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Abstract

Over the last decade, molecular systematics has undergone a change of paradigm as high-throughput sequencing now 
makes it possible to reconstruct evolutionary relationships using genome-scale datasets. The advent of “big data” molecular 
phylogenetics provided a battery of new tools for biologists but simultaneously brought new methodological challenges. The 
increase in analytical complexity comes at the price of highly specific training in computational biology and molecular phy
logenetics, resulting very often in a polarized accumulation of knowledge (technical on one side and biological on the other). 
Interpreting the robustness of genome-scale phylogenetic studies is not straightforward, particularly as new methodological 
developments have consistently shown that the general belief of “more genes, more robustness” often does not apply, and 
because there is a range of systematic errors that plague phylogenomic investigations. This is particularly problematic because 
phylogenomic studies are highly heterogeneous in their methodology, and best practices are often not clearly defined. The 
main aim of this article is to present what I consider as the ten most important points to take into consideration when plan
ning a well-thought-out phylogenomic study and while evaluating the quality of published papers. The goal is to provide a 
practical step-by-step guide that can be easily followed by nonexperts and phylogenomic novices in order to assess the tech
nical robustness of phylogenomic studies or improve the experimental design of a project.

Key words: systematics, systematic error, high-throughput sequencing, models of sequence evolution, phylogenetics, 
genomics.

Significance
The abundance of whole sequenced genomes, genomic fragments, and transcriptomes generated during the last dec
ade has facilitated the interrogation of the interrelationships of all living beings at an unprecedented level. Nevertheless, 
big data methodologies are challenging to assess for systematists without expertise in molecular evolution and bioinfor
matics, a key aspect since the analysis of these massive amounts of information is subject to different kinds of errors that 
may strongly bias the inferred phylogeny. In this perspective, are discussed what I consider as the 10 most relevant points 
when planning a genome-scale phylogenetic project and assessing the quality and robustness of phylogenomic results.

© The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits 
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Introduction
The establishment of evolutionary relationships by means of 
phylogenetic reconstruction is the basis to understand how 
species evolved and diversified. The output of these ana
lyses is phylogenetic trees, which represent hypotheses of 

evolutionary relationships. Traditional approaches to estab
lish phylogenetic relationships relied on comparing homolo
gous morphological characters between organisms 
(Scotland et al. 2003). Thanks to the development and 
standardization of the polymerase chain reaction 
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(commonly known as PCR), systematists started to interro
gate molecular information to infer those relationships. 
Similarly to morphological characters, molecular data 
(in the form of nucleotide or amino acid sequences) can 
be used to build matrices of homologous positions (Hillis 

et al. 1996) and analyzed by phylogenetic methods. 
Starting in the 1980s, studies utilizing Sanger sequencing 
technology typically used a handful of molecular sequences 
to infer phylogenies. Although for some scientific questions 
using a few genes may be enough (e.g., biodiversity 

Glossary
• Complex models: Models that handle the heterogeneity of substitution patterns by assuming that all loci or sites do 

not share the same substitution process. Therefore, they allow differentiated substitution processes at the gene or 
partition level (in the case of partition models) or site level (profile mixture models accommodating heterogeneity 
across sites).

• Compositional heterogeneity: Differences in nucleotide or amino acid composition of sequences between taxa, 
which may induce systematic error in phylogenetic inference. Taxa with randomly shared similarity in base compos
ition due to convergent events may be artifactually clustered together.

• Gene tree: A phylogenetic tree resulting from the analysis of a single locus.
• Gene duplication: Event in which a gene is duplicated into multiple copies of itself. The duplicated genes may be 

retained in the genome and evolve independently.
• Gene gain: When a gene is only present in the branch leading to the last common ancestor of all the orthologs of that 

gene. Therefore, that gene lacks orthologs in any of the other clades present in that dataset and it originated at the 
onset of the lineage that contains it.

• Gene loss: When a gene has no homologs in a branch leading to a given clade, but homologs of that gene are present 
in their relatives.

• Heterotachy: Variations of the speed of evolutionary rates across time, sites and/or lineages.
• Hidden paralogy: Artifact affecting orthology inference in which paralogous genes are recovered as putative ortho

logs, affecting the phylogenetic reconstruction. It may be due to complex gene histories with multiple duplications 
and losses, or to incomplete datasets either caused by gene loss or partial sequencing of the genome/transcriptome.

• Homologous sequences: Sequences that originated from a common ancestor.
• Horizontal gene transfer: The nonvertical transfer of genetic material from a donor species to a receiver species.
• Incomplete Lineage Sorting: Phenomenon in which ancestral polymorphisms are retained and therefore coalesce 

deeper than speciation events. It causes discordance between the gene tree and species tree.
• Long branch attraction (LBA): Phylogenetic artifact in which rapidly evolving lineages are incorrectly inferred as 

closely related because they have undergone multiple molecular substitutions, and not because they are related by 
descent.

• Model of sequence evolution (substitution models): Models grounded in statistical theory that make use of ex
plicit descriptions of the process of substitution in nucleotide or amino acid sequences. Profile mixture models are 
more fine-grained than global ones and better approximate the evolutionary process by including many parameters 
and being most computationally demanding.

• Orthogroup: Set of homologous sequences that are descended from a single ancestral sequence in the last common 
ancestor of all the taxa being considered.

• Orthologous sequences: Homologous sequences that diverged via speciation events.
• Paralogous sequences: Homologous sequences that diverged via duplication events.
• Phylogenetic signal: A measure of how much of the similarity between genetic sequences reflects common ances

try. A related concept is “phylogenetic noise”, which describes the confounding signals in genetic sequences that 
cannot be used to reconstruct reliable phylogenies.

• Saturation: When there have been multiple mutations at the same site in a sequence alignment, and the apparent 
distances largely underestimate real genetic distances the alignment is said to be mutationally saturated. Nucleotide 
sequences saturate more rapidly than amino acids (four nucleotide bases versus 20 amino acids).

• Sequencing depth: The ratio of the total number of bases obtained by sequencing to the size of the genome or the 
average number of times each base is recorded in the genome.

• Species tree: A phylogenetic tree depicting the evolutionary relationship between a group of species.
• Stochastic error: Errors produced by insufficient amount of data.
• Systematic error: Errors during the phylogenetic inference mainly caused by incorrect model assumptions.
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inventories, barcoding studies, etc.), for others it is simply 
not sufficient, for instance when there are incongruent re
sults among different studies and different loci (Gee 
2003). Incongruence is common when studying speciation 
events that happened in a short amount of time. In the scen
ario of rapid speciation, the amount of phylogenetic signal 
(see Glossary) is often small, and therefore the internal 
branches are short, and hence phylogenies are more diffi
cult to resolve and more data are needed (Philippe et al. 
1994). Other examples in which few loci may not be enough 
to resolve relationships are those affecting deeper splits, in 
which multiple substitution may have occurred at the same 
position (i.e., homoplasy) (Rokas and Carroll 2006; Martin 
et al. 2016). In those instances, the results of using a few 
loci may not recover the “true” species relationships due er
rors, low information content, and to stochasticity in a small 
number of loci not mirroring the history of the species.

The advent of high throughput sequencing techniques in 
the last decade has aided in advancing the field of systematics 
by unlocking the access to massive amounts of sequence in
formation (Metzker 2010). Scientists can now address phylo
genetic hypotheses in depth and breadth by analyzing 
thousands of genes leveraged from genomic data, the so- 
called phylogenomic approach. Although the word “phylo
genomics” was firstly coined in the context of gene function 
prediction using genome-scale data (Eisen 1998), shortly 
afterwards it was also applied to encompass phylogenetic in
ference using datasets of this magnitude (O’Brien and 
Stanyon 1999). Today, large amounts of sequence data 
from many living, and recently extinct, species are available 
in public repositories such as the National Center for 
Biotechnology Information (NCBI). Although the analysis of 
gene-rich datasets results in a drastic reduction of the random 
or sampling error, the reconstruction of the Tree of Life based 
on genome-scale data is not so straightforward. The analysis 
of big data comes at the price of an increasing methodological 
complexity, which hampers the critical appraisal of published 
pieces of work.

The inherent problems of inferring phylogenies using a 
few loci or using genome-scale data are substantially differ
ent. When relying on a small number of sequences, and 
therefore not many molecular characters, analyses might 
end up having low resolution or being poorly supported 
due to stochastic errors (see Glossary). Genome-scale data
sets, instead, are less susceptible to stochastic or sampling 
error and often result in highly supported phylogenetic 
trees. However, other sources of error may strongly affect 
phylogenomic studies. On one hand, there are errors de
rived from the quality and appropriateness of data. On the 
other hand, there are problems stemming from the per
formance of the phylogenetic method, known as systematic 
error (see Glossary). This type of error is broadly derived by 
faulty assumptions on the analysis, such as when using 
models that do not properly describe the biological process 

of sequence evolution because certain model assumptions 
are violated (Philippe et al. 2011; Kapli et al. 2020; Simion 
et al. 2020). Systematic errors are consistently and repeated
ly recovered unless the underlying biases are mitigated 
(Felsenstein 1978; Phillips et al. 2004), and the addition of 
more data can exacerbate their effect (Brown and 
Thomson 2017). An important issue concerns the correct 
modeling of the differences in substitution rates amongst 
nucleotide or amino acid sites (Lartillot and Philippe 2004) 
and across genes (Timmermans et al. 2016) and lineages 
(Foster 2004). Neither all sites in a gene evolve at the 
same pace nor all species do. These heterogeneities in evo
lutionary rates, combined with sequence saturation (see 
Glossary), in which hidden multiple substitutions that oc
curred at the same site of a sequence, can lead to phylogen
etic reconstruction artifacts if not properly modelled. These 
errors might result in one of the most common artifacts in 
phylogenomics: the so-called long branch attraction (LBA) 
(see Glossary), a form of systematic error in which long 
branched taxa have a higher probability of clustering to
gether artificially because of randomly shared similarity in 
base composition due to convergent or parallel changes. 
LBA is an artifact already present when dealing with a few 
molecular sequences, but the more molecular information 
we add, the more it can reinforce incorrect topologies. 
LBA, and systematic errors in general, can be addressed in 
various ways: denser taxon sampling (Zwickl and Hillis 
2002; Heath et al. 2008), critically evaluating properties of 
the data, using more realistic models of sequence evolution, 
or selecting sets of the most reliable characters (Delsuc et al. 
2005), among other things—as will be detailed below.

