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Abstract Intracellular lipopolysaccharide (LPS) triggers the non-canonical inflammasome

pathway, resulting in pyroptosis of innate immune cells. In addition to its well-known

proinflammatory role, LPS can directly cause regression of some tumors, although the underlying

mechanism has remained unknown. Here we show that secretoglobin(SCGB)3A2, a small protein

predominantly secreted in airways, chaperones LPS to the cytosol through the cell surface receptor

syndecan-1; this leads to pyroptotic cell death driven by caspase-11. SCGB3A2 and LPS co-

treatment significantly induced pyroptosis of macrophage RAW264.7 cells and decreased cancer

cell proliferation in vitro, while SCGB3A2 treatment resulted in reduced progression of xenograft

tumors in mice. These data suggest a conserved function for SCGB3A2 in the innate immune

system and cancer cells. These findings demonstrate a critical role for SCGB3A2 as an LPS delivery

vehicle; they reveal one mechanism whereby LPS enters innate immune cells leading to pyroptosis,

and they clarify the direct effect of LPS on cancer cells.

DOI: https://doi.org/10.7554/eLife.37854.001

Introduction
The airway is continuously exposed to pathogens, including low levels of gram negative bacteria in

the air (Lundin and Checkoway, 2009). Lipopolysaccharide (LPS) is a component of the outer mem-

brane of gram negative bacteria and can cause inflammation in the lung. It was previously thought

that toll-like receptor 4 (TLR4) is the sole LPS-specific pattern recognition receptors (PRRs) at the cell

membrane (Poltorak et al., 1998). However, recent studies demonstrated the presence of an TLR4-

independent PRRs mechanism to sense LPS in the cytosol via an inflammatory caspase, caspase-11,

in a non-canonical inflammasome pathway (Hagar et al., 2013; Kayagaki et al., 2013). While it is

widely known that tumor metastasis is coupled with inflammation in the tumor microenvironment, in

many cases, immune cells in the tumor microenvironment no longer exhibit anti-tumor effects,

instead they are co-opted to promote tumor growth and metastasis (Whiteside, 2008). On the con-

trary, the activity of bacteria or endotoxin for anti-tumor effects has been extensively studied for

decades since the first observation by W. B. Coley (Lundin and Checkoway, 2009; Ribi et al.,

1983). Although ‘Coley’s toxin’ is currently not used for cancer treatment because of its toxicities,

accumulating evidence has revealed that his theory was correct and the notion that the enhanced

host immune systems by endotoxin could attack some cancer cells has advanced to cancer immuno-

therapy. However, whether endotoxin has a direct function in attacking cancer cells remains contro-

versial, while the interest in endotoxin as a cancer therapeutic agent waned, despite of many reports

for favorable outcomes.

Yokoyama et al. eLife 2018;7:e37854. DOI: https://doi.org/10.7554/eLife.37854 1 of 25

RESEARCH ARTICLE

http://creativecommons.org/publicdoman/zero/1.0/
http://creativecommons.org/publicdoman/zero/1.0/
https://doi.org/10.7554/eLife.37854.001
https://doi.org/10.7554/eLife.37854
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


A cytokine-like small secreted protein, SCGB3A2 (secretoglobin 3A2, also known as UGRP1 and

HIN-2), was previously identified that is abundantly and specifically expressed in non-ciliated airway

epithelial (club) cells of the trachea, bronchus, and bronchioles (Niimi et al., 2001) and revealing

that SCGB3A2 functions to suppress lung inflammation and fibrosis (Cai and Kimura, 2015;

Cai et al., 2014; Chiba et al., 2006; Kido et al., 2014; Kurotani et al., 2011; Yoneda et al., 2016).

Although specific expression of SCGB3A2 in lung epithelial cells and its role in inflammation may

imply a possible important function for SCGB3A2 in the clearance of pathogens, its role in host

defense, if any, has not been studied. In addition, while fibrosis is closely related to tumor develop-

ment (Coussens and Werb, 2002; Trinchieri, 2012) and SCGB3A2 functions as an anti-fibrotic

agent, the role of SCGB3A2 in lung cancer development is unknown.

Results

SCGB3A2 inhibits LLC cell growth in vitro and in vivo
To determine whether SCGB3A2 has any influence on cancer cell growth, CCK8 (cell counting kit 8)

assay was performed using murine Lewis lung carcinoma (LLC) cells. The proliferation of LLC cells

was markedly suppressed by mouse recombinant SCGB3A2 (Figure 1A). This in vitro effect of

SCGB3A2 was also observed in vivo in the LLC cells intravenous metastasis model using wild-type

C57BL/6 mice in conjunction with administration of SCGB3A2 (Figure 1B–1E). To confirm the tumor

growth inhibition roles of SCGB3A2 in vivo, Scgb3a2-null mice were subjected to the metastasis

model (Kido et al., 2014). Mice null for Scgb3a2 developed far greater numbers of lung surface

tumors than wild-type littermates when LLC cells were intravenously injected (Figure 1F). Further-

more, administration of recombinant mouse SCGB3A2 to Scgb3a2-null mice clearly rescued the

Scgb3a2-null phenotypes of LLC cell lung metastasis (Figure 1G–1I). These results indicate the

importance of SCGB3A2 in the suppression of LLC cell tumor development in lungs in vivo.

SCGB3A2 binds to LPS
For the above experiments, several preparations of recombinant SCGB3A2 (mouse and human)

were used from various sources as described in Materials and methods. However, we noticed an

unexpected phenomenon where some sources of recombinant SCGB3A2 had almost no effect on

eLife digest Inflammation serves to kill invading bacteria and viruses. Certain molecules on the

surface of the microbes can trigger an inflammatory cascade, and one example of such a molecule is

lipopolysaccharide (LPS). Cells can react to LPS by triggering a process called pyroptosis that causes

the cell to burst and die. The released cell contents attract blood and lymphatic cells that in turn kill

the LPS-producing bacteria. This prevents the bacteria from multiplying and spreading.

LPS was used in the very early days of medicine to treat cancer, although it has fallen out of favor

because it causes severe side effects, such as a hyperinflammatory response (sepsis) that can result

in death. It was not known exactly how LPS kills cancer cells, which has limited its use. Yokoyama

et al. now show that a protein called SCGB3A2, which is produced by the cells that line the lung

airways, binds to LPS. Tests on mouse immune cells and lung cancer cells grown in the laboratory

showed that the resulting SCGB3A2-LPS complex can then bind to a cell surface protein called

syndecan 1. This enables LPS to enter the cell and trigger pyroptosis and cell death.

To confirm the role of SCGB3A2 in pyroptosis, Yokoyama et al. examined tumor growth in mice

that are not able to produce SCGB3A2. These mice developed more tumors than normal mice, but

tumor growth was suppressed when mice were injected with SCGB3A2.

The findings presented by Yokoyama et al. could potentially lead to new types of cancer

treatments, particularly for lung cancers. However, it remains to be examined whether molecules

that trigger pyroptosis, like LPS, could also be used to treat cancers other than those from the lung.

Further work is also needed to understand in more detail how SCGB3A2 and LPS work together to

cause cancer cell death.

DOI: https://doi.org/10.7554/eLife.37854.002
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LLC cell growth inhibition (Figure 2—figure supplement 1A). This phenomenon was found to be

associated with the level of endotoxin (LPS) contained in the various preparations

(Supplementary file 1). Moreover, we realized that whenever the endotoxin was removed from the

preparation, the final SCGB3A2 protein yield was drastically reduced (data not shown). Because

Figure 1. SCGB3A2-induced suppression of LLC cell proliferation. (A) Effect of SCGB3A2 on proliferation of LLC cells. Cells were maintained without

serum for 24 hr, followed by 1% FBS-RPMI1640 media with or without mouse SCGB3A2 (1 mg/ml). CCK8 assay was carried out 72 hr after the addition of

SCGB3A2. Averages ± SD from three independent experiments, each in triplicate. **p<0.01 by student’s t-test. (B) LLC cell intravenous metastasis

model scheme. Mice inoculated with LLC cells received daily intravenous administration of mouse recombinant SCGB3A2 for 7 consecutive days for the

1st, 2nd, or 3rd week, or the entire experimental period of 21 days (long). Control mice received PBS alone. The number of the pulmonary surface tumors

was counted on day 21. N = 7–14 per group. (C) Representative lung images from each SCGB3A2 administration group. Scale bar = 1 cm. (D) Summary

for the numbers of pulmonary surface tumors. A dot indicates a mouse. Averages ± SD are shown. *p<0.05, **p<0.01. (E) Number of pulmonary surface

tumors larger than 3 mm. Averages ± SD are shown. *p<0.05. (F) (upper panel) Representative pictures of metastasized lung tumors from wild-type

(WT) and Scgb3a2-null (Scgb3a2(-/-)) mice. Scale bar = 1 cm. (lower panel) H & E staining of lungs. Scale bar = 500 mm. (G) Representative lungs from

wild-type littermate (WT), Scgb3a2-null (Scgb3a2(-/-)), and Scgb3a2-null mice given SCGB3A2 (ie. Scgb3a2(-/-)+SCGB3A2) for the 1st week. N = 3 per

group. This was a separate independent experiment from those presented in C-E. WT and Scgb3a2(-/-) mice received daily PBS as a control. Lung

necropsy was carried out on day 21. (H) Graph showing the number of pulmonary surface tumors of experiment in G. Averages ± SD are shown. (I) Lung

weights of each LLC cell metastasis model in G. Averages ± SD are shown. KO: Scgb3a2-null. *p<0.05. Statistical differences calculated by One-way

ANOVA except in A.

