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Deep Learning for Fully-Automated 
Localization and Segmentation of 
Rectal Cancer on Multiparametric 
MR
Stefano Trebeschi   1,2, Joost J. M. van Griethuysen1,2, Doenja M. J. Lambregts1, Max J. 
Lahaye1, Chintan Parmar3, Frans C. H. Bakers4, Nicky H. G. M. Peters5, Regina G. H. Beets-
Tan1,2 & Hugo J. W. L. Aerts   1,3

Multiparametric Magnetic Resonance Imaging (MRI) can provide detailed information of the physical 
characteristics of rectum tumours. Several investigations suggest that volumetric analyses on 
anatomical and functional MRI contain clinically valuable information. However, manual delineation of 
tumours is a time consuming procedure, as it requires a high level of expertise. Here, we evaluate deep 
learning methods for automatic localization and segmentation of rectal cancers on multiparametric 
MR imaging. MRI scans (1.5T, T2-weighted, and DWI) of 140 patients with locally advanced rectal 
cancer were included in our analysis, equally divided between discovery and validation datasets. 
Two expert radiologists segmented each tumor. A convolutional neural network (CNN) was trained 
on the multiparametric MRIs of the discovery set to classify each voxel into tumour or non-tumour. 
On the independent validation dataset, the CNN showed high segmentation accuracy for reader1 
(Dice Similarity Coefficient (DSC = 0.68) and reader2 (DSC = 0.70). The area under the curve (AUC) 
of the resulting probability maps was very high for both readers, AUC = 0.99 (SD = 0.05). Our results 
demonstrate that deep learning can perform accurate localization and segmentation of rectal cancer in 
MR imaging in the majority of patients. Deep learning technologies have the potential to improve the 
speed and accuracy of MRI-based rectum segmentations.

Magnetic Resonance Imaging (MRI) is an integral part of the diagnostic work-up of rectal cancer and plays an 
important role in treatment planning. In addition, MRI can play a role in predicting clinically relevant endpoints, 
one of the most important ones being the response to neoadjuvant treatment1–3. Predicting which patients will 
show a very good response to treatment can have important clinical implications, since these patients may be con-
sidered for organ-preserving treatment strategies (local excision or watchful waiting) as an alternative to standard 
surgical resection4. In carefully selected patients these organ preserving treatments can considerably improve 
quality of life with a good oncological outcome.

A promising technique to assess response to neoadjuvant treatment is diffusion-weighted MRI (DWI). 
Various studies have shown that – as an addition to standard morphological MRI – DWI can aid in assessing 
response to chemoradiotherapy, in particular to differentiate residual tumour within areas of post-radiation fibro-
sis after CRT. For this purpose use of DWI is now even recommended in international clinical practice guidelines 
for rectal cancer imaging4.

Particularly good results have been shown for volumetric measurements derived from diffusion-weighted 
(DWI)5–8. Furthermore ADC and histogram features derived from DWI-MRI have shown promise as quanti-
tative imaging biomarkers for therapeutic outcome4,5,9,10. Most of these measures are calculated from regions 
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of interest (ROI) of the tumour that are typically obtained after manual tumour segmentation by experienced 
readers. Studies have indicated that whole-volume tumour segmentations, as opposed to single slice or sample 
measurements, provide the most reproducible and accurate estimates of the true tumour volumes11,12. The main 
problem with manual segmentation approaches, is that these are highly time consuming, up to 18 minutes per 
tumour13, and as such unlikely to be implemented into daily clinical practice. Previous studies have explored 
ways to automatically perform segmentations using software algorithms6,13. These approaches work best on 
diffusion-weighted images, as these highlight tumour and suppress background tissues, thereby providing a high 
tumour-to-background ratio.