Other sources of error caused by true discrepancies be
tween the history of specific genes or loci and the species 
phylogeny may also affect phylogenomic inference. The 
evolutionary dynamics of gene families is very complex, in
cluding gene duplications and losses, introgression or hy
bridization, or even cases of horizontally transferred 
genes (as opposed to vertically transmitted ones) 
(Maddison 1997), all of which often results in a discordant 
evolutionary histories of gene trees and species trees 
(Edwards 2009). Furthermore, the discordance between 
the gene and species tree might be caused by other pro
cesses such as incomplete lineage sorting (ILS) (see 
Glossary) due to retention of ancestral polymorphisms 
(Degnan and Rosenberg 2006; Edwards 2009), or the in
correct inclusion of paralogous sequences (see Glossary) 
as if these were orthologous in phylogenetic inference. 
For large datasets, there are two main model-based meth
ods to infer the species tree using multiple sequence align
ments of orthologous sequences (see Glossary). The first 
method, known as the supermatrix approach, is a 
“total-evidence” application that involves the concaten
ation of multiple orthologous sequences into a single align
ment, assuming a commonly shared evolutionary history 
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(Rokas et al. 2003). This supermatrix is then analysed under 
a maximum likelihood (ML) or Bayesian framework using 
probabilistic methods that incorporate models of sequence 
evolution (Whelan et al. 2001). The second method in
volves using coalescent-based approaches (Rannala and 
Yang 2003). In a coalescent framework, genes may follow 
different histories with the species tree taking ILS into con
sideration (Liu et al. 2015).

As a result of these heterogeneous sources of gene tree 
discordance, and depending on how they are addressed in 
each study, phylogenomic studies using comparable datasets 
sometimes lead to contrasting results (Jeffroy et al. 2006; 
Gouy et al. 2015)—epitomized, among many others, by 
the ever-lasting conflict regarding the earliest splitting lineage 
in the Animal Tree of Life between the “ctenophora-sister” 
(Dunn et al. 2008; Ryan et al. 2013) and “sponge-sister” hy
potheses (Pisani et al. 2015; Simion et al. 2017; Kapli and 
Telford 2020). Furthermore, there is no universal set of best 
practices in phylogenomics, which hampers the comparison 
of different studies. Although some recent reviews have ad
dressed different aspects of phylogenomic inference (e.g., 
the accommodation of heterogeneous genomic signals 
(Bravo et al. 2019), the description of theory and main tools 
central to phylogenomics in insects (Young and Gillung 
2020) or plants (McKain et al. 2018), or the exploration of 
major sources of error on the phylogenomic pipeline and 
strategies to mitigate them (Kapli et al. 2020; Simion et al. 
2020)), these are usually highly technical and sometimes 
complex for the nonexpert in the field. In this article, I present 
and discuss what I consider the ten most important points 
that should be taken into consideration when assessing the 
reliability of the results of phylogenomic analyses or when set
ting up a new phylogenomic project aiming at inferring spe
cies phylogenies, with the goal of providing a comprehensive 
guidance to nonexperts of phylogenomics. Most of the sug
gestions are the reinterpretation of well-known phylogenetic 
practices but emphasizing their application into large-scale 
molecular datasets. Even though many of the examples 
used concern ancient divergences, the author ensured that 
they also apply to more recent splits. In addition to presenting 
an accessible synthesis of current phylogenomic practices, a 
flow diagram (fig. 1) is provided to help navigate the assess
ment of the methodology at each step of the analytical 
process.

1. Carefully Select the Taxa for Your Study (Including 
Outgroups)

This is an important point, as it should be addressed at the 
very beginning of the experimental design and has many 
downstream implications that can greatly influence the re
sult of phylogenetic inference (Nabhan and Sarkar 2012). 
Early phylogenomic studies already highlighted that the 
number and choice of taxa included is as important as the 

number of molecular characters (Rokas et al. 2003), al
though in current datasets the latter routinely exceeds the 
number of taxa by orders of magnitude.

Assess the Diversity and Density of Your Taxon Sampling

Using a taxon sampling covering major lineages as much as 
possible generally improves the estimation of molecular 
rates and variation in base composition (Timmermans 
et al. 2016), except when including terminals with poor se
quence data (that might lead to nonrandom distribution of 
missing data) or excessively unequal proportions of nucleo
tides or amino acids (see point 6 on ways of dealing with 
compositional heterogeneity). Furthermore, a carefully cho
sen taxon sampling can help improve the detection of hid
den paralogy or horizontal gene transfer events (Kuzniar 
et al. 2008; Philippe et al. 2011) and in reducing problems 
associated with sequence saturation, which may lead to 
tree reconstruction errors. Saturation is driven by hidden 
multiple substitutions occurring at the same site, so models 
of molecular evolution can better resolve, or at least moder
ate, this problem when using a richer taxon set (Hendy and 
Penny 1989). The prevalent artifact of LBA can be 
ameliorated by adding more sequences and/or taxa that 
“break” these long branches (Graybeal 1998; Holton and 
Pisani 2010). The strategy of using a dense taxon set has 
been implemented successfully in phlyogenomic studies of 
eukaryotes. Using a rich taxon sampling, in conjunction 
with other corrective measures, led to the retrieval of the 
single-cell Microsporidia parasites as close relatives of 
Fungi, breaking the long branch that placed them on an 
artifactual position at the base of the eukaryotic tree 
(Foster et al. 2009). It is not possible to apply this 
strategy in all cases, though, as certain lineages are sub
tended by a long branch without any known living taxa 
that could break it.

Avoid Including Taxa with Highly Divergent Substitution 
Rate and Base Composition

In addition to including a high number of taxa, LBA can also 
be ameliorated by including sequences from slow-evolving 
taxa to eschew potential artifacts (Roure et al. 2013). This is 
particularly helpful when inferring the relationships of 
groups with ancient divergences, in which extinction pro
cesses may have erased informative intermediate states. 
Including these short-branch taxa helps increase the effect
ive number of characters available for detecting hidden 
multiple substitutions (Hendy and Penny 1989), hence de
creasing the amount of nonphylogenetic signal while pre
serving historical signal (Baurain et al. 2007; Philippe et al. 
2011). A prime example of this practice resulted in the re
trieval of the Ecdysozoa animal clade (Aguinaldo et al. 
1997), now widely corroborated. This clade of moulting an
imals was retrieved after excluding long-branched 
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nematodes from a single-gene dataset containing several 
animal phyla, keeping just slow evolving nematodes, and 
therefore correcting LBA artifacts that were affecting previ
ous analyses. A second example is the inference of a 

sister-group relationship between the thermophilic bacter
ium Thermus and mesophilic Deinococcus recovered when 
a mesophilic relative of Thermus was included in the ana
lyses (reviewed in Williams et al. 2021).

FIG. 1.—Flow diagram connecting 10 important points to take into consideration when planning and evaluating phylogenomic analyses. For each point, 
there are pictograms and yes/no questions to help navigating the review process and settinging up an experimental design. These questions are intended to 
assess globally the overall quality of each point. Negative replies take to more questions whose answers may lead to a better comprehension of the project and 
might serve as a starting point to improve the study. Silhouettes retrieved from Phylopic (phylopic.org).
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Evaluate Your Outgroups

Phylogenies are rooted using taxa that are known to be outside 
the group under study. These taxa are known as outgroups, 
whereas the group under study is known as the ingroup. As 
outgroup sequences are often on long branches (commonly 
being more dissimilar to the ingroup sequences), long branched 
ingroup taxa tend to be attracted to the base of the tree 
(Holland et al. 2003; Bergsten 2005; Shavit et al. 2007; 
Dabert et al. 2010). Using the closest possible outgroup may re
duce the impact of LBA on deep branches, as they will be less 
dissimilar to the ingroup (Philippe and Laurent 1998). This strat
egy has been suggested to counteract systematic biases in deep 
animal relationships (Philippe et al. 2011; Pisani et al. 2015; 
Simion et al. 2017). As a second example, the inclusion of the 
recently discovered Asgard archaea in phylogenomic analyses 
(Spang et al. 2015), a clade that emerged as the closest known 
prokaryotic relative of eukaryotes, has shifted the consensus to
ward two primary domains of life, Bacteria and Archaea, with 
eukaryotes nested within the latter instead of representing a 
third primary domain (Williams et al. 2020). Another strategy 
is to include several outgroups and experiment with subsets 
of them, to test if ingroup relationships change when certain 
outgroups are excluded (Shavit et al. 2007; Cox et al. 2008; 
Rota-Stabelli et al. 2011; Pisani et al. 2015).