DOI: https://doi.org/10.7554/eLife.37854.003
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SCGB3A2 is abundantly expressed in airway epithelial cells which are exposed to various microor-

ganisms and LPS derived from bacteria (Lundin and Checkoway, 2009), we hypothesized that the

fundamental function of SCGB3A2 may be related to its binding to and sequestering of LPS. Further,

while inflammation is thought to be coupled with cancer metastasis, paradoxically endotoxins or

ensuing enhanced immunity may inhibit some cancer growth (Lundin and Checkoway, 2009;

McCarthy, 2006; Ribi et al., 1983). Indeed, the growth of LLC cells was strongly inhibited by small

amounts of LPS (Figure 2A). To test if SCGB3A2 interacts with LPS, imidazole and zinc salt staining

was performed (Figure 2B and C) (Rodrı́guez and Hardy, 2015). Crude LPS (O111:B4) barely

migrated into the gel and remained near the well, due to high-molecular mass aggregation

(Figure 2B, lane 1 (Rodrı́guez and Hardy, 2015)). Pre-incubation with SCGB3A2 (human SCGB3A2

(C1); see Supplementary file 1; unless otherwise noted, this lot was mainly used in the current stud-

ies) produced a broad diffuse band in dose dependent manner, indicating that SCGB3A2 interacted

with and dramatically enhanced the electrophoretic mobility of LPS (Figure 2B, lane 2–5, and

Figure 2C). Rough A form (Ra-LPS) and other serotypes of LPS produced the same results (Fig-

ure 2—figure supplement 1B). To further confirm that SCGB3A2 directly binds to LPS, streptavidin

pull-down assays were performed using LPS-Biotin and recombinant SCGB3A2 (Figure 2D). The

results clearly showed that SCGB3A2 is an LPS binding protein. The ability of SCGB3A2 to bind and

disaggregate LPS micelles was further demonstrated by the dynamic light scattering (DLS) method

(Figure 2E and Figure 2—figure supplement 1C–1E). Thus, SCGB3A2 is an LPS binding protein

and has powerful LPS dissociation properties, against both smooth and rough forms of LPS.

To determine if LPS alone is sufficient or the combination of LPS+SCGB3A2 is required for the

inhibition of growth and metastasis of LLC cells in vivo, LLC cell intravenous metastasis xenograft

experiments were carried out, in which various amounts of LPS, estimated in our recombinant pro-

tein SCGB3A2 preparations (see Supplementary file 1), were administered for seven consecutive

days in the 1 st week after LLC cells injection (see Figure 1B). The number of tumors obtained was

compared with that obtained with administration of recombinant SCGB3A2 without exogenously

added LPS. Human SCGB3A2(C1) alone showed drastic inhibition of LLC cells growth, while the

amount of LPS contained in the recombinant SCGB3A2 preparation C1 or C3, or high concentration

did not show any statistically significant differences in tumor numbers compared with PBS adminis-

tration (Figure 2F). Moreover, LPS-treated lungs showed much larger lesions than did SCGB3A2-

treated lung tumors, which sometimes encompassed the entire lobes, demonstrating the fundamen-

tal differences between LPS alone and SCGB3A2 administration (Figure 2G).

SDC1 is a receptor for SCGB3A2
A receptor for SCGB3A2 involved in the SCGB3A2 signaling was unbiasedly identified using human

protein microarray analysis (Figure 3A, Supplementary file 2 and 3, Figure 3—source data 1).

Among the top 116 proteins (Supplementary file 2), 13 proteins were selected as possible candi-

dates for the SCGB3A2 receptor as a cell surface protein (Figure 3A and Supplementary file 3). To

confirm a direct interaction with SCGB3A2, pull-down assays were performed, in which syndecan-1

(SDC1) and podoplanin (PDPN, T1-alpha) showed positive interaction with SCGB3A2 (Figure 3B and

data not shown). PDPN is known as a marker for alveolar type I epithelial cells in lung, while SDC1

was moderately expressed in proximal airway epithelial cells (Figure 3C), suggesting a possible rela-

tionship between SCGB3A2 and SDC1 for lung airway homeostasis. Therefore, this study focused on

SDC1.

SDC1 was found to be highly expressed on LLC cells surfaces in vitro as well as in metastatic LLC

cells in vivo (Figure 3D and Figure 3—figure supplement 1A). In contrast, the B16F10 mouse mela-

noma cell line, which exhibited less SCGB3A2-dependent growth suppression effects than LLC in

vitro (data not shown), showed focal expression of SDC1 near cell nuclei and faint staining at cell-to-

cell contact sites (Figure 3D), while the total cell surface staining was low compared to LLC cells.

Further analyses supported the robust expression of SDC1 on the surface of LLC cells (Figure 3E

and Figure 3—figure supplement 1B), and their binding to SCGB3A2 (Figure 3F). LLC cells stably

expressing shRNA-SDC1 (LLC-sh-SDC1, Figure 3—figure supplement 1C) showed diminished

SCGB3A2 binding (Figure 3G). In addition, ARH-77 human myeloma cell line, which lacks detectable

SDC1 (Ridley et al., 1993), and ARH-77 cells over-expressing mouse SDC1 (ARH-77-mSDC1

(Dhodapkar et al., 1998; Liebersbach and Sanderson, 1994), See Figure 3—figure supplement

1D) verified the SCGB3A2-SDC1 binding interaction. ARH-77-mSDC1 enhanced SCGB3A2 binding
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Figure 2. SCGB3A2 as an LPS binding protein. (A) CCK8 analysis using various concentrations as shown in the bottom (pg, ng/ml) of smooth LPS (E.coli

O111:B4 serotype) and rough LPS (Ra-LPS) after 72 hr in culture. C; control without any addition of LPS. Averages ± SD from three independent

experiments, each in triplicate. (B) Reverse staining of aggregation of LPS. Imidazole-zinc staining of E.coli O111:B4 serotype LPS on agarose gel. LPS

(10 mg) was incubated with human SCGB3A2 in lane 1 to 5: 0, 10, 100 ng, 1, and 10 mg, respectively. Arrows indicate the bottom of the aggregate or

smeary bands. (C) Reverse staining of aggregation of LPS. Imidazole-zinc staining of E.coli O111:B4 serotype LPS on agarose gel. BSA 10 mg (lane1),

human SCGB3A2 10 mg (lane 2), LPS 10 mg (lane 3), BSA +LPS pre-incubation at 37 ˚C, 30 min (lane 4), SCGB3A2 + LPS pre-incubation at 37 ˚C, 30 min

(lane 5), SCGB3A2 + LPS pre-incubation at RT, 30 min (lane 6), SCGB3A2 + LPS pre-incubation at 37 ˚C, 10 min (lane 7), SCGB3A2 + LPS pre-incubation

at RT, 10 min (lane 8). Bottom image is Coomassie Brilliant Blue (CBB) staining of the same gel. Arrows indicate the bottom of the aggregate or smeary

bands. (D) Streptavidin pull-down assay of LPS-Biotin and recombinant SCGB3A2. IP and western blotting were sequentially carried out using anti-

SCGB3A2 and anti-LPS antibody, respectively. Input is 10%. (E) DLS assay. Size deformation of LPS micelles by human SCGB3A2 pre-incubation.

Histogram shows the intensity of hydrodynamic radii (nm) of O111:B4 LPS (20 mg/ml), human SCGB3A2 (20 mg/ml), and LPS pre-incubated with

SCGB3A2 for 30 min at RT. Gel analysis and DLS assay were carried out more than 3 separate times and each time, similar results were obtained. (F)

Effect of SCGB3A2 or LPS on the number of lung surface tumors in LLC cell intravenous metastasis model. LPS(C3): LPS concentration equivalent to

that contained in mouse SCGB3A2(C3) (see Figure 1 and Supplementary file 1), SCGB3A2(C1): human SCGB3A2(C1) protein without addition of

exogenous LPS, LPS(C1): LPS concentration equivalent to that contained in human SCGB3A2(C1), and LPS high: LPS (1 mg/mouse). A dot indicates a

mouse. Averages ± SD are shown. **p<0.01. (G) Representative images of lung of mice with SCGB3A2(C3) or LPS(C3) administration. Asterisks indicate

tumors. Bar = 300 mm.

Figure 2 continued on next page
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compared to the parental cells (Figure 3—figure supplement 1E). Syndecans are a family of trans-

membrane heparan sulfate proteoglycan (HSPG). To determine the domain of SDC1 that interacts

with SCGB3A2, heparin was used to inhibit the function of heparan sulfate chains (HS). Heparin addi-

tion significantly inhibited the binding of SCGB3A2 to both LLC (Figure 3H) and ARH-77-mSDC1

cells (Figure 3—figure supplement 1F), suggesting that HS on SDC1 may play a role in SCGB3A2

binding.

SCGB3A2 accumulates on the uropod and is incorporated through
clathrin-mediated endocytosis in LLC cells
To reveal the precise binding site of SCGB3A2 on LLC cell surfaces, immunofluorescence analysis

was performed using anti-SCGB3A2 and anti-SDC1 ectodomain antibodies (Figure 4A). ARH-77-

mSDC1 cells were also used in this analysis. Without stimulation with SCGB3A2, both LLC and ARH-

77-mSDC1 cells had evenly distributed SDC1 on the cell surface (Figure 4A Control). After stimula-

tion with SCGB3A2, the SDC1 signal became relatively concentrated on cell protrusions equivalent

to the uropod structure of myeloma (Børset et al., 2000; Yang et al., 2003), which co-localized with

SCGB3A2 (Figure 4A,+SCGB3A2). Staining of ICAM-1, a uropod marker (del Pozo et al., 1997),

confirmed co-localization of SDC1 and SCGB3A2 on the uropods of both LLC and ARH-77-mSDC1

cells. Interestingly, when LLC cells were incubated for a short time with LPS and SCGB3A2, Alexa-

labeled LPS (LPSA488,Figure 4—figure supplement 1A), SCGB3A2, and clathrin, a key protein for

endocytosis, all co-localized in uropod (Figure 4B). This pattern of clathrin localization was similar to

those previously reported using T lymphocyte (Samaniego et al., 2007). Upon further incubation,

LLC cells appeared to have incorporated SCGB3A2 into the cells as visualized using an HaloTag

(HT)-SCGB3A2 fusion protein (Figure 4—figure supplement 1B and C). Clathrin expression was

localized near the incorporated SCGB3A2 signals (Figure 4—figure supplement 1C), suggesting

that the LPS-SCGB3A2 complex enters LLC cells via binding to SDC1 followed by clathrin-dependent

endocytosis (see below). Further, live cell imaging clearly showed that SCGB3A2-HT was incorpo-

rated into LLC-sh-Control cells after overnight incubation, while very low signals were observed in

LLC-sh-SDC1 cells (Figure 4—figure supplement 1D). Computer modeling analysis provided further

evidence that SCGB3A2 binds to both LPS and SDC1 when it forms a tetramer (Figure 4C and Fig-

ure 4—figure supplement 2A–2F). In fact, SCGB3A2 tends to form oligomers in vitro, demonstrat-

ing the validity of the computer modeling (Figure 4—figure supplement 2G, see Figure 2C CBB

staining, also cf: (Cai et al., 2014; Niimi et al., 2001)).

