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Abstract

Background: Neuroticism is a strong predictor for a variety of social and behavioral outcomes, but the etiology is still 
unknown. Our study aims to provide a comprehensive investigation of causal effects of serum metabolome phenotypes on 
risk of neuroticism using Mendelian randomization (MR) approaches.
Methods: Genetic associations with 486 metabolic traits were utilized as exposures, and data from a large genome-wide 
association study of neuroticism were selected as outcome. For MR analysis, we used the standard inverse-variance weighted 
(IVW) method for primary MR analysis and 3 additional MR methods (MR-Egger, weighted median, and MR pleiotropy residual 
sum and outlier) for sensitivity analyses.
Results: Our study identified 31 metabolites that might have causal effects on neuroticism. Of the 31 metabolites, uric acid 
and paraxanthine showed robustly significant association with neuroticism in all MR methods. Using single nucleotide 
polymorphisms as instrumental variables, a 1-SD increase in uric acid was associated with approximately 30% lower risk 
of neuroticism (OR: 0.77; 95% CI: 0.62–0.95; PIVW = 0.0145), whereas a 1-SD increase in paraxanthine was associated with a 7% 
higher risk of neuroticism (OR: 1.07; 95% CI: 1.01–1.12; PIVW = .0145).
Discussion: Our study suggested an increased level of uric acid was associated with lower risk of neuroticism, whereas 
paraxanthine showed the contrary effect. Our study provided novel insight by combining metabolomics with genomics to 
help understand the pathogenesis of neuroticism.
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Introduction
Neuroticism is a human personality trait characterized by a ten-
dency to respond with negative emotions to threat, frustration, 
or loss (Lahey, 2009). Individuals with neuroticism often believe 

that the world is dangerous and one’s ability is not enough to 
cope with challenging events (Barlow et al., 2014). Neuroticism 
can also predict a variety of social and behavioral outcomes, 
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especially common psychiatric symptoms, including anxiety, 
depressive, social phobia, and substance use (Ormel et al., 2013b, 
2013a). Genetic factors contribute substantially to the pathogen-
esis of neuroticism, accounting for 40% to 60% of the variance 
of this trait (Clark et al., 1994; Hettema et al., 2005; Fullerton, 
2006). Recent genome-wide association studies (GWASs) have 
yielded substantial findings for improving our understanding of 
the etiological mechanism of neuroticism (Okbay et  al., 2016; 
Luciano et al., 2018; Nagel et al., 2018). However, functional an-
notations towards biological processes are still lacking.

Substantial effort has been expended to understand the bio-
logical mechanisms through which GWAS-identified risk variants 
act on target diseases, including the introduction of expression 
quantitative trait loci, methylation quantitative trait loci, and 
protein quantitative trait loci (Westra et  al., 2013; Consortium 
et al., 2017; McRae et al., 2018; Yao et al., 2018). Recent studies 
have proposed metabolic traits as functional intermediates to 
reveal the relevant biological processes of disease-related gen-
etic variants (Gieger et al., 2008; Suhre et al., 2011). Metabolites 
are a group of small molecules widely distributed throughout 
the cells, tissues, and fluids of human bodies (Quinones and 
Kaddurah-Daouk, 2009). Alterations in the concentration of me-
tabolites can serve as useful biomarkers and provide early evi-
dence for the diagnosis and prognosis of pathologies (Assfalg 
et al., 2008; Holmes et al., 2008). Especially in recent years, the 
rapidly evolving field of metabolomics is providing a system-
atic readout of the metabolic state of an individual. GWASs with 
non-targeted metabolomics have been conducted and the con-
cept of “genetically determined metabotypes (GDMs)” proposed 
to further our understanding of the relationships and inter-
actions between genetic variations and environmental triggers 
of disease. GDMs serve as useful intermediate phenotypes to 
explain the causal roles of genetic variants in human diseases.