2. Choose Your Destiny: Genomes, Transcriptomes, or 
Targeted Capture?

The choice of loci as phylogenetic markers is a crucial step in 
phylogenomic analyses (Reddy et al. 2017). Researchers 

have to decide 1) the molecule to sequence (DNA or 
RNA); 2) the sequencing strategy (transcriptomes, whole 
genomes, genome skimming, or target capture); and 3) 
the sequencing depth (table 1). Newly obtained sequences 
can be supplemented with genomic data available from 
public sequence databases such as the sequence read arch
ive in NCBI. In the last decade, most sequences have been 
generated using short-read (50–300 nucleotides) sequen
cing platforms, such as Illumina. Emerging long-read se
quencing platforms, such as SMRT Pacific Biosciences 
(PacBio) or Oxford Nanopore Technologies, are becoming 
more popular as they allow sequencing reads with median 
lengths over several thousand nucleotides (De Maio et al. 
2019), making them more suitable for de novo assemblies. 
22Short raw reads, are assembled to reconstruct contigs, 
with the most popular current softwares including 
SPAdes (Bankevich et al. 2012) and Velvet (Zerbino and 
Birney 2008) for genome assemblies, and Trinity 
(Grabherr et al. 2011) for transcriptome assemblies. Once 
assembled, the contigs can be used to extract molecular se
quences and detect orthologs (see point 3).

Ideally, one would use complete and well-annotated gen
ome assemblies containing all genes present in an organism 
(Petersen et al. 2017). Complete genomes reveal the full 
gene repertoire of an organism. Using fully sequenced gen
omes for orthology inference allows for a more confident as
sessment of gene histories by improving the detection of 
orthology and paralogy relationships, the estimation of 
gene gains and losses, and the detection of horizontal transfer 
events (see point 3). Complete genomes are the prevailing 

Table 1 
Comparison of Sequencing Strategies in Terms of the Requirements They Place on the Analysed Samples and the Outputs They Produce

Transcriptome Sequencing Whole-Genome Sequencing Genome Skimming Target Capture

Technology
Target molecule RNA DNA DNA DNA
Sequencing platform Flexible Preferably long-read 

technology
Flexible Flexible

Samples
Sample type RNA has to be intact, i.e., fresh 

material or stored in specialised 
preserving solution

DNA has to be available 
(preferably) in sufficient 

quality

Can use samples in 
ethanol and museum 

specimens

Can use samples in ethanol 
and museum specimens

Sample amount Enough RNA has to be available Small specimens acceptable Small specimens 
acceptable

Small specimens 
acceptable

Prior genomic 
resources required

No No No Yes, to design probes

Recommended 
number of taxa

Flexible Flexible Flexible More taxa are 
recommended

Genome size of taxa Less relevant Important Important Less relevant
Outputs

Orthology inference Confident Confident Less confident Less confident
Ability to identify 
single-copy genes

Yes Yes Maybe Maybe

Ability to analyse 
gene expression levels

Yes No No No
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source of sequence information in microbial phylogenomics, 
with an increasing number of genomes from uncultured 
taxa being reconstructed from metagenomic sequencing pro
jects (Spang et al. 2015). However, whole genome data are 
still not frequently used in studies of eukaryotes due to their 
larger genome size and complexity. For example, most current 
phylogenomic studies on fungi or protists use draft genomes 
assemblies instead. Alternatively, the shallow sequencing of 
whole genomes at low-coverage, also known as genome 
skimming (Straub et al. 2012), may provide enough informa
tion to retrieve thousands of genes.

Phylogenomic analyses based on transcriptomic data— 
phylotranscriptomics—is one of the most common ap
proaches, and transcriptomes have been the predominant 
source of large-scale phylogenomic studies focusing on 
deep divergences (Todd et al. 2016), even though it is cur
rently changing towards using whole genomic data. 
Transcriptomes are routinely assembled from messenger 
RNA data in order to generate matrices of orthologous 
protein-coding genes. In the case of animals, RNA-seq da
tasets with more than 30 million reads seem to recover 
most of an organism’s genes (Francis et al. 2013). Since 
most genes are expressed in almost all tissues, by sequen
cing the transcriptome from just a single tissue type we 
can obtain several thousand genes, as long as the sequen
cing depth (see Glossary) is adequate. Assembled transcrip
tomes can contain multiple isoforms for each gene, but for 
phylogenomic purposes just one of them is commonly re
tained, with the rest being removed. A common approach 
is to choose the longest isoform (Laumer et al. 2019) or the 
one with the highest read coverage as a representative of 
the gene (e.g., Trinity subcomponent Grabherr et al. 2011).

Amongst the ever-growing target enrichment methods, 
two major sources of phylogenetic markers include 
Hyb-Seq in plants and ultra-conserved elements (UCEs) in 
animals (Weitemier et al. 2014; Faircloth et al. 2012). 
Both methods rely on the construction of synthetic probes 
that hybridize with highly conserved genomic regions, 
which are sequenced along their flanking sequences— 
that are more variable and phylogenetically informative. 
One advantage of sequencing-capture techniques over 
transcriptomic methods is that the sample does not need 
to come from fresh tissue or having been fixed with 
RNA-preserving solutions, and therefore allows using sam
ples fixed in ethanol, including museum-based specimens 
stored for long periods of time (McCormack et al. 2016). 
The use of target enrichment and genome skimming ap
proaches may suffer analytical caveats mainly due to orthol
ogy inference (i.e., orthology inference may be challenging 
due bias in bait design and data processing can exacerbate 
hidden paralogy—see Glossary [Doolittle and Brown 1994; 
Rasmussen and Kellis 2012]).The type of phylogenomic 
markers selected for our study ultimately determines the 
subsequent analytical pipeline in three ways: 1) the 

possibility to analyse nucleotides, amino acids or both, 2) 
using exonic regions (portion of genes coding for amino 
acids), intronic regions (noncoding regions between exons 
in the genes), intergenic regions (DNA sequences between 
genes), or a combination of them, and 3) the extent of miss
ing data that we may expect a priori in our dataset. All three 
conditions influence, to varying degrees, the accuracy of 
orthology inference (see point 3). The choice will be mainly 
influenced by the genomic organization of the group under 
study (i.e., genome size, proportion of genes and sequence 
conservation), the data type (i.e., falling in or outside of 
coding regions), and the divergences among the taxa of 
interest (i.e., whether we are aiming to resolve a shallow 
or deep phylogeny). The different types of molecular mar
kers may be analysed at the nucleotide or amino acid level, 
with both kinds of molecules presenting different statistical 
properties (Huelsenbeck et al. 2008). Genome-based and 
transcriptomic datasets allow the analyses of protein- 
coding genes both at nucleotide and amino level. Amino 
acids are less susceptible to saturation than nucleotides 
(Philippe et al. 2011). Therefore, they are particularly useful 
to reduce the effects of saturation in molecular phylogenies 
(Whitfield and Lockhart 2007), which is common for an
cient relationships (see point 6). Target enrichment techni
ques, like UCEs, are usually analysed at the nucleotide level 
because they can lie in nonprotein-coding parts of the gen
ome. It has been shown that the regions that UCEs target 
can potentially be affected by GC biases, either by present
ing high GC content or being heterogeneous amongst 
taxa, which can enhance topological conflict among gene 
trees (Bossert et al. 2017). Hence, it is advisable to assess 
whether the underlying incongruence may be caused by 
this kind of bias (Bossert et al. 2017).

When working with eukaryotes, the analysed data may be
long either to coding (exonic) or noncoding (intronic) gene re
gions, each with their own characteristics. Exons commonly 
evolve under selection (Xing and Lee 2005), and thus are sub
ject to many sources of heterogeneity (with selective pressures 
varying across sites, genes and over time). Intronic regions, in
stead, evolve more rapidly than coding sequences (Parenteau 
and Abou Elela 2019), and may quickly be subject to sequence 
saturation, causing difficulties in orthology assessment and 
during the alignment processes. In any case, protein se
quences are under functional and structural selective con
straints, and these are conserved over much longer periods 
than the individual codon choices.

As mentioned above, the robustness of orthology infer
ence depends directly on the type of data. Using incom
plete genomes or transcriptomes, as well as datasets 
containing misassemblies, can severely violate the under
lying assumptions of orthology inference methods with ex
isting heuristics (Yang and Smith 2014; Petersen et al. 
2017). Under this scenario, distinguishing gene loss from 
missing data becomes even more difficult than when using 
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whole complete genomes, and paralogy and orthology 
cannot be accurately differentiated. As a consequence, hid
den paralogy and inaccurate orthology and paralogy rela
tionships are exacerbated (Rasmussen and Kellis 2012). 
Since loci recovery is determined by bait design in target en
richment techniques, and high levels of missing data are ex
pected from genome skimming, these methods can be 
more prone to incorrect orthology inference than high- 
quality transcriptomes or completely sequenced genomes.

