent detection. With the progression of
the tumor, the gradual increase of VAF in the main mutation
suggests the possibility of recurrence of the tumor, but the
imaging may not show at this time, which helps to judge the
Frontiers in Oncology | www.frontiersin.org 9
recurrence of the tumor in advance to make clinical decisions.
Early postoperative TISF-cfDNA concentration may represent
residual disease or its early evolution and is related to worse PFS
of patients, which is helpful to judge the prognosis of patients.
CONCLUSIONS

Our study shows that the tumor DNA extracted from TISF can
be used to characterize the genomic status of glioma in real time,
which provides a novel avenue for glioma liquid biopsy. It may
be more sensitive and representative than CSF-ctDNA. It helps
to reveal the mutation landscape of minimal residual disease
after glioma surgery and the risk of early recurrence, which is
helpful for the clinical management and clinical research of
glioma patients.
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