Mendelian randomization (MR) is a novel technique that 
uses genetic variants as instrumental variables to assess 
causal inferences between risk factors and clinical outcomes 
of interest (Choi et al., 2019). The fundamental principle of the 
MR study design is that genetic variants, which indicate the bio-
logical effects or level of effects of a modifiable exposure, should 
be causally associated with exposure-related disease risk. This 
approach is largely independent of the biases inherent in ob-
servational studies, given that genetic variation is unlikely to 
be affected by environmental factors (Pierce et al., 2011). During 
the past years, the explosion in publicly available GWAS sum-
mary data has made the MR popular in inferring causality, espe-
cially the 2-sample MR design that utilizes just 1 pair of GWAS 
summary statistics (Zheng et al., 2017). Based on the 2-sample 
MR approach, we are able to link GDMs with neuroticism using 
GWAS estimates on both metabolic phenotypes and neur-
oticism. The aims of the present study were to: (1) assess the 
causal relationships between genetically determined levels of 
serum metabolites and risk of neuroticism, (2) investigate the 

genetic variants that might have important roles in determining 
the variation of corresponding metabolites and risk of neuroti-
cism, and (3) identify potential metabolic pathways that may be 
involved with the pathogenesis of neuroticism.

Methods

Genetically Determined Metabolites

Data for genetic associations with serum metabolites were 
downloaded from the Metabolomics GWAS server (http://
metabolomics.helmholtz-muenchen.de/gwas/). Briefly, Shin 
et  al. (Shin et  al., 2014) conducted the most comprehensive 
genome-wide association estimates with high-throughput meta-
bolic profiling as phenotypes and developed the atlas of genetic 
influences on human blood metabolites. The study sample was 
composed of 7824 adult individuals from 2 European population 
studies. All participants gave written informed consent, and the 
study was approved by local ethics committees. Metabolic pro-
filing was performed based on non-targeted mass spectrometry 
analysis on human fasting serum. After merging the datasets 
of the 2 studies, a subset of 486 metabolites was available for 
GWAS analysis. Of the 486 total metabolites, 309 were classified 
as known, implying that their chemical identity had been de-
termined according to Metabolon’s spectra library (Metabolon, 
Inc., Morrisville, NC). The 309 known metabolites were fur-
ther assigned to 8 biochemical classes (amino acids, peptides, 
lipids, cofactors and vitamins, carbohydrates, energy, nucleo-
tides, and xenobiotics), as described in the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database. The genotyping and 
imputation steps for the 2 cohorts were described in detail in 
previous studies (Suhre et al., 2011; Shin et al., 2014). Finally, ap-
proximately 2.1 million single nucleotide polymorphisms (SNPs) 
present in both cohorts were tested in the primary association 
meta-analysis.

Selection of Instrumental Variables

The principle of MR relies on the basic assumption of valid in-
strumental variables; this particularly requires the extracted 
SNPs to be (1) significantly related to exposure, (2) independent 
of any confounder, and (3) associated with the outcome dir-
ectly through the exposure. To determine the instrumental 
variables for the 486 metabolites, we first extracted genetic 
variants with association thresholds at P < 1 × 10−5 to ensure 
they conferred substantial variance for the corresponding me-
tabolites. Second, we identified independent variants using a 
clumping procedure implemented in PLINK1.9 (http://www.
cog-genomics.org/plink2/), setting a linkage-disequilibrium 
threshold of r2 <  0.1 with 500 kb in the European 1000 Genomes 
Project Phase 3 reference panel. We next assessed whether 
these instrumental variables were strong enough to predict 

Significance Statement
This is the first Mendelian randomization (MR) study, to our knowledge, to assess the causal relationship between serum me-
tabolites and neuroticism. MR study could avoid confounding, reverse causation, and various biases compared with traditional 
observational study. Using genetic variants as instrumental variables, our results showed that urate had protective effects on 
neuroticism while paraxanthine had adverse effects on neuroticism. We also found some significant metabolic pathways that 
may be involved in neuroticism. By combining metabolomics with genomics, we provide new insight in the causal relationship 
between serum metabolites and neuroticism, which may contribute to the understanding of pathogenesis and potential thera-
peutic targets for neuroticism.
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metabolite levels by 2 parameters: the explained variance 
(adjusted R2) and F statistic. The adjusted R2 was estimated 
using the “gtx” package in R software (https://www.r-project.
org/), and the F statistic was calculated based on the formula 
F = R2(n–1–k)/(1–R2)k, where n is the sample size and k rep-
resents the number of genetic variants (Brion et  al., 2013). 
A threshold of F > 10 was typically recommended for MR ana-
lyses (Burgess et al., 2013).