SCGB3A2 functions as a chaperone to deliver LPS into the cytosol and
activates caspase-11/NLRP3 inflammasome foci formation
Recent studies demonstrated intracellular LPS triggers caspase-4/11 activation and the non-canoni-

cal inflammasome pathway (Hagar et al., 2013; Kayagaki et al., 2013). It’s possible that SCGB3A2

simply enhances TLR4 priming canonical signals via SDC1 binding, transferring LPS to TLR4. To

address this possibility, LLC cells stably expressing sh-TLR4 (LLC-sh-TLR4) were established (Fig-

ure 4—figure supplement 3A), and SCGB3A2 binding and uptake were compared with those of

LLC-sh-Control and LLC-sh-SDC1 cells (Figure 4—figure supplement 3B and C). SCGB3A2

enhanced binding of LPS to LLC-sh-TLR4 cells at similar level to that of LLC-sh-Control, while LLC-

sh-SDC1 cells showed little binding of LPS (Figure 4—figure supplement 3B). In addition, SCGB3A2

and LPS were incorporated into LLC-sh-TLR4 cells and appeared to co-localize within the cytosol

(Figure 4—figure supplement 3C). These data, together with data in Figure 4—figure supplement

1D, suggest that SCGB3A2 is important for LPS uptake and that SDC1, not TLR4, is required for

SCGB3A2-LPS incorporation.

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.37854.004

The following figure supplement is available for figure 2:

Figure supplement 1. Analysis of LPS-SCGB3A2 complex.

DOI: https://doi.org/10.7554/eLife.37854.005
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Figure 3. SCGB3A2 binding to LLC cells through HS of SDC1. (A) Schematic model of a human protein array for the isolation process of candidate

genes shown as a Venn diagram. (B) Co-immunoprecipitation assay of SCGB3A2-FLAG and SDC1-Myc-His in COS-1 cells. IP and western blotting were

sequentially carried out using anti-FLAG and anti-Myc antibody, respectively. (C) SCGB3A2 and SDC1 immunostaining in the airway epithelial cells of

adult wild-type mouse lungs. Counterstained with Hematoxylin. Bar = 10 mm. (D) Immunofluorescent staining of SDC1 in LLC and B16F10 cells grown in

10%FBS-RPMI 1640 medium for 24 hr. DAPI was used for nuclear staining. White arrow indicates SDC1 cell surface expression in LLC. Red arrowhead

points to the staining at cell-cell junction and white arrowheads point to focal SDC1 staining near the nucleus in B16F10 cells. Bar = 20 mm. (E) Flow

cytometric analysis for SDC1 expression on cell surfaces of LLC and B16F10 cells using PE conjugated anti-SDC1 ectodomain specific antibody. (F) Flow

cytometric analysis for SCGB3A2 binding to LLC cells using anti-SCGB3A2 antibody. GST tagged mouse SCGB3A2 (3 mg) was incubated with LLC cells

at 4 ˚C for 30 min. Cells were stained with rabbit anti-mouse SCGB3A2 antibody, followed by staining with PE-anti-rabbit IgG antibody at 4 ˚C for 30

min. (G) SCGB3A2 binding assay on LLC-sh-Control or sh-SDC1 cells. GST tagged mouse SCGB3A2 (1 mg) was incubated with each cell type at 4 ˚C for

30 min, followed by staining with Alexa 488 anti-rabbit IgG antibody at 4 ˚C for 30 min. (H) SCGB3A2 binding assay on LLC cells. Cells were co-

incubated with or without GST tagged mouse SCGB3A2 (1 mg) or SCGB3A2 + heparin. Cells were stained with PE-anti-rabbit IgG antibody at 4 ˚C for

30 min. Data except A are the representative from more than three independent experiments.

DOI: https://doi.org/10.7554/eLife.37854.006

The following source data and figure supplement are available for figure 3:

Source data 1. Results of whole protein-protein interaction array.

DOI: https://doi.org/10.7554/eLife.37854.008

Figure supplement 1. Cell surface expression of SDC1 and validation of sh-SDC1 and ARH-77-mSDC1 clones.

DOI: https://doi.org/10.7554/eLife.37854.007
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Figure 4. SCGB3A2-LPS uptake activates inflammasome signaling. (A) Immunofluorescence analysis of LLC and ARH-77-mSDC1 cells for SCGB3A2,

SDC1, and ICAM-1. Arrowheads: uropod-like structures. Cells were incubated in 0% FBS-RPMI 1640 for 40 min (0%40 m) with or without GST-

mSCGB3A2 (1 mg). Scale bar = 10 mm. (B) Immunofluorescence analysis of LLC cells for clathrin and HT (HaloTag). Cells were incubated with LPSA488 (1

mg/ml) and SCGB3A2-HT supernatant (SN) in 0%1 hr. Arrowheads: uropod structure. Bar = 10 mm. (C) SCGB3A2 tetramer model (see Figure 4—figure

supplement 2A–2F). Left: Exploded view of the tetramer model showing the two dimers, which are colored to identify the two monomers. The dimer

structure reveals a pocket accessible from Face A and flanked by positively charged residues (Gly 1 N termini-; Arg 6 and Lys 61) forming a pattern

Figure 4 continued on next page
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To confirm the cytosolic localization of LPS, LLC cells were visualized with Alexa-labeled LPS

(LPSA594), anti-EEA1 (early endosomes marker) and anti-Lamp1 (lysosomal marker) antibodies

(Figure 4D and E). At an early time point, most of the LPS staining was co-localized with EEA1,

which was clearly enhanced when cells were co-incubated with SCGB3A2 (Figure 4D). At a later

time point, however, some of the LPS staining did not overlap with either EEA1 or LAMP1

(Figure 4E). With SDC1 staining depicting the plasma membrane, LPS staining was clearly visible

inside the membrane, which differed from the EEA1 distribution pattern (Figure 4F). These results

suggest that LPS could be transported into the cytosol of LLC cells through an SCGB3A2-dependent

mechanism.

Next whether LPS transport into cytosol of LLC cells triggers non-canonical inflammasome path-

way was examined using LLC-sh-TLR4 cells. This was because TLR4 signaling also enhances pro-cas-

pase-11/NLRP3 expression via the canonical inflammasome pathway (Kayagaki et al., 2013).

SCGB3A2 + LPS increased pro-caspase-11 and NLRP3, while caspase-1 expression, the major cas-

pase activated by the canonical inflammasome, was not significantly different (Figure 4G). Caspase-

11 processing and IL-1b expression/processing were not detected at the protein level in LLC-sh-

TLR4 and LLC-sh-Control cells (data not shown). This might not exclude the possibility that SCGB3A2

promotes pyroptosis of LLC cells with only small amounts of the processed form of caspase-11 that

cannot be detected by western blotting based on previous reports (Hagar et al., 2013) (see

Figure 5A).

The importance of sensing LPS and triggering caspase-11 and NLRP3 activation in host defense

has been mainly studied using macrophage. Moreover, macrophage are key players both for lung

homeostasis and the tumor microenvironment. Hence, the effect of SCGB3A2 on mouse macro-

phage-like RAW264.7 cells, which express SDC1 on the cell surface (Figure 4—figure supplement

Figure 4 continued

consistent with a heparan or LPS binding motif. Face A is exposed in the tetramer while Face B (right) is occluded. (D) Immunofluorescence analysis of

LLC cells maintained in 0%5 hr for EEA1, LAMP1 and LPSA594. Arrowhead: overlapping staining of LPSA594 and EEA1. Bar = 10 mm. (E)

Immunofluorescence analysis of LLC cells after 1%16 hr incubation with LPSA594 (2 mg/ml) and SCGB3A2 (2 mg/ml). Arrowheads: cytosolic LPS signal, not

overlapping with EEA1 and LAMP1 staining. LP; LPS, E; EEA1, LA; LAMP1. Bar = 10 mm. (F) Immunofluorescence analysis of LLC cells for LPSA594, EEA1,

SDC1 after 1%16 hr incubation with LPSA594 (2 mg/ml) and SCGB3A2 (2 mg/ml). Arrowheads: cytosolic LPS signal, not overlapping with EEA1 and SDC1

staining. Bar = 10 mm. (G) Immunoblots of LLC-sh-TLR4 cells after treatment with or without LPS (O111:B4, 10 ng/ml) or SCGB3A2 (200 ng/ml) for 3 and

24 hr in OPTI-MEM. (H) Immunoblots of RAW264.7 cells after treatment with or without LPS (O111:B4, 1 mg/ml), SCGB3A2 (1 mg/ml), and/or heparin (1

mg/ml) for 16 hr in OPTI-MEM. Abbreviations for G and H, L: LPS, S: SCGB3A2, H: Heparin. Immunoblots shown in G and H were carried out more than

3 separate times, and each time similar results were obtained. (I) Immunofluorescence analysis of LLC cells for caspase-11 and NLRP3, incubated for 0

%5 hr with or without LPSA594 (2 mg/ml), LPSA594 +SCGB3A2 (2 mg/ml). Arrowheads: LPS, caspase-11, NLRP3 overlapping focus. Bar = 10 mm. (J)

Immunofluorescence analysis of caspase-11 in LPS transfected LLC. LPSA594 (1 mg) was transfected using X-tremeGENE HP in 10%5 hr. Arrowheads: LPS

and caspase-11 focus. Bar = 10 mm. All images are the representative of three independent experiments. (K) Immunofluorescence analysis of LLC cells

for SCGB3A2-HT and LPSA488. Cells were incubated for 1%24 hr with or without Dynasore (10 mM), and LPSA488 (1 mg)+SCGB3A2-HT supernatant.