A common approach to assess the completeness and 
quality of the genomes or transcriptomes is to benchmark 
them against a clade-specific set of near-universal single- 
copy orthologs—BUSCO (Simão et al. 2015). In case of hav
ing multiple assemblies for a certain lineage, for example 
when there are multiple transcriptome projects for the 
same species, I recommend to select the one with highest 
the completeness—understood as having a higher percent
age of complete BUSCO genes, ideally above 80%, or com
bine them. In some instances, as when maximizing taxon 
sampling, incomplete assemblies may still contain enough 
orthologous sequences to answer the question at hand, al
though maximizing completeness in the assemblies in
cluded in each dataset is strongly recommended.

3. Remove Contaminants and Make Sure Orthologs are 
Properly Inferred

Checking for Contamination

Common sources of unwanted nucleic acids are contaminants 
from other organisms, such as bacteria, parasites or endosym
bionts, or cross-contamination between different samples pro
cessed together in the lab or in the same sequencing 
machine. These contaminants from undesired taxa can mislead 
the phylogenetic inference (Laurin-Lemay et al. 2012). A recently 
reported case of genome contamination, a wrongly purported 
massive acquisition of bacterial genes in tardigrades, warns 
about the perils of not eliminating contaminants before assem
bling the data (Koutsovoulos et al. 2016). One way of detecting 
foreign genetic material, and posteriorly removing them, is by 
mapping the sequences against public databases of known con
taminants, such as certain bacteria or fungi (e.g., The NCBI 
Taxonomy database [Federhen 2012]). When sequences or scaf
folds are almost identical to known contaminants, these nontar
get DNA sequences can be filtered during the genome assembly 
stage with software packages such as BlobTools (Laetsch and 
Blaxter 2017). Softwares like CroCo (Simion et al. 2018), that 
rely on coverage, allow identifying and removing cross contami
nants produced by biological samples from different species in 
assembled transcriptomes that have been processed or se
quenced in parallel. For certain groups with fewer genomic re
sources, such as in protists, identifying contaminant sequences 
before assembling the data is harder. Nonetheless, it is possible 
to identify these contaminants, together with paralogous se
quences, in later stages by visually inspecting gene trees for 

anomalous positions (expanded further in the following para
graph). Assessing the impact of contaminants in datasets of 
interest prior to further analysis is strongly recommended.

Orthology Inference

To reconstruct the species tree, it is a key to compare se
quences that are orthologous (see Glossary). Orthologous 
sequences are derived from speciation processes and re
cord the organismal phylogeny (Fitch 1970, 2000). 
Comparing sequences that are orthologous is crucial as 
their history reflects the species tree, and the inadvertent in
clusion of paralogs—that derived from gene duplication 
(Ahrens et al. 2020)—may consequently distort phylogen
etic reconstruction (Struck 2013; Siu-Ting et al. 2019). 
The correct inference of orthologs is not straightforward, 
because orthology and paralogy relationships are not tran
sitive (except for one-to-one orthologs). For instance, con
sider one gene, gene A, that only has one copy in 
Drosophila melanogaster, but it got duplicated in Apis mel
lifera (we could then call them genes A1 and A2). 
The D. melanogaster gene A is orthologous both to genes 
A1 and A2 in A. mellifera, however genes A1 and A2 are 
paralogs to each other since they originated through 
gene duplication. In this context, we move from pairwise 
comparisons to group orthology relationships (fig. 2). The 
main current softwares of homology inference aims to esti
mate the full set of orthologs and paralogs, known as 
orthogroups (see Glossary). Each orthogroup contains a 
set of sequences that are descended from a single one in 
the last common ancestor of all the species being consid
ered (Emms and Kelly 2015). The inference of these 
orthogroups is nontrivial, and the methodologies vary a 
lot in their algorithms: graph-based vs. tree-based ap
proaches, all-by-all vs. only analyzing a subset of taxa, clus
tering methodology, etc. The different methodologies have 
been covered and explained in several pieces of work (e.g., 
Altenhoff et al. 2016; Fernández et al. 2020) and hence we 
will just briefly touch upon them here. I recommend ap
proaches that rely on doing an all-by-all comparison (in or
der to reduce biases associated with orthology inference) 
implemented in softwares such as OrthoFinder (Emms 
and Kelly 2015), and use those methods that had been fa
vored in last benchmarking studies (e.g., Altenhoff et al. 
2016; Emms and Kelly 2020).

Alternative pipelines to retrieve orthologs commonly use all 
versus all sequence similarity searches with BLAST (Tice et al. 
2021), sometimes adding sequence data from genomes 
and transcriptomes to an existing set of multiple sequence 
alignments (i.e., Forty-Two—https://metacpan.org/release/ 
Bio-MUST-Apps-FortyTwo as implemented in Irisarri et al. 
2017). A recent study suggested that cases of undetected par
alogy can remain in phylogenomic “single-copy orthogroup” 
datasets when using widely accepted all versus all BLAST 
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approaches followed by Markov Cluster Algorithm clustering 
and subsampling via automated tree pruning strategy (Tice 
et al. 2021). As datasets get larger, an increasingly common 
approach is to use a set of previously inferred orthologs as 
“seed” to create profile hidden Markov models (Eddy 1998) 
in order to find orthologous genes in the taxa that we want 
to add to the dataset (i.e.,: Orthograph—Petersen et al. 
2017). Although this approach is fast, it only ensures finding 
homologs and not orthologs, particularly when datasets are 
incomplete (Petersen et al. 2017). As described above, orthol
ogy is nontransitive, and therefore this approach will not re
cover “true” orthogroups unless consecutive inference 
steps aiming at assessing paralogy and orthology are added 
to the pipeline.

Orthogroups usually contain both orthologous and par
alogous genes. Finding single-copy genes in all species ana
lysed is an exception, particularly when analyses are set up 
with many species (Emms and Kelly 2018). Certain tree- 
based methods, such as PhyloTreePruner (Kocot et al. 
2013), PhyloPyPruner (Thalén 2018) or the pipeline imple
mented in Prasanna et al. (2020), allow to extract ortholo
gous sequences based on the gene phylogenies of the 
orthogroups inferred with graph-based approaches. It is 
noted that there are ongoing efforts to evaluate the accur
acy of several approaches to include paralogous loci and 
therefore circumvent the limitation of restricting analyses 
to strict orthologs when reconstructing the species tree 
(Smith and Hahn 2021; Yan et al. 2021).

Finally, sequences with unrealistic long branches, or 
nesting with an unrelated group, on individual gene trees 
may be suggestive of contamination, erroneous orthology 

assessment or poor sequence data. Methods to detect 
and filter those outlier sequences have been used to curate 
phylogenomic matrices of protists (Strassert et al. 2021; 
Irisarri et al. 2022), plants (Laurin-Lemay et al. 2012), fungi 
(Varga et al. 2019), metazoans (Simion et al. 2017) or mam
mals (Scornavacca et al. 2019), and there are softwares to 
detect sequences that lead to unrealistically long branch 
lengths (TreeShrink: Mai and Mirarab 2018). In order to al
low reproducibility, the release by the authors of both the 
candidate set of homologs and orthologs for a particular lo
cus is encouraged, as well as the curated final alignments 
(Salomaki et al. 2020).

4. Beware of the Multiple Sequence Alignment Step

Once the orthologs have been inferred, the sequences must 
be aligned to ensure evolutionary homology at the level of 
site—so each column of the multiple sequence alignment is 
homologous too. Errors in the alignment can introduce noise 
and bias in the phylogenetic reconstruction (Löytynoja and 
Goldman 2008). The most widely used alignment methods 
are progressive alignments that rely on heuristic searches, im
plemented in softwares such as MAFFT (Katoh and Standley 
2013), MUSCLE (Edgar 2004), or T-coffee (Notredame et al. 
2000). Progressive algorithms tend to produce compact 
alignments because they underestimate true insertion and 
deletion events (Löytynoja 2021). Nonetheless, newer algo
rithms implemented in MAFFT, such as L-INS-i and E-INS-i, 
better handle large gaps and large numbers of sequences, in
cluding divergent ones, so they are appropriate for 
genome-scale datasets. A second group of aligners are the 

(a) (b)

Speciation 1

Speciation 2

Duplication

A

A1

A2

A2

A1

ancestral homolog A

A A1 A1 A2 A2

PARALOGS ORTHOLOGS

FIG. 2.—Evolutionary scenario of a gene family between three species, starting from an ancestral homolog (A) that is followed by two speciation events 
and one duplication occurring in the ancestor of two of the three species. (a) The single-copy gene (A) in the squirrel is orthologous to all other genes (A1 and 
A2) and coalesce at the first speciation event. The green (A1) and red (A2) genes are orthologs between themselves, coalescing at the second speciation event, 
but paralogs between each other (A1 vs. A2), coalescing at the duplication event. (b) Orthology graph between the three species just showing orthology 
relationships. The squirrel gene (A) forms one-to-many orthology with the other two species, being orthologous to more than one sequence on each of 
the species. The ancestrally duplicated genes, the green (A1) and red (A2), are just orthologs between those of the same color.
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phylogeny-aware algorithms incorporated in programs such 
as PRANK (Löytynoja and Goldman 2008) or PAGAN 
(Löytynoja et al. 2012) that show improvements in modeling 
true insertion and deletion events and infer ancestral se
quences. Although all alignment methods may struggle to 
align divergent sequences, phylogeny-aware algorithms 
might suffer with highly divergent ones because are sensitive 
to excessive levels of missing data (being confounded with 
gap patterns) and errors in the guiding trees, that are more 
likely for ancient divergences (Löytynoja 2021).