GWAS of Neuroticism

We obtained the GWAS summary statistics for neuroticism 
from the GWAS Catalog (https://www.ebi.ac.uk/gwas/). Briefly, 
Okbay et al. (Okbay et al., 2016) conducted the large GWAS meta-
analysis on 170 910 individuals from 59 cohorts. Neuroticism 
was measured according to a 12-item version of the Eysenck 
Personality Inventory Neuroticism scale. Genotyping was per-
formed separately for each cohort using different versions 
of Affymetrix arrays. Quality-control procedures were con-
ducted using the EasyQC software following standard protocols 
(Winkler et al., 2014). Association analysis was carried out with 
a logistic regression model correcting for age, gender, and study-
specific covariates. All participants provided written informed 
consent, and ethical approvals were obtained for each cohorts. 
Detailed information for cohort descriptions, quality-control fil-
ters, and imputation procedures can be found in the previously 
published study. Finally, a total of 6 524 442 SNPs were included 
in the GWAS summary statistics.

MR Analyses

We used the inverse-variance weighted (IVW) method as the 
primary MR analysis to determine the causal relationships be-
tween genetically determined levels of serum metabolites and 
neuroticism. Briefly, the IVW method provided a consistent es-
timate of the causal effect of the exposure when each variant 
satisfied the assumption of valid instrumental variable (Burgess 
et al., 2013). We then used additional methods to provide sensi-
tivity analysis for the robustness of the MR estimates. MR-Egger 
was a useful sensitivity analysis that provided consistent es-
timates with invalid instruments (Bowden et  al., 2015). The 
MR-Egger approach was able to detect certain violations of the 
standard instrumental variable assumptions and provide an ef-
fect estimate not subject to these violations. The weighted me-
dian method was another approach that provided consistent 
estimates even when up to 50% of the variants were deemed 
invalid instruments (Bowden et al., 2016). MR-PRESSO (MR plei-
otropy residual sum and outlier) was another newly developed 
MR approach that could detect and correct for horizontal pleio-
tropic outliers to provide a corrected estimate (Verbanck et al., 
2018). Furthermore, we conducted the MR-PRESSO Global test 
to evaluate whether horizontal pleiotropy existed. All ana-
lyses were performed using the MendelianRandomization and 
MR-PRESSO packages in R software version 3.4.4. P < .05 was con-
sidered statistically significant.

Metabolic Pathway Analysis

Metabolic pathway analysis was conducted using the web-based 
MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/) (Chong 
et al., 2018). We analyzed the metabolite sets from 2 libraries in 
our study, including the Small Molecule Pathway Database and 
the KEGG Database (Frolkis et al., 2010; Kanehisa et al., 2012). All 
metabolites that passed the suggestive threshold of association 

by IVW (PIVW < .05) were included in the metabolic pathway 
analysis.

Results

Strength of the Instrumental Variables

We performed a 2-sample MR analysis to assess the causal ef-
fects of human blood metabolites on neuroticism using a pair of 
GWAS summary statistics. The instrumental variables generated 
were composed of 3–675 SNPs and could explain 0.8%–83.5% of 
the variance of their corresponding metabolites. The minimum 
F statistic for indicating the strength of these instrumental vari-
ables was 20.33, meaning that all instrumental variables for the 
486 metabolites were sufficiently effective (F statistic >10) for 
MR analysis.