Dotted lines depict the outer membrane of cells. Bar = 10 mm. (L) Immunoblots of LLC cells after treatment with or without LPS (O111:B4, 10 ng/ml),

SCGB3A2 (1 mg/ml) or Dynasore (5 or 10 mM) for 2%3 hr. (M) LDH release from LLC cells in control condition or in the presence of Dynasore (D, 5 mM)

or Wedelolactone (W, 10 mM), with or without LPS (1 mg/ml) and/or SCGB3A2 (1 mg/ml) for 2%48 hr. Average ±SD from three independent experiments,

each in triplicate. S: SCGB3A2, L + S; LPS +SCGB3A2. *: p<0.05 by one-way ANOVA. (N) Summary for the numbers of pulmonary surface tumors in

lungs of intravenous metastasis model mice using LLC-control or LLC-sh-Casp-11 cells and indicated treatments. hS2; human SCGB3A2. A dot indicates

a mouse. **: p<0.01 by student’s t-test.

DOI: https://doi.org/10.7554/eLife.37854.009

The following figure supplements are available for figure 4:

Figure supplement 1. Analysis of SCGB3A2-HaloTag protein trafficking.

DOI: https://doi.org/10.7554/eLife.37854.010

Figure supplement 2. SCGB3A2 modeling.

DOI: https://doi.org/10.7554/eLife.37854.011

Figure supplement 3. Establishment of LLC-sh-TLR4 cells and analysis of SCGB3A2/LPS binding/incorporation.

DOI: https://doi.org/10.7554/eLife.37854.012

Figure supplement 4. Effect of SCGB3A2-LPS on RAW264.7 cells.

DOI: https://doi.org/10.7554/eLife.37854.013

Figure supplement 5. Confirmation of caspase-11 knockdown in LLC cells in the presence of Wedelolactone or LLC-sh-casp11 cells.

DOI: https://doi.org/10.7554/eLife.37854.014
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Figure 5. SCGB3A2-LPS promotion of pyroptotic cell death. (A) Representative phase contrast image of LLC cells incubated with LPS (O111:B4, 1 mg/

ml) and SCGB3A2 (1 mg/ml) in 1% FBS-RPMI 1640 for 72 hr. Arrows indicate cells undergoing pyroptosis (swollen cells). Bar = 10 mm. Image is the

representative of three independent experiments (B) CCK8 analysis using LLC cells with LPS (O111:B4) (1 ng/ml) and/or human SCGB3A2 (C2; see

Supplementary file 1) (10 ng/ml) in 2%FBS-RPMI for 72 hr culture. Data are the representative from more than three independent experiments, each in

triplicate. Averages ± SD are shown. (**p<0.01, *p<0.05 by One-way ANOVA). S2; SCGB3A2. (C) Flow cytometry analysis for Annexin V/PI staining. 1

mg/ml SCGB3A2 and 10 ng/ml LPS (O111:B4) were used. LLC cells were maintained for 24 hr in 1%FBS-RPMI medium, then treated with or without

SCGB3A2/LPS, and further cultured for 48 hr. The numbers in the graph indicate the cell percentage in each quadrants. The number in blanket show

the total percentage of PI positive cells in each graph. Experiments were carried out more than 3 times, and each time similar results were obtained. (D)

TUNEL staining of lung sections of lung metastasized LLC cells in the intravenous administration model. Images are shown for control (PBS) and mouse

SCGB3A2 administered during the 2nd week. The bottom graph indicates the percentage of TUNEL positive areas per total LLC tumor areas as

measured using imageJ. +SCGB3A2 indicates lungs of mice that received SCGB3A2 during the 1 st week. Ctl, control. Three independent lung samples

were evaluated for each group. *p<0.05 by student’s t-test. (E) Representative IHC staining of caspase-11 for metastasized nodules of LLC cells in lung

in vivo. Images are shown for control (PBS) and mouse SCGB3A2 administered during the 1 st week. Counterstained with Haematoxylin. Bar = 50 mm.

(F) Representative IHC staining of NLRP3 for metastasized nodules of LLC cells in lung. Images are shown for control (PBS) and mouse SCGB3A2

administered during the 1 st week. Counterstained with Haematoxylin. Bar = 50 mm. IHC staining was carried out using more than three independent

lung samples.

DOI: https://doi.org/10.7554/eLife.37854.015
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4A), was next examined. Co-incubation of RAW264.7 cells with SCGB3A2 + LPS clearly enhanced

expression of caspase-11 and NLRP3, followed by IL-1b up-regulation and maturation, while

SCGB3A2 or LPS alone did not (Figure 4H). Heparin co-incubation abrogated caspase-11/NLRP3/IL-

1b expression by SCGB3A2 + LPS. SCGB3A2 enhanced IL-1b secretion from RAW264.7 cells, which

was inhibited by the addition of heparin (Figure 4—figure supplement 4B). A lactate dehydroge-

nase (LDH) cytotoxicity assay showed that RAW264.7 cells exhibited greater cytotoxicity by

SCGB3A2 + LPS compared to the individual treatments, demonstrating the critical role of SCGB3A2

as an LPS delivery molecule to macrophage cells as well (Figure 4—figure supplement 4C).

In LLC cells under SCGB3A2 + LPS, caspase-11 expression was upregulated in a diffused distribu-

tion pattern in the entire area and showed specific foci (Figure 4I). Importantly, the caspase-11 foci

overlapped with incorporated LPS (Figure 4I). The expression of NLRP3 was also clearly up-regu-

lated by LPS +SCGB3A2 and accumulated around the caspase-11 foci. We hypothesized that the

incorporated LPS triggers formation of caspase-11 foci in LLC cells. As expected, when LPS was

introduced into LLC cells using a DNA transfection reagent, LLC cells showed increased intracellular

LPS signals and caspase-11 foci, overlapped with LPS (Figure 4J), confirming that the formation of

caspase-11 foci is mediated by LPS introduction into the cytosol of LLC cells. We could not detect

clear foci of caspase-1 in LLC cells, unlike the case of macrophages as previously reported (data not

shown). Caspase-11 foci formation and NLRP3 upregulation driven by LPS + SCGB3A2 were also

observed in RAW264.7 cells (Figure 4—figure supplement 4D). These results confirm that

SCGB3A2 facilitates the delivery of LPS into the cytosol, in concert with the enhancement of non-

canonical inflammasome signaling.

To confirm the importance of clathrin-mediated endocytosis of LPS via the SCGB3A2-SDC1 path-

way for killing of LLC cells, the effect of clathrin inhibitor, Dynasore on the growth of LLC cells was

examined in vitro (Figure 4K–4M). LLC cells had strong focal staining of SCGB3A2-HT and LPSA448
at the corresponding locations to each other, while Dynasore potently inhibited the incorporation of

SCGB3A2 and LPS into the cytosol of LLC cells (Figure 4K) and abrogated the activation of caspase-

11 (Figure 4L). LDH release from LLC cells as indication for cytotoxicity was slightly upregulated by

LPS +SCGB3A2, while this upregulation was not observed when cells were treated with either Dyna-

sore or Wedelolactone (caspase-11 inhibitor) (Kobori et al., 2004) (Figure 4M, Figure 4—figure

supplement 5A). Furthermore, when LLC-sh-casp-11 cells (Figure 4—figure supplement 5B) were

subjected to the intravenous metastasis model with or without SCGB3A2 administration, they did

not show any significantly different numbers of lung tumors after SCGB3A2 administration, in sharp

contrast to the results with control LLC cells (Figure 4N). These results clearly indicate the impor-

tance of clathrin-mediated endocytosis of LPS +SCGB3A2 and caspase-11 activation for the killing of

LLC cells in vivo.

SCGB3A2-LPS promotes pytoptotic cell death of LLC cells
The SCGB3A2 + LPS complex promoted pyroptotic cell death morphology in cultured LLC cells

(membrane swelling; Figure 5A). CCK8 assay confirmed the upregulation of pyroptotic cell death of

LLC cells by essentially endotoxin-free SCGB3A2 plus a small amount of LPS (Figure 5B). Further-

more, flow cytometry analysis revealed the upregulation of propidium iodide (PI) positive cell death

by SCGB3A2 + LPS (Figure 5C), demonstrating the formation of cell membrane pores, the charac-

teristic feature of pyroptosis, induced by SCGB3A2 + LPS. Next, the induction of cell death by

SCGB3A2 in vivo was examined in the LLC cell intravenous metastasis model (Figure 5D). Large

necrotic areas were found in lung tumors from mice treated with early intravenous administration of

SCGB3A2 (1st and 2nd week) (Figure 5D). Importantly, these necrotic areas showed enhanced

expression of both caspase-11 and NLRP3, demonstrating that tumor cell death occurred through

caspase-11-mediated non-canonical inflammasome activation (Figure 5E and F). These results

clearly indicate that SCGB3A2 significantly promotes pyroptotic death of LLC cells both in vivo and

in vitro.