Multiple sequence alignments containing unreliable sec
tions or erroneously aligned sites conflict with the genuine 
signal and may hamper phylogenetic reconstruction. 
Primary sequencing errors may lead to translated proteins 
with a disrupted reading frame or incorrect structural annota
tions of the coding regions. As heuristic approaches are used 
to assemble raw reads into longer contiguous regions or scaf
folds, some assembly errors can generate chimeric se
quences, which may affect the accuracy of the alignment. 
On the other side, biological changes in the sequences such 
as insertions, deletions, and translocations will also result in 
nonoptimal alignments. Even though alignment algorithms 
have considerably improved in the last decades, the align
ment of columns outside highly conserved regions is still 
problematic. Hence, it is common to find alignment stretches 
of contiguous characters where homology is unreliable. 
Several filtering methods, referred as block-filtering tools 
(Di Franco et al. 2019), entirely remove sequences or columns 
formed by ambiguously aligned sites, such as those excessive
ly variable (and potentially saturated) or with high levels of 
missing data (i.e., Gblocks: Talavera and Castresana 2007; 
trimAl: Capella-Gutiérrez et al. 2009; BMGE: Criscuolo and 
Gribaldo 2010), or alternatively, retain phylogenetically in
formative sites (ClipKIT: Steenwyk et al. 2020). Several studies 
found that character trimming increase the overall perform
ance of the phylogenetic reconstruction by improving the 
phylogenetic signal-to-noise ratio and alleviating systematic 
artifacts caused by compositional heterogeneity (Talavera 
and Castresana 2007; Capella-Gutiérrez et al. 2009; 
Criscuolo and Gribaldo 2010). A recent comprehensive set 
of analyses comparing most filtering tools found that they 
all improve branch length estimation (Ranwez and Chantret 
2020). Furthermore, filtering softwares masking nonhomolo
gous segments, such as PREQUAL (Whelan et al. 2018) or 
HmmCleaner (Di Franco et al. 2019), can be more powerful 
than block-filtering tools because can detect errors in a set 
of unaligned or aligned homologous sequences and have a 
positive impact on the topology of gene trees (Ranwez and 
Chantret 2020). On the other hand, Tan et al. (2015) tested 
different block-filtering methods over single-gene phyloge
nies and concluded that those tools often lead to a decrease 
in accuracy, with loss of phylogenetic signal exceeding non
phylogenetic signal (noise). They recommended to avoid 
using current block-filtering tools that remove highly 

divergent sites, particularly with stringent options (removing 
more than 20% of the sites). More research is needed on 
this topic, particularly on the effect of trimming in the phylo
genetic accuracy of large concatenated supermatrices, in 
which the presumable stochastic error of single-locus phylo
genies is buffered by large amounts of loci (Philippe et al. 
2017).

Some practical measures to select the most reliably 
aligned columns include performing alignments of the for
ward and reverse direction (Heads or Tails approach 
(Landan and Graur 2007)) or using different software 
methods and chose the columns of the alignment that 
show pairing consistency across these different treatments 
(e.g., the consensus alignment; Huerta-Cepas et al. 2010). 
Furthermore, to evaluate the robustness of the results to 
different filtering methods, I suggest performing a few 
sets of analyses involving unfiltered and filtered alignments. 
In order to ensure reproducibility and further investigations 
with published datasets, I recommend authors to release 
the original set of unaligned and aligned unfiltered align
ments, in addition to the trimmed ones.

5. Subsample Loci Based on (Un)desirable Properties

Once orthologs have been identified and trimmed (if neces
sary), the next step would be to inspect the set of loci to under
stand their properties and assess how reliable they are for the 
species phylogeny. The individual history of genes contained 
in genomes is highly heterogeneous, and sometimes it differs 
significantly from the history underlying species diversification 
because of biological processes such as ILS or hybridization. In 
addition, different genes may be subject to biases, such as sig
nificant heterogeneity in base composition. This may result in 
varying degrees of systematic error, including instances in 
which the nonphylogenetic signal might overcome the genu
ine historical signal. As a consequence, the inference of the 
species tree may be dependent on which loci are analysed. 
As an example, Fernández et al. (2016) found that the result
ing species tree phylogenies from analysing matrices with less 
than 250 genes differed from those using larger matrices from 
the same original dataset. Discarding loci that are deemed as 
potentially misleading is a common strategy that has been 
used to reduce heterogeneities in the data and improve the 
model fit, handle computational limitations, and testing the 
robustness of phylogenetic results (Mongiardino Koch 
2021). A set of phylogenetically reliable candidate loci might 
be those with strong phylogenetic signal, low probability of 
being affected by systematic errors, and clock-like behavior, 
properties that can be roughly estimated using the branch 
lengths and support values of the gene trees (Doyle et al. 
2015; Mongiardino Koch and Thompson 2021).

Possibly the most well-studied property that may affect 
phylogenomic reconstruction is missing data, which is the 
product of using partial or absent sequences in gene 
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alignments and results in site columns containing unknown 
or missing nucleotides/amino acids (known as gaps). There 
is no general agreement regarding the impact of high levels 
of missing data in phylogenomics. Some simulation studies 
concluded that their impact is small in large datasets, up to 
levels of missing data of 50% (Wiens and Morrill 2011), and 
empirical studies with similar levels have been proved to not 
bias the resulting topology at least in some lineages (e.g., 
Fernández et al. 2014, 2016). Others, instead, suggested 
that missing data are particularly problematic when it is 
not randomly distributed (Shavit Grievink et al. 2013; Xi 
et al. 2016) and could exacerbate systematic errors surpass
ing real historical signal (Roure et al. 2013). This may be be
cause missing data reduce the number of homologous 
positions effectively available, re-creating an effective situ
ation of poor taxon sampling, and hence make a dataset 
less informative for the calculations of the substitution 
models (see also points 1, 6, and 7). Since the impact of 
missing data is unclear, it is advisable to analyse several sub
sets of loci with increasing levels of missing data to evaluate 
the robustness of competing phylogenetic hypotheses, as 
well as exploring if missing data are randomly distributed 
in the dataset (i.e., assess if sequences from certain lineages 
are mostly present in loci with weak phylogenetic signal).

Several other properties have been explored in previous 
studies in an effort to optimize phylogenetic signal at the 
gene level (Shen, Salichos, et al. 2016; Smith et al. 2018; 
Dornburg et al. 2019; Mongiardino Koch 2021). This includes 
potential confounding factors such as rates of molecular evo
lution, compositional heterogeneity, phylogenetic inform
ativeness or sequence saturation, among others. The rates 
of molecular evolution (Yang 1998; Klopfstein et al. 2017) 
can be measured either through tree-based methods (i.e., 
dividing the total gene tree length by the number of term
inals) or by calculating the average percent pairwise identity 
between sequence pairs. In principle, slow evolving positions 
are less affected by saturation whereas fast evolving ones 
should contain more phylogenetic signal (Brinkmann and 
Philippe 1999). Yet there is no general consensus on whether 
it is better to subsample sites or genes characterised by high, 
intermediate, or slow evolutionary rates (Salichos and Rokas 
2013; Betancur-R et al. 2014; Telford et al. 2014; Raymann 
et al. 2015; Klopfstein et al. 2017), although most prokaryote 
phylogenies or studies addressing deep divergences com
monly excludes fast-evolving positions (Gerth et al. 2014; 
Strassert et al. 2019). Another desirable property is selecting 
loci with low levels of among-lineage compositional hetero
geneity (Foster 2004; Nesnidal et al. 2010; Fernández et al. 
2014; Gerth et al. 2014). Compositional bias may lead to arti
factual relationships between taxa with similar base compos
ition due to convergence, and is more prominent in 
nucleotides than in amino acids, as randomly shared compos
ition within four possible nucleotides is more likely than in 20 
amino acids (Hasegawa and Hashimoto 1993). Programs 

such as BaCoCa can measure the compositional heterogen
eity by calculating the relative composition frequency variabil
ity in aligned sequence data (Kück and Struck 2014). 
Phylogenetic informativeness (Townsend 2007) is a method 
that uses site rate estimates to profile the suitability of particu
lar sites or loci to correctly infer phylogenetic divergences that 
took place within a particular time scale, allowing to deter
mine for which epoch is a locus most informative (Fong 
and Fujita 2011; Bellot et al. 2020). High levels of saturation 
have also been deemed as undesirable, as in saturated align
ments the real genetic distances are underestimated because 
sites have undergone multiple substitutions, increasing the 
likelihood of being affected by statistical inconsistencies and 
LBA (Philippe et al. 2011; Nosenko et al. 2013). Therefore, 
minimization of saturation can be achieved by excluding satu
rated sites or loci, whose values are estimated as one minus 
the regression slope of patristic distances on p-distances 
(Mongiardino Koch 2021).