Effects of Genetically Determined Metabolites on 
Neuroticism

The IVW identified 17 known metabolites and 14 unknown me-
tabolites that were significantly associated with neuroticism 
(Figure  1; supplementary Table 1). Of the 17 known metabol-
ites, bilirubin (Z,Z) showed the most significant association with 
neuroticism (PIVW = .0005). Using 20 SNPs as proxy predictors, a 
1-SD increase in the level of bilirubin (Z,Z) was associated with 
an approximately 10% lower risk of neuroticism (odds ratio [OR]: 
0.93; 95% confidence interval [CI]: 0.89–0.97). We also identified 7 
other metabolites that were associated with lower risk of neur-
oticism, including phenyllactate (OR: 0.87; 95% CI: 0.77–0.98; 
PIVW = .0186), glutamate (OR: 0.76; 95% CI: 0.62–0.93; PIVW = .0094), 
pyruvate (OR: 0.87; 95% CI: 0.78–0.98; PIVW = .0256), eicosapenta-
enoate (20:5n3) (OR: 0.88; 95% CI: 0.80–0.97; PIVW = .0096), uric 
acid (OR: 0.77; 95% CI: 0.62–0.95; PIVW = .0145), 4-ethylphenylsulfate 
(OR: 0.93; 95% CI: 0.87–0.99; PIVW = .0480), and 1-methylxanthine 
(OR: 0.90; 95% CI: 0.82–0.99; PIVW = .0402). The other 9 metabolites 
were associated with increased risk of neuroticism, including 
pantothenate (OR: 1.12; 95% CI: 1.01–1.23; PIVW = .0251), choline 
(OR: 1.29; 95% CI: 1.01–1.64; PIVW = .0449), oleoylcarnitine (OR: 1.17; 
95% CI: 1.03–1.33; PIVW = .0126), 1-palmitoleoylglycerophosphocho
line (OR: 1.15; 95% CI: 1.03–1.29; PIVW = .0155), hexanoylcarnitine 
(OR: 1.10; 95% CI: 1.01–1.21; PIVW = .0391), decanoylcarnitine (OR: 
1.10; 95% CI: 1.01–1.20; PIVW = .0478), gamma-glutamylglutamate 
(OR: 1.08; 95% CI: 1.02–1.15; PIVW = .0088), paraxanthine (OR: 1.07; 
95% CI: 1.01–1.12; PIVW = .0117), and metoprolol acid metabolite 
(OR: 1.01; 95% CI: 1.00–1.01; PIVW = .0483).

Sensitivity Analysis

Although the IVW approach is highly effective for inferring 
causality of an exposure for a complex disease outcome, it is 
known to be vulnerable to weak instrument bias. We con-
ducted sensitivity analyses to overcome these biases. Table  1 
showed the sensitivity analysis results for the IVW identified 
metabolites. Two metabolites showed robust causal relation-
ships with neuroticism when sensitivity analyses were applied, 
which were uric acid (PMR-Egger = .0091; Pweighted-median = .0006 and PMR-

PRESSO = .0244) and paraxanthine (PMR-Egger = .0073; Pweighted-median = .0004 
and PMR-PRESSO = .0256), respectively, and no evidence of horizontal 
pleiotropy was observed for either metabolite (PGlobal test = .0573 for 
uric acid and PGlobal test = .1376 for paraxanthine). Using 20 SNPs as 
predictors, a 1-SD increase in uric acid was associated with an 
approximately 30% lower risk of neuroticism (OR: 0.77; 95% CI: 
0.62–0.95; Figure 2A), whereas a 1-SD increase in paraxanthine 

https://www.r-project.org/
https://www.r-project.org/
https://www.ebi.ac.uk/gwas/
https://www.metaboanalyst.ca/
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa062#supplementary-data


Copyedited by: oup

Qian et al. | 35

was associated with a 7% higher risk of neuroticism (OR: 1.07; 
95% CI: 1.01–1.12; Figure 2B).