LLC-sh-SDC1 cells attenuate SCGB3A2-mediated inhibition of
metastasis in the mouse LLC model
LLC-sh-SDC1 cells showed reduced susceptibility to the cytotoxic effects of LPS +SCGB3A2 complex

in vitro (Figure 6A), accompanied by minimal enhancement of caspase-11 foci formation by
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LPS +SCGB3A2 (Figure 6B, see Figure 4I). Heparin addition abrogated the increase of caspase-11

foci in LLC-sh-Control cells (Figure 6B), confirming the crucial role of heparin sulfate and SDC1 for

caspase-11 foci formation. In vivo sensitivity of LLC-sh-SDC1 cells to SCGB3A2-mediated inhibition

of metastasis was next analyzed. Tumor numbers in mice that received LLC-sh-SDC1 cells and

SCGB3A2 were not significantly different from those that received LLC-sh-SDC1 cells and PBS, while

tumor numbers with LLC-sh-Control cells were significantly reduced by SCGB3A2 co-injection, simi-

lar to that observed in Figure 1 (Figure 6C and D). These experiments confirmed a pivotal role for

SDC1 in SCGB3A2-mediated inhibition of LLC cell growth and metastasis in vivo. Next, to under-

stand the reason for the differences in response to SCGB3A2 between LLC (susceptible) and B16F10

(resistant) cells, the baseline mRNA expression from inflammasome-related genes were examined

(Figure 6E). As a result, Casp11, Nlrp3, Aim2, Gsdmd, and Il1b mRNAs were highly expressed only

in LLC cells, suggesting that LLC cells have the machinery to activate a non-canonical inflammasome

pathway driven by caspase-11 in combination with higher expression levels of cell surface SDC1 (see

Figure 3D and E). Lastly, the effect of SCGB3A2 on the survival of lung-specific KrasG12D mutant

mice was examined using KrasG12D;Scgb3a2(fl/fl) and the littermate KrasG12D;Scgb3a2(fl/+) mice

(Figure 6F). Due to lung-specific activation of the KrasG12D allele, these mice developed lung cancer

within 4 months of age. KrasG12D;Scgb3a2(fl/fl) mice clearly showed a poorer survival rate than

KrasG12D;Scgb3a2(fl/+) mice. Based on these results, we propose a new model for SCGB3A2 delivery

of LPS and activation of caspase-11(caspase-4) pathway via SDC1 receptor signaling, leading to

pyroptosis of cancer cells (Figure 6G).

Discussion
SCGB3A2 is a member of the secretoglobin family of proteins, which share a common four helical

bundle subunit structure, exist as dimers, tetramers, and other oligomers, and some of which have

also been implicated in tumor suppression (Mukherjee et al., 2007) without a clear understanding

yet of the mechanistic pathway(s). This work takes a significant step forward to elucidate and

describe a new pathway impacted by SCGB3A2 functioning as a tumor suppressor protein. Previ-

ously we showed that SCGB3A2 functions as an anti-inflammatory and anti-fibrotic agent in the lung

(Cai and Kimura, 2015; Cai et al., 2014; Chiba et al., 2006; Kido et al., 2014; Kurotani et al.,

2011; Yoneda et al., 2016). Because SCGB3A2 is mainly secreted by club cells in lung airways, it is

reasonable to assume that a primary function of SCGB3A2 is to protect the hosts from pathogens

and pathogen-associated molecular patterns such as LPS. The current study demonstrated that

SCGB3A2 binds to and facilitates delivery of LPS into the cytosolic compartment through specific

binding with SDC1, resulting in cell death via an inflammatory pathway leading to pyroptosis. This is

commonly seen in the macrophage cell line RAW264.7, suggesting a possible conserved role for

SCGB3A2 in host defense and enhancing the immune response through the non-canonical inflamma-

some pathway of pyroptosis. Notably, in the case of LLC cells, the uptake of SCGB3A2-sequestered

small amount of LPS triggers inflammatory cell death, probably because of the abundant SDC1

expression on their cell surface. It is noteworthy that caspase-11 and human caspase-4/5 are specific

to mammals (Kayagaki et al., 2015), while the SCGB superfamily of proteins, including SCGB3A2,

have also evolved in mammalian lineages (Jackson et al., 2011), suggesting the co-emergent evolu-

tion as an ‘input-output’ for defense from invading pathogens.

SDC1 localization to uropods is functionally important as uropods accumulate growth factors and

connect them at cell-to-cell contact points or junctions (Børset et al., 2000; Yang et al., 2003).

Others demonstrated that the SDC1-specific HS sequence is important for targeting SDC1 to uro-

pods (Børset et al., 2000). Our results that heparin treatment dramatically reduces SCGB3A2 and

LPS binding and their incorporation into cells, as well as caspase-11 and NLRP3 induction suggest

that SCGB3A2 appears to interact with the HS moiety of SDC1, which is concentrated in the mem-

brane uropods.

Recently, it was reported that bacterial outer membrane vesicles (OMVs) deliver LPS into the host

cell cytosol via clathrin mediated endocytosis (Vanaja et al., 2016). OMV is expected to work as a

platform vaccine technology because of the potential to deliver small antigens and to modulate the

immune system, however, it is highly toxic due to contamination with a large amount of LPS

(Acevedo et al., 2014). In addition, guanylate-binding proteins (GBPs) are reported to have impor-

tant function for interaction with cytosolic OMV and activation of caspase-11 (Meunier et al., 2014;
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Figure 6. Evaluation for the requirement of SDC1 and other genes for SCGB3A2-LPS effect. (A) CCK8 assay using LLC-sh-Control and LLC-sh-SDC1 for

72 hr in 1% FBS-RPMI 1640 medium. C; control, S; human SCGB3A2 (200 ng/ml), L; LPS (O111:B4, 1 pg/ml). Averages ± SD from more than three

independent experiments, each in triplicate are shown. *: p<0.05 by one-way ANOVA. (B) Immunofluorescent staining of caspase-11 and LPSA594 using

LLC-sh-Control and LLC-sh-SDC1 cells. Cells were maintained in 1% FBS-RPMI 1640 medium for 16 hr with or without human SCGB3A2 (1 mg/ml), LPS

Figure 6 continued on next page
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Santos et al., 2018). Our findings demonstrate that SCGB3A2 is incorporated into cytosol via a cla-

thrin-mediated uptake mechanism, and that SCGB3A2 is a potent LPS disaggregation protein.

Hence, SCGB3A2 might be an attractive protein which has a key function similar to OMV, but with-

out any significant toxicity because of its natural occurrence and abundance in lung. It is also inter-

esting to speculate that SCGB3A2 could liberate LPS from OMV to gain access to cell cytosols either

from early endosome or from extra cellular spaces, collaborating with other host proteins such as

GBPs. Whether this is the case requires further studies.

It was reported that the non-canonical inflammasome pathway governed by caspase-4/caspase-

11, intrinsic to intestinal epithelial cells, plays a critical role in antimicrobial defense, causing pyrop-

totic cell death and shedding of infected cells (Knodler et al., 2014). These events could limit patho-

gen colonization of the intestinal epithelium. Likewise, it’s conceivable that lung airway epithelial

cells have an intrinsic non-canonical inflammasome pathway for antimicrobial defense, through the

SCGB3A2 and SDC1 interaction. Moreover, the present results suggest that this non-canonical

inflammasome pathway is retained in some cancer cells and this property could be used for cancer

treatment. Importantly, it was reported that newborn Sdc1(-/-) mouse lungs show marked resistance

against P. aeruginosa infection (Park et al., 2001). This study was extended to show the biological

function of SDC1 in lung epithelial cells from a simple cell membrane receptor for growth factors

and chemokines to that of modulating microbial pathogenesis and host defense (Park et al., 2001).

The role of SCGB3A2 as a chaperon to deliver LPS to cell cytosols may initially be established to pro-

tect host cells from infection, while this mechanism may have evolved to protect host from cancer

development by activation of the non-canonical inflammasome signaling pathway. Anti-tumor effects

of endotoxin/LPS has been known for decades while the effects are still controversial; one reason is

because the effects vary depending on different cancers (Lundin and Checkoway, 2009; Ribi et al.,

1983). Our results could provide one of the reasons for the various sensitivities of different cancer

cells to endotoxin.

Of note is that the levels of SDC1 expression differ depending on cancer types and are strikingly

dysregulated in many cancer cells (Akl et al., 2015; Teng et al., 2012). Because loss of membranous

SDC1 increases the mobility of cancer cells, resulting in enhancement of metastasis, in general, loss

or weak expression of SDC1 in tumors is thought to be associated with unfavorable outcomes. In

lung cancer patients, high serum levels of shed SDC1 and bFGF were associated with poor progno-

sis (Joensuu et al., 2002). Some reports also found cytoplasmic or nuclear localization patterns of

SDC/HS in less differentiated malignant cells (Akl et al., 2015; Burbach et al., 2003; Miyake et al.,

2014), however the underlying mechanism for this correlation is largely unknown. Cancer cells are

notorious for changing/adapting in order to survive, such as acquisition of the resistance to chemo-

therapeutic reagents. In addition to the loss of contact with extracellular matrix, the various expres-

sion patterns (reduced, shed, or subcellular) of SDC1 in many malignant cancer cells might suggest

that this could be one of their acquired properties; by losing the expression of SDC1 on their cell

surface, they will become refractory to the microorganism/LPS triggering non-canonical inflamma-

some pathway, thus avoiding their own death. Further studies will be required, particularly regarding

which cancer cell types possess the machinery and/or express the necessary genes and protein

expression patterns that permit response via the non-canonical inflammasome pathway. Collectively,

these findings could be utilized for the recognition of the importance of the inflammasome activation

of cancer cells and the innate immune system for cancer targeting and treatment. The currently

Figure 6 continued

(1 mg/ml), and/or heparin (1 mg/ml). Arrowheads: caspase-11 foci. Bar = 10 mm. Numbers on the right indicate cells containing caspase-11 foci per a

total 100 cells counted for each cell type. Data are the representatives of three independent experiments. (C) Intravenous metastasis model using LLC-

sh-Control or LLC-sh-SDC1 cells. Representative lungs from the control (PBS) and SCGB3A2 groups that received treatment in the 1 st week. N = 3–6

per group. Bar = 1 cm. (D) Summary of C for the numbers of pulmonary surface tumors in lungs of animals receiving treatment as indicated. hS2;

human SCGB3A2, mS2; mouse SCGB3A2. A dot indicates a mouse. *p<0.05 by One-way ANOVA. (E) qPCR quantification of the relative

mRNA expression levels for inflammasome related genes in LLC and B16F10 cells. Cells grown in 10%FBS-RPMI 1640 medium were harvested at 24 hr.