These different properties may impact phylogenetic in
ference in different ways, with some conditions being 
more likely to violate model assumptions (Philippe and 
Roure 2011). Therefore, it is strongly advised to build sev
eral matrices accounting for these different factors in order 
to assess the robustness of the results and the extent of sys
tematic error. Loci can be filtered by tackling these factors 
separately, or alternatively, the correlation of those multiple 
properties can be assessed using principal component ana
lysis and retain those loci that rank highest along one of the 
principal components axes that best explain the variance of 
the dataset (Struck et al. 2014; Mongiardino Koch 2021). 
Finally, alternative loci subsampling entailed the selection 
of those that were able to reconstruct well-known uncon
tested groups (Philippe et al. 2019; Kapli and Telford 
2020) or that do support predefined hypotheses for a given 
question (Chen et al. 2015). Best practices for phyloge
nomics thus should include a series of sensitivity analyses, 
including building phylogenies using several matrices cre
ated from different subsampling strategies to deeply ex
plore the robustness of our results. Analyses of large 
amounts of data, particularly in a Bayesian context, are 
hampered by problems with the mixing of chains and con
vergence (Laumer et al. 2019). I recommend subsampling 
analyses with smaller datasets that can be modeled ad
equately (Mulhair et al. 2021) and, based on our experi
ence, use a minimum of 200 loci in order to have a good 
balance between computational burden and stochastic 
errors.

6. Reduce Heterogeneities in Data to Avoid Model 
Misspecifications

In addition to differences among genes, heterogeneity in 
genome-scale datasets also commonly come from the vari
ance of rates and base composition across sites (Lartillot 
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and Philippe 2004) and taxa (Foster 2004). Hence, gene 
subsampling strategies are often not enough to overcome 
systematic biases caused by the improper modeling of 
these differences. Compositional heterogeneity is a com
mon phenomenon because sites, genes, and organisms 
tend to contain an unequal proportion of nucleotides or 
amino acids (Foster 2004); for example, some cold-adapted 
fishes are known to contain a high portion of GC nucleo
tides compared with their tropical relatives (Zhang, Hu, 
et al. 2018). When the phylogenetic signal is weak, distant
ly related groups with similar base composition may cluster 
together in phylogenies due to convergence rather than 
descent from a common ancestor (Cummins and 
McInerney 2011). Therefore, compositional heterogeneity 
has been shown to induce systematic errors caused by 
model misspecifications and to reduce phylogenetic accur
acy (Lartillot et al. 2007; Nesnidal et al. 2010). The influence 
of such biases can be mitigated by implementing strategies 
to reduce compositional heterogeneity in the data, using 
substitution models accounting for compositional hetero
geneity, or a combination of both. A common approach 
is reducing the impact of nonphylogenetic signal by exclud
ing the data that likely violates model assumptions (see 
point 5), for example by identifying and removing saturated 
or compositionally heterogeneous loci, sites, or taxa from 
the alignment (Nesnidal et al. 2010; Struck et al. 2014; 
Irisarri and Meyer 2016). Alternatively, making trees based 
on amino acid or nucleotide composition is an effective way 
of identifying sequences that group together due to a con
vergent process caused by shared base composition rather 
than shared history (Williams et al. 2021). Other examples 
of data filtering approaches used to disentangle phylogen
etic signal from misleading effects include removing taxa 
falling on the longest branches (Rota-Stabelli et al. 2011; 
Struck et al. 2014) or minimize model violation by perform
ing model adequacy tests and discarding those loci with 
worst absolute model fit (Prasanna et al. 2020).

An alternative solution to reduce compositional hetero
geneity and substitution saturation is lumping together 
groups of nucleotides or amino acids that tend to have 
more frequent evolutionary changes within them than be
tween them (Phillips and Penny 2003; Susko and Roger 
2007). Recoding strategies sacrifice information at the ex
pense of reducing homoplasy and/or large base compos
itional differences. In the case of nucleotides, RY recoding 
(transversion analysis) involves recoding nucleotides bases 
as either purines (R) or pyrimidines (Y) (Woese et al. 1991; 
Phillips and Penny 2003; Phillips et al. 2004; Gerth et al. 
2014) and therefore only considering transversion events 
for phylogenetic reconstruction. Data recoding has also 
been implemented to reduce the amino acid data alphabets 
to less than 20 categories, with several schemes proposed 
based on similar substitution scores derived from empirical 
matrices, the most well-known being the six-state recoding 

Dayhoff 6 (Embley et al. 2003; Hrdy et al. 2004; Kosiol et al. 
2004; Susko and Roger 2007). In recoded matrices, only 
amino acid changes between different categories, and 
not within categories, are considered substitutions. Four- 
and six-state recoding strategies have been used to test re
lationships across the tree of life. For example, recoding 
using four and six functional categories was used on a glo
bal eukaryotic phylogeny (Rodríguez-Ezpeleta et al. 2007) 
or to understand the evolutionary history of Wolbachia bac
teria (Gerth et al. 2014). Dayhoff-6 recoding has been im
plemented in animal phylogenomic matrices (Rota-Stabelli 
et al. 2013; Feuda et al. 2017; Laumer et al. 2019), with 
Feuda et al. (2017) suggesting that this strategy may reduce 
potential artifacts due to differences in amino acid frequen
cies across species. These implementations have been con
tested by Hernandez and Ryan (2021), who concluded that 
the loss of information using six-state recodings outweighs 
its benefits in reducing saturation and compositional het
erogeneity. Nonetheless, one recent study using simulated 
and empirical datasets suggests that amino acid recodings 
can significantly improve phylogenomic accuracy 
(Giacomelli et al. 2022), whereas a second one based on si
mulated datasets concluded that it can either increase or 
decrease the phylogenetic accuracy (Foster et al. 2022). 
Simulations derived from real datasets are also a powerful 
tool to detect sources of methodological errors. For ex
ample, based on how often the competing topologies con
cerning early animal evolution were recovered under 
different conditions, Kapli and Telford (2020) concluded 
that “ctenophora-sister” topology is driven by their un
equal rates of evolution. I recommend using substitution 
models accounting for heterogeneity at the site level (see 
point 7). Furthermore, in cases when datasets are likely af
fected by saturation and compositional biases, analyzing re
coded datasets is suggested and performing sensitivity 
analyses by removing heterogeneous sites or taxon to test 
the robustness of the inferred relationships.

7. Choose the Models That Best Fit the Data

ML and Bayesian inference are parametric approaches (i.e., 
model-based computations), that treat phylogenetic recon
struction as a statistical estimation. Both methods rely on 
explicit stochastic models of sequence evolution and on 
the evaluation of the likelihood function. In other words, 
model-based tree inference weights different substitutions 
differently based on a user-specified substitution model, 
and the rarity of substitutions is used to estimate the prob
ability that the model generates the observed data. As such, 
these methods enjoy certain theoretical properties and of
fer approaches to evaluate the relative and absolute fit of 
the models to describe the evolutionary process (and thus 
characterize the impact of model violation). Accurate infer
ence requires realistic substitution models accounting for 
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the heterogeneity in substitution patterns amongst 
lineages, genes, and sites (Philippe and Roure 2011). The 
process of nucleotide or amino acid evolution is complex 
and involves many heterogeneities, namely differences in 
nucleotide or amino acid compositions between species 
(compositional heterogeneity), differences in substitution 
rates between lineages or sites (rate heterogeneity), differ
ences in substitution rates of sites through time (heterota
chy; Lopez et al. 2002), and clade-specific substitution 
rates changing over time (heteropecilly; Roure and 
Philippe 2011). Models that do not account for these com
plexities of genome evolution can lead to model violations 
and the recovery of incorrect trees. Although scores of sub
stitution models have been developed (table 2), there is not 
yet a single model able to fit all these heterogeneities. 
Therefore, the choice of the model of sequence evolution 
has become a key decision in phylogenomic studies. To 
make matters more complicated, some models are avail
able only in some specialised software.

There are two main approaches for choosing a model 
based on how well they describe the evolutionary process: 
relative vs. absolute model fit. The first approach—model 
comparison—consists of contrasting the relative fit of a 
range of models to the data (Posada and Buckley 2004). 
Models are ranked based on measures such as likelihood 
scores, Bayes factors, or information criteria, such as 
Bayesian information criterion or Akaike information criter
ion. These model-selection methods are implemented in 
widely used software packages such as ModelFinder or 
ModelTest-NG (i.e., Kalyaanamoorthy et al. 2017; Darriba 
et al. 2020). In the context of Bayesian inference, cross- 
validation has also been sometimes used as an alternative 

method (Lartillot et al. 2009). The model selected as the 
best from a set of candidates may not fit the data well sim
ply because it has not been designed to model a specific as
pect of the substitution process. The second approach to 
choose a model involves testing model adequacy as a meas
ure of goodness-of-fit, giving an idea of how adequately 
the model describes important features of the data 
(Goldman 1993). Bayesian posterior predictive simulations 
provide a useful way of testing model adequacy (Bollback 
2002; Brown 2014; Doyle et al. 2015), but they are not 
as widely implemented or used as model fit tests.