Genetic Determinants

We also investigated the leading SNPs that played important 
roles in inferring the causal relationships between the identified 
metabolites and neuroticism. Among the 20 SNPs composing 
the instrumental variable of uric acid, rs17246501 showed the 
most significant association (P = 2.35 × 10–30) with uric acid (sup-
plementary Table 2). Notably, the rs17246501 also showed a 
significant association signal (P = .0016) with neuroticism. Of 
the 14 SNPs for paraxanthine, rs3768372 (P = .0103), rs10791723 
(P = .0120), and rs4371296 (P = .0499) were also significantly asso-
ciated with neuroticism (supplementary Table 3). These SNPs 
might provide valuable information serving as diagnostic or 
therapeutic targets for neuroticism.

Metabolic Pathway Analysis

Our study identified 7 significant metabolic pathways that were 
involved in the pathogenesis of neuroticism (Table 2). The most 
significant metabolic pathway was the alanine, aspartate, and 
glutamate metabolism (P = .0041) from the KEGG database. Two 
neuroticism-related metabolites, pyruvate and glutamate, were 
involved in the metabolic pathway of alanine, aspartate, and 
glutamate metabolism. We also identified 5 other metabolic 
pathways from the KEGG database, including pantothenate and 
CoA biosynthesis (P = .0052), butanoate metabolism (P = .0111), 
glycine, serine and threonine metabolism (P  =.0158), arginine 

and proline metabolism (P = .0385), and D-glutamine and 
D-glutamate metabolism (P = .0449). There was also a significant 
metabolic pathway identified from the Small Molecule Pathway 
Database, which was the caffeine metabolism (P = .0295).

Discussion

Our study performed a 2-sample MR analysis to provide an un-
biased estimate of the causal relationships between genetically 
determined levels of serum metabolites and risk of neuroticism. 
To the best of our knowledge, this was the first MR study that 
linked metabolic phenotyping with genomics to assess causal 
relationships between human serum metabolites and neuroti-
cism. Using SNPs as proxies, our study found that an increased 
level of uric acid was associated with lower risk of neuroticism, 
while an increased level of paraxanthine was associated with 
higher risk of neuroticism. Our study also reported several 
other metabolites that might contribute to the development of 
neuroticism.

Uric acid is the end product of adenosine metabolism in hu-
mans. Lower uric acid has long been recognized as a risk factor 
for neurological and psychiatric disorders, such as Parkinson’s 
disease, multiple sclerosis, and major depressive and anxiety 
disorders (Weisskopf et al., 2007; Moccia et al., 2015; Black et al., 
2018). Ostojic et  al. (Simeunovic Ostojic and Maas, 2018) sug-
gested that uric acid could be a biomarker of mood dysfunction, 
personality traits, and behavioral patterns. Bartoli et al. (Bartoli 
et al., 2018b) reported that lower uric acid serum levels were as-
sociated with psychological distress and suicidal ideation se-
verity. In addition, a recent meta-analysis further highlighted 

Figure 1. Mendelian randomization associations between serum metabolites and neuroticism based on inverse-variance weighted (IVW) method.
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an inverse association between serum uric acid levels and de-
pression (Bartoli et  al., 2018a). The neurotic personality usu-
ally incorporated the tendency to experience frequent, intense 
negative emotions and was strongly associated with psychi-
atric symptoms. Our study reported that lower serum uric acid 
levels were associated with higher risk of neuroticism, which 
supported the findings from previous studies. In addition, 
rs17246501 (corresponding to the SLC2A9 gene) was a genetic 
predictor for uric acid, which also showed significant associ-
ation with neuroticism. Interestingly, a previous cross-sectional 
analysis reported that serum uric acid and SLC2A9 variant 
were strongly associated with depressive and anxiety disorders 
(Lyngdoh et  al., 2013). Though further evidence is needed, the 
identified SNPs might serve as important targets for revealing 
the pathogenesis and therapies of neuroticism.