Averages ± SD from more than three independent experiments, each in triplicate. ND; not detectable. (F) KrasG12D-induced lung carcinogenesis survival

curve for KrasG12D;Scgb3a2(fl/fl) (red line; fl/fl, n = 14) and littermate KrasG12D;Scgb3a2(fl/+) (black line; fl/+, n = 44) mice. (G) Schematic model for LPS

entry into cells by SCGB3A2 through SDC1 receptor, leading to pyroptotic cell death.
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available cancer immunotherapy is mainly targeted to the host immune cells, whereas our study

shows the possibility to directly target the activation of non-canonical inflammasome pathway of can-

cer cells. Our findings may provide the new clue for the understanding of many cancers that are

refractory to cancer immunotherapy mediated by immune cells. Combination of the cancer immuno-

therapy and the cancer cell self-destructive therapy could greatly advance the treatment of cancer

patients.

Materials and methods

Key resources table

Reagent type (species)
Or resource Designation Source or reference Identifiers

Additional
information

Strain,
strain background
(M. musculus)

Scgb3a2-/- (C57BL/6N background) In house Kido et al., 2014

Strain,
strain background
(M. musculus)

Scgb3a2fl/fl (C57BL/6N background) In house Kido et al., 2014

Strain,
strain background
(M. musculus)

Ccsp-Cre;LSL-K-rasG12D
(mixed background)

Francesco
DeMayo
(Baylor College
of Medicine,
now NIEHS)

Moghaddam et al., 2009

Cell line
(M. musculus)

LLC-Mhi Glenn Merlino (NCI) Highly metastatic,
MAP test
negative

Cell line
(M. musculus)

B16F10 ATCC CRL-6475

Cell line
(M. musculus)

RAW264.7 Raymond
Donnelly (FDA)

MAP test
negative,
authenticated
by STR

Cell line
(human)

ARH-77
ARH-77-mSDC1

Ralph Sanderson
(The University of Alabama at Birmingham)

MAP test
negative,
authenticated
by STR

Recombinant
protein

mouse SCGB3A2 NCI Protein Expression Core Kurotani et al., 2008

Recombinant
protein

mouse SCGB3A2 Hölzel Diagnostics CSB-BP846028MO

Recombinant
protein

mouse SCGB3A2 CosmoBio USA CSB-EP846028MO

Recombinant
protein

human SCGB3A2 In house
(
APCBio Innovations)

Cai et al., 2014

Antibody anti-mouse
SCGB3A2
(rabbit polyclonal)

E. Coli expressed
mature SCGB3A2 in
vector pET-32a(+)
used as an antigen
to produce a
polyclonal
antibody
(produced
by Macromolecular
Resources, Fort
Collins, CO)

Niimi et al., 2001 1:5000 for IHC

Continued on next page
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Continued

Reagent type (species)
Or resource Designation Source or reference Identifiers

Additional
information

Antibody anti-human
SCGB3A2
(polyclonal)

In house
(APCBIo
Innovations)

Cai et al., 2014 1:1000 for WB

Antibody anti-mouse/human
SDC1

Pynog W Park
(Harvard Med Sch)

1:200 for IHC/IF
1:1000 for WB

Antibody PE-rat anti-mouse SDC1 BD Pharmingnen clone 281.2 1:200 for FACS

Antibody anti-clathrin heavy chain Cell Signaling
Technology

P1663 1:200 for IF

Antibody anti-EEA1 (monoclonal) Cell Signaling
Technology

C45B10 1:200 for IF

Antibody anti-IL-1b
(monoclonal)

Cell Signaling
Technology

Clone 3A6 1:1000 for WB

Antibody anti-caspace-
11 (monoclonal)

Thermo
Fisher Scientific

Clone 17D9 1:1000 for WB
1:100 for IHC/IF

Antibody anti-ICAM1
(monoclonal)

Thermo
Fisher Scientific

MA5407 1:200 for IF

Antibody anti-caspace-1
(monoclonal)

Thermo
Fisher Scientific

Clone 5B10 1:1000 for WB
1:100 for IF

Antibody anti-NLRP3 (monoclonal) Adipogen AG-20B-0014 1:1000 for WB
1:200 for IHC/IF

Antibody anti-LAMP1 (monoclonal) Santa Cruz sc-17768 1:200 for IF

Antibody anti-HaloTag (polyclonal) Promega G9281 1:100 for IF
1:1000 for WB

Antibody anti-GAPDH (monoclonal) Proteintech 60004–1-Ig 1:5000 for WB

Antibody anti-LPS (monoclonal) Abcam ab35654 1:1000 for WB

Chemical
compound, drug

LPS from
E. coli O111:B4

Sigma-Aldrich L4391

Chemical
compound, drug

Ra mutant
LPS from E.coli EH-100

Sigma-Aldrich L9641

Chemical
compound, drug

LPS from E.coli K-235 Sigma-Aldrich L2018

Chemical
compound, drug

LPS from
Salmonella typhimurium

Sigma-Aldrich L2262

Chemical
compound, drug

heparin sodium
salt from porcine
intestinal mucosa

Sigma-Aldrich H3393

Chemical
compound, drug

imidazole Sigma-Aldrich I5513

Chemical
compound, drug

zinc sulfate solution Sigma-Aldrich Z2876

Chemical
compound, drug

Dynasore AdooQ Bioscien A12726

Chemical
compound, drug

Wedelolactone AdooQ Bioscien A14804

Chemical
compound, drug

LPS-EB Biotin InvivoGen tlrl-3blps

Cell culture
The LLC cells used in this study were the LLC-Mhi cell line (obtained from Dr. Glenn Merlino, NCI),

which is a high metastatic subline derived from LLC tumors described previously (Day et al., 2012).

B16F10 cells were purchased from American Type Culture Collection. ARH-77 and ARH-77-mSDC1

cells were kindly provided by Dr. Ralph D. Sanderson (University of Alabama at Birmingham), and
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RAW264.7 cells by Dr. Raymond P. Donnelly (FDA). LLC, ARH-77, and RAW264.7 cells were all

tested negative for mycoplasma (NCI Core facility) and authenticated by STR analysis (IDEXX BioRe-

search). LLC and B16F10 cells were cultured in RPMI 1640 Medium (LONZA) with heat-inactivated

fetal bovine serum (FBS), supplemented with penicillin/streptomycin (1:100) at 37 ˚C, 5% CO2. Cul-

ture of LLC cells was carried out under various concentrations of FBS, as indicated in the Figure

legends. For LPS stimulation, RAW264.7 cells were cultured in OPTI-MEMTM I reduced serum

medium (Thermo Fisher Scientific) for times indicated in the text. LPS transfection was performed

using X-tremeGene HP DNA transfection reagent (Roche Applied Science).

Protein microarray
SCGB3A2 binding proteins were identified using ProtoarrayTM Human Protein Microarray

v5.0 Protein-Protein Interaction Kit for biotinylated proteins (Thermo Fisher Scientific, PAH0525101,

>9000 proteins included). Experiments were carried out according to procedures provided by the

manufacturer. First, a biotin label was introduced into recombinant human SCGB3A2 protein using

Biotin-XX Microscale Protein Labeling Kit (Thermo Fisher Scientific B30010), which was then used to

probe Protoarray Human protein microarrays. The microarrays were washed with washing buffer

(PBS containing 10% Synthetic Block (included in the kit) and 0.1% Tween 20 (Thermo Fisher Scien-

tific)), and probed with Alexa Fluor 647 conjugated streptavidin (included in the kit). After washing,

the microarrays were dried and scanned by a fluorescent microarray scanner (Perkin Elmer, Scanarray

Express) to obtain the data. Software for the data analysis (Protoarray Prospector) was also provided

by the manufacturer.

RNA interference by retrovirus-based shRNA
The shRNA constructs were purchased from transOMIC for mouse SDC1, from ORIGENE for mouse

TLR4 and mouse caspase-11. Retroviral constructs were transfected into Phoenix packaging cells by

using X-tremeGene HP DNA transfection reagent (Roche Applied Science). Drug selection and cell

cloning were conducted in the presence of 2 mg/ml puromycin by the limited dilution method.

shRNA constructs used for mouse Sdc1 knock down are as follows: pMLP-Sdc1-sh1; 5’-CGGGGA

TGACTCTGACAACTTA-3’, 5’-TAGTGAAGCCACAGATGTA-3’, and 5’-TAAGTTGTCAGAGTCA

TCCCCA-3’, pMLP-Sdc1-sh2; 5’-ACAGGCAGCTGTCACATCTCAA-3’, 5’-TAGTGAAGCCACAGATG

TA-3’, and 5’-TTGAGATGTGACAGCTGCCTGG-3’), and pMLP-Sdc1-sh3; 5’-CCAAGACTTCACC

TTTGAAACA-3’, 5’-TAGTGAAGCCACAGATGTA-3’, and 5’-TGTTTCAAAGGTGAAGTCTTGT-3’.

shRNA sequences used for mouse TLR4 knock down are as follows: 5’-CACTTAGACCTCAGCTTCAA

TGGTGCCAT-3’ and 5’-TGCCTTCACTACAGAGACTTTATTCCTGG-3’. shRNA sequences used for

mouse Casp11 knockdown are as follows: 5’-TAACAATGCTGAACGCAGTGACAAGCGTT-3’, 5’-

ACAGCACATTCCTGGTGCTAATGTCTCAT-3’ and 5’-ATATTCCTGAAGGTGCAACAATCATTTGA-

3’.