Some areas in a phylogeny are particularly recalcitrant to 
resolution. Major inconsistencies across phylogenomic 
studies usually occur at short internal branches or ancient di
versification events (Delsuc et al. 2005). These branches are 
normally the product of a rapid diversification and bear a 
limited amount of phylogenetic signal that may be progres
sively lost through multiple substitutions (Rokas and Carroll 
2006). They are challenging to resolve for any model, par
ticularly those simpler ones that assume all sequences evolve 
under the same substitution process. These challenging 
nodes present a low signal-to-noise ratio and are susceptible 
to random or systematic errors. Although these short inter
nodes could represent true divergence events between 
three or more lineages (hard polytomies—with methods 
available to test for polytomies [Chang et al. 2015]), better 
modeling commonly reveals they are the result of insuffi
cient or biased information (soft polytomy). Several strat
egies using complex models (see Glossary) may help to 
better accommodate heterogeneous data and increase 
the phylogenetic signal by minimizing model violations in 
problematic nodes. The first strategy to improve model fit 
is partitioning the data (Yang 1996). In concatenated matri
ces, genes (or partitions) may evolve under different rates, 
so a different substitution model could be applied to each 
of them to improve accuracy (Lanfear et al. 2014). A recent 
study, though, suggested that partitioning data do not 
properly account for the substitution heterogeneity, par
ticularly when site homogeneous models are used (Wang 
et al. 2019). The second strategy to handle differences in 
the evolution process between sites, genes, and lineages re
lies on the use of profile mixture models of evolution. These 
models account for heterogeneity at the site level (i.e., site- 
heterogeneous mixture models, assuming evolutionary pro
cesses vary widely, in particular the set of acceptable amino 
acids) and have been shown to fit empirical data significant
ly better than site homogeneous models in most cases 
(Philippe et al. 2011; Wang et al. 2019). Mixture models ac
count for the differences in amino acid frequencies in the 
multiple sequence alignments, either as empirical compos
itional mixtures that have been previously estimated from 
large protein alignment collections (e.g., C10 to C60: 
Quang et al. 2008; universal distribution mixture [UDM] 
model: Schrempf et al. 2020), or as an infinite mixture 

Table 2 
Examples of Substitution Models Accounting for Different Aspects of the 
Heterogeneous Substitution Process Including Some of the Software 
Packages Where They Are Implemented. Models Can Be Combined to 
Account for Multiple Types of Heterogeneity. Computational Complexity 
Roughly Increases Further Down the Table

Type of Substitutional 
Heterogeneity

Substitution Models

No heterogeneity assumed 
(homogeneous models)

JC69

Replacement-rate 
heterogeneity

GTR, WAG, LG …

Across-sites rate heterogeneity Gamma (G/Г) model
Across-site compositional 

heterogeneity
CAT (PhyloBayes); UDM, C10–60 

(IQ-TREE)
Heterotachy GHOST (IQ-TREE)
Across-lineages compositional 

heterogeneity
Node discrete compositional 

heterogeneity model, 
correspondence and likelihood 
analysis
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estimated directly from the data (CAT model: Lartillot and 
Philippe 2004). The main disadvantage of these types of 
models is that they require high computational times, which 
limits their use in the largest matrices. Recent methodologic
al developments, such as the posterior mean site frequency 
(Wang et al. 2018) method, are promising in terms of im
proving the computational efficiency in the ML framework. 
Overall, there is usually a trade-off between the computa
tional cost of an analysis and the size of the dataset that is 
being analyzed if we chose profile mixture models. A 
good compromise involves the analyses of large matrices 
under simpler substitution models, and the exploration of 
smaller matrices following subsampling strategies (see 
above) under mixture models. Crucially, if the two types of 
analyses do not agree, then a more extensive analysis of 
the fit of alternative models should be conducted, so as to 
establish which modeling strategy is more adequate for 
the case at hand.

8. To Concatenate or Not to Concatenate? This is the 
Question…

For large datasets, there are two main strategies to infer the 
species tree based on a set of orthologous multiple se
quence alignments. In the first of them, each of the align
ments are concatenated into a single alignment in order 
to sum up their genome-wide phylogenetic signal to get 
a global estimate of the species tree. Concatenation is in
consistent, understood as not converging towards the cor
rect tree with more data, when there is a substantial 
amount of discordance between gene trees (Kubatko and 
Degnan 2007) because there are violations of the model 
of gene evolution (Di Franco et al. 2021). Among the 
most popular programs for analysing concatenated super
matrices in ML framework are: IQ-TREE (Nguyen et al. 
2015), RaxML (Kozlov et al. 2019), PhyML (Guindon et al. 
2010), FastTree (Price et al. 2010), and PAML (Yang 
1997); and for Bayesian inference: PhyloBayes (Lartillot 
et al. 2009; Lartillot et al. 2013), RevBayes (Höhna et al. 
2016), MrBayes (Huelsenbeck and Ronquist 2001), and 
BEAST (Suchard et al. 2018).

Alternatively, in a coalescence framework, such as the 
multispecies coalescent (MSC) model (Pamilo and Nei 
1988), the topologies and branch length of the locus vary 
among loci due to the coalescent process in the ancestral 
populations (Rannala and Yang 2003). The latter method 
is robust to ILS, which can cause different parts of the gen
ome to have different evolutionary histories and therefore 
results in heterogeneous gene trees with incongruent top
ologies compared with the species tree. Summary coales
cent or two-step methods such as ASTRAL (Mirarab, Reaz, 
et al. 2014; Zhang, Rabiee, et al. 2018; Zhang et al. 2020), 
MP-EST (Liu et al. 2010), and SVDQuartets (Chifman and 
Kubatko 2014) rely on previously inferred gene trees to 

estimate the species tree, which are used as real observa
tions without accounting for stochastic errors. Inaccurate 
or uninformative single gene reconstructions driven by the 
small size of loci might result in stochastic and/or systematic 
errors due to improper modeling (Richards et al. 2018). 
These biases might be ameliorated when using full likeli
hood implementations of the MSC (Shi and Yang 2018). 
Full likelihood methods or single-step ones such as BPP 
(Yang 2015; Flouri et al. 2018) or *BEAST (Heled and 
Drummond 2010), jointly infer gene and species trees, ac
counting for stochastic errors and deep coalescent events. 
However, current software implementations do not include 
mixture models (Flouri et al. 2018) that accommodate het
erogeneity across sites or lineages. Even though simulated 
and empirical data suggests that full likelihood methods 
might be superior to summary coalescent ones (Shi and 
Yang 2018), the latter is the most widely used when analys
ing large datasets given their low computational demands. 
Coalescent approaches present other compound sets of 
problems, such assuming that there is no intralocus recom
bination. Recombination has been shown as common in 
protein-coding genes, with exons within genes having dif
ferent stories (Scornavacca and Galtier 2017), despite this 
fact, MSC-based methods might not be severely impacted 
by the violation of this premise. A philosophically similar ap
proach to full likelihood methods, but less computationally 
intensive, is the gene tree–species tree reconciliation meth
od, that coestimate gene and species trees taking into ac
count gene duplication, losses and horizontal gene 
transfers (Boussau et al. 2013; Szöllősi et al. 2013).

Therefore, concatenation and coalescence methods are 
both compromised by assumptions that are not completely 
satisfied (Gatesy and Springer 2014), and it is still controversial 
which strategy captures the more accurate tree (Edwards et al. 
2016; Springer and Gatesy 2016). Incongruent topologies be
tween concatenations and coalescent-based approaches are 
common among animals (Prum et al. 2015), fungi (Shen, 
Zhou, et al. 2016), and plants (Wickett et al. 2014). The pres
ence of incongruence between both approaches represents a 
major challenge to infer robust species phylogenies using 
genome-scale data (Kubatko and Degnan 2007; Bravo et al. 
2019; Shen et al. 2021). Hybrid approaches, such as “binning 
methods” have been developed to concatenate groups of loci 
to be used as input for coalescent methods (Mirarab, Bayzid, 
et al. 2014), but these strategies violate the implicit assump
tion of ILS-aware methods in which the history of a coalescent 
units is represented by a single tree (Gatesy and Springer 
2014). Each biological question needs to account for the po
tential violations or misspecification of the assumptions of the 
different methods, and selecting the most appropriate meth
od will heavily depend on the phylogenetic problem at hand 
(Bryant and Hahn 2020). For reconstructing deep branches, 
tree accuracy seems more impacted by high levels of homo
plasy, heterogeneous rates, and lack of phylogenetic signal 
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at rapid radiations than levels of ILS, which has been shown 
to be a minor determinant of the phylogenetic conflict in 
a mammalian dataset (Scornavacca and Galtier 2017). 
Concatenation can therefore be the preferred strategy 
when noise is the dominant source of conflict in ancient 
phylogenetic relationships presenting distant speciation 
events (Bryant and Hahn 2020) or when gene tree estimation 
errors are high and ILS levels are low (Shen et al. 2021). 
ILS-aware methods, instead, would be more appropriate for 
more recent speciation events, when there have been succes
sive splits within a small time interval, or when the source of 
genealogic tree discordance is presumed to be explained by 
ILS (Simion et al. 2020). When some of these assumptions 
to choose one method versus the other are unknown, which 
happens to be often the case, I recommend employing both 
methods and discussing the potential incongruences be
tween the results of both phylogenetic approaches under 
the light of the different methodological assumptions.

