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Editorial on the Research Topic

Computational approaches for interpreting experimental data and

understanding protein structure,dynamics and function relationships

The three-dimensional (3D) structure and dynamics of a biomolecule are keys to

understanding its function. A variety of experimental structural biology techniques

capable of determining biomolecular 3D structures and dynamics at atomic resolution

have been developed, including X-ray crystallography, NMR, and cryo electron

microscopy (cryoEM). Using these methods, atomic coordinate sets for more than

180,000 biomolecules have been determined and archived in the worldwide Protein

Data Bank (wwPDB). Sequences for billions of proteins are also available in genomic

sequence databases. However, these data are only the starting point for structure-function

studies aimed at testing specific hypotheses and understanding mechanisms underlying

biological processes. The exponential growth of computing power and algorithms now

enables multiple computational approaches for interpretation of these data, and for

simulation of biological processes.
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In this Research Topic, entitled “Computational Approaches

for Interpreting Experimental Data and Understanding Protein

Structure, Dynamics and Function Relationships,” we have aimed

to cover promising, recent, and novel research and technology

development interfacing experimental and computational

methods directed to structural, dynamic, and functional

studies of biomolecules. Six different articles have been

contributed from our colleagues, and one of them is from the

group of Prof. Montelione, who also served as one of guest editors

for this Research Topic.

Transthyretin (TTR) amyloidosis is known to cause different

human diseases including senile systemic amyloidosis and

familial amyloid cardiomyopathy/polyneuropathy. Prof. Jin

Hae Kim, Prof. Wookyung Yu and their group members

studied structural ensembles of TTR by machine-learning

based nuclear magnetic resonance (NMR) chemical shift

prediction and molecular dynamics (MD) simulation in the

contributed paper entitled “Aggregation-Prone Structural

Ensembles of Transthyretin Collected With Regression Analysis

for NMR Chemical Shift” (Yang et al.). They suggest the

correlation of the structural deformation of the DAGH β-
sheet and the AB loop regions to the manifestation of the

aggregation-prone conformational states of TTR. This

suggestion has been cross-validated by circular dichroism

(CD) spectroscopy and NMR order parameter analysis.

Another emerging area of protein structure analysis involves

combining advanced modeling methods with sparse experimental

data, like that obtained by NMR using perdeuterated samples of

biomolecules. These methods were assessed as part of the Critical

Assessment of Protein Structure Prediction (CASP) (Kuenze and

Meiler, 2019; Robertson et al., 2019; Sala et al., 2019). Among the

best performing methods in CASP13 was MELD (modeling

employing limited data). MELD uses Bayesian inference to

integrate data from different experimental sources with an

atomistic force field to predict structures (MacCallum et al.,

2015; Perez et al., 2016) and is well suited to handle sparse,

highly ambiguous restraints. In “Simultaneous Assignment and

Structure Determination of Proteins From Sparsely Labeled NMR

Datasets” (Mondal and Perez), Mondal and Perez describe the

MELD-NMR pipeline, together with improvements that provide

more accurate models for several CASP “NMR-guided” targets

than observed in the original CASP13 study. MELD-NMR

provides a significant improvement over previously described

approaches for structure determination with ambiguous, sparse,

and noisy NMR data.

Intrinsically disordered proteins, or IDPs, are an important

class of biomolecules with key biological functions. It is estimated

that approx. 40% of proteins encoded by the human genome

contain an IDP segment of at least 30 residues. In this mini-

review, Czaplewski et al. outline recent developments in

modeling ensembles of this important class of proteins from a

diverse set of experimental observables, including sparse NMR

data, SAXS, and XL-MS. The use of time- and ensemble-averaged

methodologies are discussed, with emphasis on computational

approaches for determining both an ensemble of representative

conformers, and their dynamics.