Co-immunoprecipitation assay
COS-1 cells were transfected with 2.5 mg each of candidate gene cloned into pcDNA3.1/Myc-His

vector, the human SCGB3A2 (NM_054023) open reading frame cloned into pcDNA3.1 with a C-ter-

minal FLAG tag, or a control plasmid by using X-tremeGene HP DNA transfection reagent. Both cells

and media were harvested 48 hr after transfection. The culture media containing cells were centri-

fuged at 500 g for 10 min at 4˚C and the supernatant was collected (media supernatant). Cells were

lysed in 400 mL CHAPS IP buffer-1 (1% CHAPS, 150 mM NaCl, 50 mM Tris-HCl, pH 7.4, protease

inhibitor complete-mini 1 tablet/10 ml) and sonicated two times for 5 s each on ice. The cell lysates

were centrifuged at 15,000 g for 10 min at 4˚C and the supernatant was collected (cell lysate super-

natant). The media supernatant and cell lysate supernatant were combined, which were pre-cleared

with Protein G-Agarose (Santa Cruz Biotechnology) at 4˚C for 3 hr, followed by incubation with

FLAG-tagged gel (20 mL; #3326, MBL) at 4˚C overnight. The gel-immunocomplexes were washed

twice with CHAPS IP buffer-2 (0.1% CHAPS, 500 mM NaCl, 50 mM Tris-HCl, pH 7.4) for 20 min each

and then washed twice with CHAPS IP buffer-3 (0.1% CHAPS, 50 mM Tris-HCl, pH 7.4) for 20 min

each.

Immunoprecipitated samples were separated by SDS-PAGE and electroblotted to PVDF mem-

branes. Blocking was carried out with 5% skim milk in TBST (Tris-buffered saline; Tris-HCl, pH
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7.4 + 0.1% Tween 20) and the membrane was subsequently incubated with anti-Myc mouse mono-

clonal antibody (1:1000, 9B11, Cell signaling) at 4˚C overnight followed by incubation with sheep

anti-mouse IgG HRP-linked F(ab’)2 fragment (1:2000; NA9310, GE Healthcare). Signals were

detected as described for western blotting.

Streptavidin pull down assay
LPS-Biotin (1 mg/ml) and immobilized Streptavidin agarose gel were incubated for 30 min at 4 ˚C,

and after biotin blocking, 1.25 mg/ml recombinant human SCGB3A2 was added as a pray protein

and incubated for 1 hr at 4 ˚C. Ten % of flow through was used as an input. After washing several

times, the gel was boiled for 5 min with SDS sample buffer and the supernatant was used for west-

ern blotting.

Imidazole-zinc staining
Imidazole-zinc staining was carried out as previously reported (Rodrı́guez and Hardy, 2015). Briefly,

LPS dissolved and/or SCGB3A2 diluted in water were loaded onto 0.8% agarose gel in full in a well

to make sure the content reaching to gel surface and run at 50V in TAE (Tris-acetate-EDTA; 40 mM

Tris, 20 mM acetic acid, and 1 mM EDTA, pH 8.0) buffer until dye reached to the gel bottom. The

gel was washed with ddH2O and immersed in 0.2 M imidazole for 20 min with gentle agitation. After

discarding solution and washing with ddH2O, the gel was placed in the dark and incubated with 0.3

N zinc sulfate solution for several minutes. Then the gel was rinsed with ddH2O to stop staining and

an image was taken with ChemiDocTM imaging system (Bio-Rad). For double staining experiments,

the gel was stained with 0.25% Coomassie Brilliant Blue solution after the gel image of Imidazole-

zinc staining was scanned.

Quantitative RT-PCR
Total RNA was extracted by TRIzol (Life Technologies) and reverse transcribed into cDNA by using

SuperScript III reverse transcriptase (Life Technologies) according to the manufacturer’s protocol.

Analysis of mRNA levels was performed on a 7900 Fast Real-Time PCR System (Life technologies)

with SYBR Green-based real-time PCR. The primer sequences used for real-time PCR are as follows:

(sense) 5’-CTCAGAGCCTTTTGGACAGG-3’ and

(antisense) 5’TACAGCATGAAAGCCACCAG-3’ for mouse Sdc1;

(sense) 5-TGTGTACACGGAGAAACATTCAG-3 and

(antisense) 5- GCAAAGAGAAAGCCGATCAC �3 for mouse Sdc2;

(sense) 5-AACTGAGGTCTTGGCAGCTC-3’ and

(antisense) 5’-TACACCAGCAGCAGGATCAG-3’ for mouse Sdc4;

(sense) 5’-CCAATTTTTCAGAACTTCAGTGG-3’ and

(antisense) 5’-AGAGGTGGTGTAAGCCATGC 3’ for mouse Tlr4;

(sense) 5’-GCTGATGCTGTCAAGCTGAG-3’ and

(antisense) 5’-GAGCCTCCTGTTTTGTCTCG-3’ for mouse Casp11;

(sense) 5’-CCTCTGTGAGGTGCTGAAAC-3’ and

(antisense) 5’-TCAGGCTTTTCTTCCTGGAG-3’ for mouse Nlrp3;

(sense) 5’-TGGGCTGTTTAAAGTCCAGAAG-3’ and

(antisense) 5’-TTTGTTTTGCTTGGGTTTCC3’ for mouse Aim2;

(sense) 5’-ACATGGGCTTACAGGAGCTG-3’ and

(antisense) 5’-ACTCTGAGCAGGGACACTGG-3’ for mouse Asc;

(sense) 5’-TGTCTGGTGCTTGACTCTGG-3’ and

(antisense) 5’-CTGGGTTTCACTCAGCACAG-3’ for mouse Gsdmd;

(sense) 5’-GCTGTGACCCTCTCTGTGAAG-3’ and

(antisense) 5’-TTTCAGGTGGATCCATTTCC-3’ for mouse Il18;

(sense) 5’-AAAGCTCTCCACCTCAATGG-3’ and

(antisense) 5’-AGGCCACAGGTATTTTGTCG-3’ for mouse Il1b;

(sense) 5’- ACAAGACCCACGTGGAGAAG �3’.
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Western blotting
Cells were lysed in RIPA lysis buffer (Millipore) and protein concentration was measured by BCA pro-

tein assay kit (Thermo Fisher Scientific). Samples were separated by SDS-PAGE and electroblotted

to polyvinylidene fluoride (PVDF) membranes (GE Healthcare). In the case of SDC1 detection, cell

membrane extract was prepared using Subcellular Protein Fractionation Kit for Cultured Cells

(Thermo Fisher Scientific) according to the manufacturer’s protocol, and blotted to cationic nylon

membrane (Immobilon Ny; Millipore). Signals were visualized with SuperSignal West Dura Chemilu-

minescent Substrate (Thermo Fisher Scientific) according to the manufacturer’s protocol. Chemilumi-

nescence was quantitated using a Bio-Rad ChemiDocTM MP imaging system.

FACS analysis
For LPS and cell binding assay, cells were washed with PBS and incubated with Alexa 488 or 594-

conjugated LPS from E.coli 055:B4 (L-23351 or L-22353, 1 mg) (Thermo Fisher Scientific) with or with-

out SCGB3A2 (1 mg/ml) at 4 ˚C for 30 min. After washing with PBS, the cells were analyzed in a

FACS Canto II (Becton Dickinson). For the SCGB3A2 and LLC cell binding assay, LLC cells were incu-

bated with recombinant mouse or human SCGB3A2, washed with PBS, incubated with anti-

SCGB3A2 antibody for 30 min followed by PE-rabbit IgG secondary antibody for 30 min. For SDC1

expression analysis, LLC cells were harvested in PBS and stained with PE-rat anti-mouse SDC1 (clone

281.2, BD Pharmingnen) for 30 min at 4 ˚C. For Annexin V/PI analysis, Dead Cell Apoptosis Kit with

Annexin V FITC and PI, for flow cytometry (V13242, Thermofisher Scientific) was used. Cells were

harvested using a scraper and washed with cold PBS and stained with Annexin V-Alexa 488 and PI in

1x Annexin binding buffer for 15 min. As a compensation control, FITC-stained only or PI-stained

only cells were prepared by inducing cell death by incubation in 70% EtOH for 10 min. All experi-

ments were carried out in the NCI Flow Cytometry Core Facility.

LLC cells mouse metastasis model
LLC cells (2 � 105 cells) were intravenously administered to C57BL/6N mice (Charles River, Frederick,

MD), followed by daily intravenous administration of recombinant mouse or human SCGB3A2 (0.25

mg/kg/day) for 7 days starting at day 0 (30 min after LLC cells injection), 7, or 14 or during the entire

experimental period of 20 days, or PBS injection for 20 days as control. Mice were killed on day 21

and the numbers of lung metastasized tumors evaluated. Some lungs were subjected to histological

analysis. Scgb3a2(-/-) mice(Kido et al., 2014) used in the metastasis model were those 10 times

backcrossed to C57BL/6N, and the littermates wild-type mice were used as control.