9. High Support Values in Supermatrices Does Not Imply 
Accurate Trees

Measures of branch support are important for understand
ing the robustness of phylogenetic inference (Minh et al. 
2020). The analyses of large phylogenetic datasets usually 
result in fully resolved trees with highly supported branches. 
However, these strongly supported topologies are not un
equivocally correct. One approach to infer the confidence 
or support for each branch of the tree is done via performing 
bootstrap analyses (Felsenstein 1985). These analyses re
sample columns of the alignments, building trees with 
each new resampled set, and calculating how many times 
each clade is retrieved in the bootstrap replications. As cal
culating nonparametric bootstrap is time consuming, par
ticularly for genome-scale datasets, faster and relatively 
unbiased support values are commonly used in phyloge
nomics, such as the ultrafast bootstrap approximation 
(Minh et al. 2013) or the Shimodaira-Hasegawa (SH)-like ap
proximate likelihood ratio test (Guindon et al. 2010). In the 
Bayesian framework, branch support is measured by poster
ior probabilities (Huelsenbeck et al. 2001). In concatenated 
matrices, bootstrap values above 95% and posterior prob
ability values above 0.9 are normally considered as strong 
support. These standard measures of statistical support, 
though, measure uncertainty in estimates given the data 
and a specific evolutionary model. Hence, they do not ac
count for biases in the data or incorrect model assumptions 
(systematic errors). So if the model does not describe the 
properties of the data, an incorrect topology can receive 
high statistical support (Delsuc et al. 2005). It has been 
shown that in phylogenomic supermatrices one loci or a 
few sites can have a disproportionate amount of influence 
in recovering incorrect nodes with full support (Shen et al. 
2017). I recommend evaluating these support measures in 

different submatrices under alternative inference ap
proaches and models of evolution, from lesser to better fit
ting ones, which could inform on potential systematic errors 
(see point 5, 6 and 7 above on subsampling strategies and 
modeling). Finally, the trustworthiness of the phylogenomic 
results could be tested by checking if there is agreement 
across alternative sources of data, such as morphology, 
within the philosophical framework of consilience 
(McInerney et al. 2014).

10. Dissect Incongruence in the Phylogenetic Signal

The phylogenetic signal in phylogenomic data is heteroge
neous, with sites and loci presenting evolutionary histories 
that often depart from the branching pattern of the species 
phylogeny (Bravo et al. 2019). Classic measures of branch sup
port do not fully capture these heterogeneous histories. 
Alternative measures of support quantify the disagreement 
among loci and sites and can reveal sources of topological in
congruence in phylogenomic matrices, being more inform
ative in the context of genome-scale data. The calculation of 
site and gene concordance factors, for example, allows asses
sing the fraction of sites or loci within an alignment supporting 
a particular branch (Ané et al. 2007; Minh et al. 2020).

Another recently developed approach to understand 
how the phylogenetic signal is distributed is through con
strained tree analyses (Simion et al. 2020). In these ana
lyses, two or more competing topologies are constrained, 
and the difference in likelihood is measured (per gene or 
per site) among the set of alternative hypotheses, relying 
on a “majority vote” to determine which topology is best 
supported by the data. These constrained tree analyses, le
veraging the information from single sites or loci, have been 
recently used to evaluate the likelihood of alternative top
ologies in recalcitrant nodes of multiple lineages and dis
criminate which ones better represent the species tree 
(Smith et al. 2015; Arcila et al. 2017; Shen et al. 2017). A 
similar measure of incongruence can be obtained in a co
alescent framework via quantification of the quartet-based 
scores for alternative topologies (Gatesy et al. 2016; Shen 
et al. 2021).

Constrained tree analyses have revealed that the distri
bution of phylogenetic signal across individual locus and/ 
or sites in large data matrices is unequal, and hence just a 
few sites may drive the resulting topology (Shen et al. 
2017; Walker et al. 2018; Francis and Canfield 2020). 
These results suggest that dissecting the distribution of sup
port for alternative topologies enables researchers to better 
explain the incongruence in phylogenomic analyses, quan
tify the distribution and strength of signal on contentious 
branches, and understand whether these topologies are ro
bustly supported or not (Shen et al. 2017). An excessive 
gene or site support in a contentious node may be attribu
ted to positive selection or other evolutionary processes 
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such as ILS, horizontal gene transfer, or hybridization. 
Alternatively, analytical errors such as insufficient taxon 
sampling or model misspecification (i.e., using an inad
equate substitution model) can also give rise to loci with his
tories incongruent with the species tree (Shen et al. 2017). 
On the other hand, it has been argued that these analyses 
are also be affected by problems of model fit, because non
phylogenetic signal (such as high levels of homoplasy) can 
bias the recovered topology and models cannot accurately 
infer parameters using the limited amount of information 
contained in a single locus/site (Simion et al. 2020). 
Besides helping to clarify the nature of phylogenetic incon
gruence, analytical approaches that quantify signal at the 
level of sites and loci are useful for understanding the influ
ence of substitution models by contrasting the distribution 
and strength of phylogenetic signal favoring a particular 
topology when different parameters are used. This type 
of analysis in phylogenomic studies allows to gauge the ro
bustness of the phylogenetic signal and its dependence on 
the datasets and models used.

Closing Remarks
The aim of this article is to provide a simple guide for dis
secting a phylogenomic study in order to assess its robust
ness, with the goal of bridging the gap between technical 
and biological knowledge and helping researchers without 
a formal background in bioinformatics to comprehensively 
evaluate the quality of genome-scale phylogenetic studies. I 
believe this is a key not only for efficient and fair manuscript 
review and grant evaluations but also for a correct biologic
al interpretation of the results presented in the scientific lit
erature. In the present era of massive amounts of data, an 
unknown portion of published phylogenomic results may 
be the product of inadvertent errors, nonoptimal steps in 
the pipeline, or methodological biases. The manuscript 
highlights that these discrepancies can be the result of con
taminants, improper assembly or orthology inference, erro
neous alignments, or model assumptions being breached 
(systematic error). I encourage readers to open the “phylo
genomic black box” and understand the quality of genomic 
data, look at the intermediate steps of the analyses, and as
sess whether a satisfactory model of evolution has been 
used to correctly infer the phylogeny in several submatrices 
of carefully chosen loci or positions. To sum up, more is not 
always better, and the devil is in the detail.
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Phylogenomics provides robust support for a two-domains tree 
of life. Nat Ecol Evol. 4(1):138–147.

Woese CR, Achenbach L, Rouviere P, Mandelco L. 1991. Archaeal 
phylogeny: reexamination of the phylogenetic position of 
Archaeoglobus fulgidus in light of certain composition-induced ar
tifacts. Syst Appl Microbiol. 14:364–371.

Xi Z, Liu L, Davis CC. 2016. The impact of missing data on species tree 
estimation. Mol Biol Evol. 33(3):838–860.

Xing Y, Lee C. 2005. Evidence of functional selection pressure for alter
native splicing events that accelerate evolution of protein subse
quences. Genome Biol. 6(5):1–30.

Yan Z, Smith ML, Du P, Hahn MW, Nakhleh L. 2021. Species tree infer
ence methods intended to deal with incomplete lineage sorting are 
robust to the presence of paralogs. Syst Biol. 71(2):367–381.

Yang Z. 1996. Maximum-likelihood models for combined analyses of 
multiple sequence data. J Mol Evol. 42(5):587–596.

Yang Z. 1997. PAML: a program package for phylogenetic analysis by 
maximum likelihood. Comput Appl Biosci. 13(5):555–556.

Yang Z. 1998. On the best evolutionary rate for phylogenetic analysis. 
Syst Biol. 47(1):125–133.

Yang Z. 2015. The BPP program for species tree estimation and species 
delimitation. Curr Zool. 61(5):854–865.

Yang Y, Smith SA. 2014. Orthology inference in nonmodel organisms 
using transcriptomes and low-coverage genomes: improving 
accuracy and matrix occupancy for phylogenomics. Mol Biol Evol. 
31(11):3081–3092.

Young AD, Gillung JP. 2020. Phylogenomics—principles, opportunities 
and pitfalls of big-data phylogenetics. Syst Entomol. 45:225–247.

Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read 
assembly using de Bruijn graphs. Genome Res. 18(5):821–829.

Zhang D, Hu P, et al. 2018. GC bias lead to increased small amino acids 
and random coils of proteins in cold-water fishes. BMC Genomics 
19(1):315.

Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: polynomial 
time species tree reconstruction from partially resolved gene trees. 
BMC Bioinformatics 19:153.

Zhang C, Scornavacca C, Molloy EK, Mirarab S. 2020. ASTRAL-Pro: 
quartet-based species-tree inference despite paralogy. Mol Biol 
Evol. 37(11):3292–3307.

Zwickl DJ, Hillis DM. 2002. Increased taxon sampling greatly reduces 
phylogenetic error. Syst Biol. 51(4):588–598.

Associate editor: Davide Pisani

Genome Biol. Evol. 14(9) https://doi.org/10.1093/gbe/evac129 Advance Access publication 10 August 2022                                  21

https://doi.org/10.1093/gbe/evac129

	A Practical Guide to Design and Assess a Phylogenomic Study
	Introduction
	1. Carefully Select the Taxa for Your Study (Including Outgroups)
	Assess the Diversity and Density of Your Taxon Sampling
	Avoid Including Taxa with Highly Divergent Substitution Rate and Base Composition
	Evaluate Your Outgroups

	2. Choose Your Destiny: Genomes, Transcriptomes, or Targeted Capture?
	3. Remove Contaminants and Make Sure Orthologs are Properly Inferred
	Checking for Contamination
	Orthology Inference

	4. Beware of the Multiple Sequence Alignment Step
	5. Subsample Loci Based on (Un)desirable Properties
	6. Reduce Heterogeneities in Data to Avoid Model Misspecifications
	7. Choose the Models That Best Fit the Data
	8. To Concatenate or Not to Concatenate? This is the Question…
	9. High Support Values in Supermatrices Does Not Imply Accurate Trees
	10. Dissect Incongruence in the Phylogenetic Signal

	Closing Remarks
	Acknowledgment
	Literature Cited