Large amounts of NMR data in diverse format are great

resources for NMR structural biology studies, but can create a

burden for users to explore and examine them. There is an urgent

need for tools for rapid access and translation of the large amount

of NMR data in diverse formats. Further, federation of different

data resources and powerful computational approaches, such as

advanced statistical studies and machine learning, can extend the

information in the existing data resources and unveil possible

latent insights. Profs. Eghbalnia and Hoch and their group

members describe the NMRbox which merges NMR data

resources and computation power to facilitate data-centered

research in the contributed paper entitled “Merging NMR Data

and Computation Facilitates Data-Centered Research” (Baskaran

et al.). The NMRbox can integrate diverse data resource and create

a data lake, called ReBoxitory, which can provide facile and local

access to time-stamped copies of high-quality data resources from

multiple databases for NMR structural biology. In addition,

combination of data repository (BMRB, PDB, etc.) with the

NMRbox computational platform can speed and simplify

computational workflows. The NMRbox platform creates an

environment for developing meta-software and supporting

complex workflows. It can foster data interoperability, semantic

data management, and reproducible research.

In the contributed paper entitled “Concurrent Identification

and Characterization of Protein Structure and Continuous

Internal Dynamics with REDCRAFT” (Omar et al.), Prof.

Valafar and his group members developed and benchmarked

the concurrent characterization of protein structure and

dynamics using the residual dipolar coupling (RDC) analysis

software REDCRAFT (Cole et al., 2021). Structures of

dihydrofolate reductase (DHFR), a 159-residue protein whose

internal dynamics have been described by a mixed mode model

of internal dynamics, were calculated by three different methods:

using traditional Ramachandran restraint, using context-specific

dihedral restraints generated by PDBMine, and using the

Dynamic Profile generated by REDCRAFT. The Dynamic

Profile provided identification of different dynamical regions

of the protein. The utilization of the Dynamic Profile

outperformed the other two methods by identifying the

dynamic regions and assembling relatively rigid fragments.

In the contributed paper “AlphaFold Models of Small Proteins

Rival the Accuracy of Solution NMR Structures” by Tejero et al.,

AlphaFold models of six small proteins, together with the

corresponding experimental NMR and X-ray crystal models,

were assessed against experimental NMR data (Tejero et al.).

While Prof. Montelione is on the editorial board for this Research

Topic, Prof. Francesca Marassi from Sanford Burnham Prebys

edited this article. The model validation analysis used multiple

server-based structure validation tools, including Protein

Structure Validation Software suite (PSVS) (Bhattacharya
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et al., 2007) integrating several knowledge-based structure

validation tools, as well as model vs. data validation using

NOESY peak lists (RPF-DP scores) (Huang et al., 2005),

protein rigidity and chemical shift (ANSURRS scores) (Fowler

et al., 2020), and 15N-1H residual dipolar coupling data (RDC Q

factors) (Cornilescu et al., 1998). AlphaFold models were

observed to fit to the NMR data as well as, or in some cases

better than, “experimental models” generated from these same

data and previously deposited in the Protein Data Bank.

Additionally, the AlphaFold models of two target proteins

from the Critical Assessment of Protein Structure Prediction

(CASP) (Huang et al., 2021), which were not used in the original

training of AlphaFold, were also observed to fit remarkably well

to the experimental NMR data. However, the AlphaFold model

of a third CASP target, which exhibits significant conformational

dynamics in solution, was not as good a fit to experimental data.

The authors suggest that AlphaFold can accurately model small,

relatively rigid protein structures in solution, and can often be

used reliably for guiding experimental NMR data analysis.

Overall, different groups have contributed articles with

different perspectives aimed at the same goal—viz, our

knowledge-limits of important biological processes can be

greatly expanded, and the invisible world explored, by

interpreting experimental data using advanced computational

methods. To do so, it is important to establish reproducible, easy-

to-use integrated research environments, which can accelerate

sustained and progressive scientific advances. By making

advanced, reliable computational tools more accessible to the

broad scientific community, we hope to enable novel, and in

some cases unanticipated, scientific discovery.
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