Paraxanthine is another metabolite that showed causal as-
sociation with neuroticism. Notably, parexanthine also shows 
close interconnection with adenosine. Indeed, paraxanthine is 
a non-selective antagonist of adenosine A1 and A2A receptors 
that play important roles in caffeine metabolism. A  previous 
study has reported that heavy caffeine ingestion might cause or 
exacerbate anxiety and might be associated with depression and 
increased use of antianxiety drugs. Caffeine might also exacer-
bate anxiety and panic in panic disorder patients (Clementz and 
Dailey, 1988). The effect of caffeine on anxiety was also shown 
in several subsequent studies (Childs and de Wit, 2006; Nardi 

et al., 2009; Trapp et al., 2014; Yudko and McNiece, 2014; Botton 
et al., 2017). Furthermore, coffee and caffeine consumption had 
also been reported to have antidepressant effects (Yudko and 
McNiece, 2014; Wang et al., 2016). As a whole, our study showed 
consistent findings with previous studies, supporting the pos-
sible role of the purinergic system in neuroticism-related dis-
orders, such as anxiety and depression (Cheffer et  al., 2018; 
Bartoli et al., 2020).

Our study also reported several metabolic pathways that 
might be involved in the pathogenesis of neuroticism, such as 
the alanine, aspartate, and glutamate metabolism pathway. 
Glutamate is a common excitatory and inhibitory neurotrans-
mitter in the human brain and has been proved to play a major 
role in the pathogenesis of mental disorders (Hashimoto et al., 
2013; Hasler et al., 2019). Our study also suggested that panto-
thenate and CoA biosynthesis was associated with risk of neur-
oticism. Pantothenate and CoA biosynthesis was also reported to 
be associated with risk of major depression and other affective 
disorders (Chu et al., 2009; Hammerschlag et al., 2017). Although 
additional evidence is needed, these metabolic pathways might 
provide valuable information to help understand the underlying 
biological mechanisms in the pathogenesis of neuroticism.

Our study has several limitations. First, the strength of the 
instrumental variables relied on the sample size of GWASs, so 
more data should be collected to improve the veracity of the 
generated GDMs. Second, though MR proved to be a powerful 

Figure 2. Genetic associations of uric acid and paraxanthine with neuroticism. (A) Genetic effect of uric acid on neuroticism. (B) Genetic effect of paraxanthine on 

neuroticism. Each of the single nucleotide polymorphisms (SNPs) associated with metabolite are represented by a black dot with the error bar depicting the SE of its 

association with metabolite (horizontal) and neuroticism (vertical). The slopes of each line represent the causal association for each method.

Table 2. Significant Metabolic Pathways Involved in the Pathogenesis of Neuroticism

Metabolic pathway
Metabolites  
involved P value Database

Alanine, aspartate, and glutamate metabolism Pyruvate; glutamate .0041 KEGG
Pantothenate and CoA biosynthesis Pyruvate; pantothenate .0052 KEGG
Butanoate metabolism Pyruvate; glutamate .0111 KEGG
Glycine, serine, and threonine metabolism Pyruvate; choline .0158 KEGG
Caffeine metabolism Paraxanthine; 1-methylxanthine .0295 SMPDB
Arginine and proline metabolism Pyruvate; glutamate .0385 KEGG
D-Glutamine and D-glutamate metabolism Glutamate .0449 KEGG

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; SMPDB, Small Molecule Pathway Database.
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approach to assess the causal associations between serum me-
tabolites and neuroticism, the results require further verifica-
tion based on experimental data. Third, genetic architectures 
played an essential role in determining the causal relationships 
between metabolites and neuroticism. However, further work 
should be done to determine the role of genetic variants in af-
fecting variations of metabolites in neuroticism.

Conclusions

In conclusion, our study suggested an increased level of uric 
acid was associated with lower risk of neuroticism, whereas 
paraxanthine showed the contrary effect. Our MR study also 
identified multiple metabolic pathways and genetic risk vari-
ants that might have causal effects on neuroticism. Our study 
provided novel insight by combining metabolomics with gen-
omics to help understand the pathogenesis of neuroticism.
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