Lung carcinogenesis study
Ccsp-Cre;LSL-KrasG12D conditional mutant mice on the 129SvJ-C57BL/6 mixed background

(Jackson et al., 2001; Moghaddam et al., 2009) which express the oncogenic KrasG12D gene in

lung-specific fashion were provided by Francesco DeMayo (Baylor College of Medicine, Houston,

TX). Scgb3a2(fl/fl) mice, previously described (Kido et al., 2014), were backcrossed to C57BL/6N

mice three times. Ccsp-Cre;LSL-KrasG12D and Scgb3a2(fl/fl) mice were crossed to produce Ccsp-Cre;

LSL-KrasG12D;Scgb3a2(fl/fl) (tentatively named KrasG12D;Scgb3a2(fl/fl)) and littermate Ccsp-Cre;LSL-

KrasG12D;Scgb3(fl/+) (tentatively named KrasG12D;Scgb3a2(fl/+)) mice, and male mice were used in

the study. Mice were maintained under standard specific-pathogen-free conditions, and the studies

were carried out according to the guidelines for animal use issued by the National Institutes of

Health and after approval by the National Cancer Institute (NCI) Animal Care and Use Committee.

HaloTag imaging
To construct a HaloTag-mouse SCGB3A2 (mSCGB3A2-HT) expression vector, pFC14A HaloTag

CMV Flexi Vector (Promega) was fused to C-terminal of mouse SCGB3A2 cDNA. Primers for the

SCGB3A2 HaloTag plasmid were designed using the Flexi Vector Primer Design Tool web site. A

HaloTag Coding Region Control Expression Vector (Control-HT) was designed according to the

manufacture’s instruction. mSCGB3A2-HT or Control-HT was transfected to HEK293 cells using

X-tremeGENE HP DNA Transfection Reagent and after 48 or 72 hr, supernatant was collected and

concentrated with Amicon Ultra (Millipore) and stored at �80 ˚C until use. The transfection efficiency

was confirmed with microscopy using HaloTag TMRDirect ligand. For uptake of HT-mSCGB3A2 into
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LLC cells, after addition of HT-mSCGB3A2, cells were stained with HaloTag TMR ligand for short

incubation time or HaloTag TMRDirect ligand overnight. After two washes with PBS, the cells were

visualized under a microscope.

Histological analysis
Lung samples were fixed in 10% buffered formalin under 20 cm H2O pressure, embedded in paraf-

fin, sectioned at 4 mm by microtome and performed with Hematoxylin and Eosin staining (H & E).

TUNEL assay
Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) analysis was

performed using DeadEnd Fluorometric TUNEL System (G3250, Promega) according to the manu-

facturer’s instructions. Total tumor areas and TUNEL positive areas were measured using imageJ

software, and a percentage of TUNEL positive areas per total tumor areas was calculated

Immunofluorescence analysis
Cells were seeded on glass coverslips (Nunc Lab-Tek Chambered Coverglass (15583PK, Nunc). After

fixation with 10% buffered formalin for 10 min at room temperature (RT), cells were permeabilized

with 100% MeOH at �20˚C for 10 min. Blocking was done with 1% BSA in PBS for 1 hr and cells

were stained with primary antibodies for 1 hr at RT. After wash with PBS, cells were stained with sec-

ondary antibodies (1:200, Alexa flour, Molecular Probe) for 45 min at RT. Stained signals were ana-

lyzed under confocal microscope (Zeiss 510/710) according to the NCI confocal microscope facility

manual or Keyence microscope BZ-X700.

SCGB3A2 modeling
A SCGB3A2 dimer model was build starting from a consensus secondary structure prediction

obtained using several procedures including I-TASSER (https://zhanglab.ccmb.med.umich.edu/I-

TASSER/); LOMETS (https://zhanglab.ccmb.med.umich.edu/LOMETS/); RaptorX (http://raptorx.uchi-

cago.edu); Swissmodel (https://swissmodel.expasy.org); Phyre2 (http://www.sbg.bio.ic.ac.uk/

phyre2); BHAGEERATH-H (http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp) and Quark

(https://zhanglab.ccmb.med.umich.edu/QUARK/). The above-mentioned procedures were used as

available in their respective web-site implementations as of March 2017. The methods explored

span the spectrum of structure prediction techniques including threading, library-based methods,

etc. None of the methods explored produced a compact structure. The helical motifs were properly

identified by all models. The consensus helical regions as described in Figure 4—figure supplement

2B were manually aligned against the uteroglobin structure (PDB ID:1UTG) identified as the closest

homolog of SCGB3A2 for which an experimental structure is currently available. The missing sections

connecting the helical motifs were modeled as loops to the sole purpose of connecting the helices

in an initial workable model. The model was then refined using Feedback Restrain Molecular Dynam-

ics (FRMD). FRMD is based on a self-consistent procedure to bias molecular dynamics trajectories

towards a refined conformation using experimental information from multiple sources including

X-ray diffraction or NMR data when available (Cachau, 1994; Cachau et al., 1994; González-

Sapienza and Cachau, 2003). The procedure is conceptually similar to a reversed molecular replace-

ment protocol when using X-ray data, with the additional advantage that only those regions of the

molecule in agreement with the crystallographic data are affected by the crystallographic constrain,

as weighted by the FRMD protocol thus preserving the structural homology when available

(Cachau et al., 1994). FRMD was implemented in QMRx (Fadel et al., 2015) using X-plor-NIH

(Schwieters et al., 2003) to compute the crystallographic restrains and GROMACS 5.1.4

(Abraham et al., 2015) to drive the molecular dynamics (MD) calculations using the Amber ff99sb-

ildn force field for all MD calculations. All calculations were performed using a time step of 2 fs. All

bonds were constrained for all MD calculations. The leapfrog algorithm was used for integration

using a velocity rescaling thermostat (Noose-Hover) with a 0.1 ps coupling constant. Electrostatic

forces were computed using a distance criteria, and a cutoff of 10 Å was used for van der Waals

interactions. No periodic boundary conditions were used aside from the periodicity resulting from

the X-ray constrains. The system was freely equilibrated at T = 300 K for 5 ns without constrains, the

purpose of this short run was to relax the initial model without losing the original shape of the

Yokoyama et al. eLife 2018;7:e37854. DOI: https://doi.org/10.7554/eLife.37854 20 of 25

Research article Immunology and Inflammation

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/LOMETS/
http://raptorx.uchicago.edu
http://raptorx.uchicago.edu
https://swissmodel.expasy.org
http://www.sbg.bio.ic.ac.uk/phyre2
http://www.sbg.bio.ic.ac.uk/phyre2
http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp
https://zhanglab.ccmb.med.umich.edu/QUARK/
https://doi.org/10.7554/eLife.37854


model. The model was then fully relaxed using FRMD with X-ray restrains as described in

(Cachau et al., 1994) and Fcalc values computed for PDB ID: 1UTG in-lieu of experimental values

not deposited for this entry in the Protein Data Bank, and limited to a 6 Å resolution cutoff. The

nature of the FRMD procedure restricts the value of energy-based monitors. The convergence of the

model was monitored using a crystallographic R factor and RMSD (root mean square deviation)

against the reference structure for homologous residues (see Figure 4—figure supplement 2B). The

trajectory converges to the structure shown in Figure 4—figure supplement 2 after 350 ns with an

R value of 9.3 (6 Å) and RMSD 3.2 Å. The MD trajectory was continued for another 350 ns without

noticeable changes in the structure. The dimer structure was used to explore possible tetrameric

arrangements by rolling a dimer against another using GROMACS and the AMBER force field to

probe the interaction. A favorable arrangement was detected as described in Figure 4—figure sup-

plement 2F. The number and placement of Cys in 1UTG and SCGB3A2 are different. Thus,

SCGB3A2 was modeled replacing Cys 48 by Ala to avoid the possible bias that could have resulted

from imposing a disulfide bond during the MD calculation. Ala 48 was then replaced back to Cys in

the final dimer model where the two Cys S atoms appear at less than 2.5A from each other suggest-

ing a proper placement of the Cys 48 in the dimer. FMRD can be used to estimate the data lost dur-

ing the modeling procedure by reversing the refinement procedure that is 1UTG was modeled from

the final model of SCGB3A2 using an identical protocol as previously used to model SCGB3A2 from

1UTG. The structure of 1UTG thus modeled agrees with the experimental one with an RMSD 3.5 Å

(backbone atoms).

DLS
Dynamic light scattering analysis (DLS) was performed using DynaPro Nanostar (Wyatt). The radii of

LPS, SCGB3A2, and LPS-SCGB3A2 complex were determined after samples were centrifuged and

dissolved in 50 mL of 0.22 mm filtered sterile PBS. The evaluation of data was performed by Dynamics

V7 software.

Limulus Amebocyte lysate (LAL endotoxin) assay
LPS quantification in each SCGB3A2 recombinant protein was performed using the ToxinSensorTM

Chromogenic LAL Endotoxin Assay Kit (L00350, GenScript).

LDH assay
Cells grown in 96 flat bottom well plates were incubated with or without SCGB3A2 and/or LPS

(O111:B4) in the media for indicated times as described in the figure legends. Cell supernatants

were evaluated for the presence of cytoplasmic enzyme lactate dehydrogenase (LDH) using the

Pierce LDH Cytotoxicity Assay Kit (Thermo Fisher Scientific). Cytotoxicity was calculated according

to the kit instructions; as a percentage of (experimental LDH � spontaneous LDH)/(maximum LDH

release � spontaneous LDH).

Statistical analysis
Statistical analysis was carried out using GraphPad Prism v7. Data are shown as means ± SD. Levels

of significance for comparison between samples were determined by student’s t-test or one-way

ANOVA. For the lung carcinogenesis study, the Kaplan-Meier method was used to estimate survival

rates of mice and the log-rank (Mantel-Cox) test for comparing survival differences between groups.

P values of < 0.05 were considered statistically significant.
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serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Research 62:5210–5217.
PMID: 12234986

Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP,
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