Unfortunately, high signal on DWI is not limited to tumour tissue only. Other anatomical structures in the 
pelvis (e.g. perirectal lymph nodes, prostate and ovaries) as well as artefacts may also show similar hyper-intensity 
and may not be recognized as such by typical simple segmentation algorithms causing these algorithms to fail to 
produce sufficiently accurate results13. In such cases, the manual input required from an experienced reader will 
not be limited to a threshold value or a seed point (in case of region growing), but will include manual correc-
tions to adjust the segmentations for these effects13. Thus, there is an obvious need for smarter algorithms that 
can automatically localize and perform accurate segmentations of rectal tumours, which can reduce the need of 
expert input (Fig. 1).

Such fully automatic alternatives would also facilitate the generation of segmentations for large cohort stud-
ies, which is beneficial especially in light of new research developments such as Radiomics14,15, where complex 
tumour phenotypical characteristics are quantified and correlated to diagnostic or prognostic factors. The com-
putation of these features requires input in the delineation of the region of interest to be described.

Artificial intelligence (AI) aims to mimic cognitive, labour intensive tasks via complex computational models 
trained on top of existing datasets. A computational model trained using the input from expert readers (radiol-
ogists) to automatically localize and segment rectal cancer in MR images, could represent a potential solution to 
this problem.

Novel AI technologies, such as deep learning models, have been exploited in recent years with impressive 
results. Convolutional neural networks (CNNs) based deep learning approaches can learn feature representa-
tions automatically from the training data. The multiple layers of the CNNs aim to process the imaging data with 
different levels of abstractions, enabling the machine to navigate and explore large datasets and discover complex 
structures and patterns that can be used for prediction16. The advancement of these techniques has been made 
possible by the availability of large imaging data and the accessibility of dedicated hardware devices such as graph-
ical processing units (GPU)15,16. Particularly in the field of biomedical imaging, deep learning has been largely 
exploited for detection and segmentation purpose, where these methods are proven to systematically outperform 
traditional machine learning techniques17,19.

In this study, deep learning methods (CNNs) have been used to fully automatically localize and segment rec-
tum tumours. To evaluate the performance of deep learning based segmentations, we compared them to manual 

Figure 1.  Example of Multiparametric MR in a rectal cancer patient. mpMR of the pelvis of a male patient 
with rectal cancer before the start of the treatment. Corresponding slices of different sequences on the 
transversal plane are shown. (a) The sequences are, in order: T2 weighted, DWI B1000, DWI B0 and fusion 
imaging between T2 weighted and the DWI B1000. Notice how anatomical structures and tissues surrounding 
the tumour – such as prostate, bladder, and seminal vesicles – and artefacts in general show the same hyper-
intensity on the DWI of the tumour. (b) Delineations of the tumour done by (from the right left hand side): 
the experienced reader used for the training, the independent reader, the result of the algorithm and the 
corresponding probability map generated by the algorithm.
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segmentations of two independent expert radiologists. Deep learning technologies have the potential to improve 
the speed and accuracy of MRI-based rectum segmentations in clinical settings.

Background Work
To the best of our knowledge, few investigations were conducted on the automatic localization and segmentation 
of rectal cancer. Irving et al.20 proposed an automatic segmentation procedure, based on DCE-MRI, where the 
authors accounted for the multidimensional nature of DCE signal through a modified version of the supervoxel 
algorithm corrected by a graphical model producing successful results. Although DCE-MRI tends to give a much 
clearer and less noisy signal compared to DWI, our method achieved comparable results to the one presented 
in this study. The most popular semi-automatic approach is region growing. Day et al.21 used region growing 
on FDG-PET on phantoms, leading to better results than thresholding of the standardized uptake value (SUV). 
In this case the intent of the authors was to optimize treatment planning. Region growing was also used by van 
Heeswijk et al.13, who concluded that it could represent a more convenient replacement for manual delineation 
in terms of time. Although the results showed a decrease in the amount of time required, manual input was still 
required and a DSC > 0.7 could only be achieved when the result of the region growing was adjusted by an expe-
rienced radiologist.

Material and Methods
Subjects and Study Dataset.  For this study we retrospectively selected 140 patients (97 males, median age 
67, range 43–87) with biopsy proven locally advanced rectal carcinoma (LARC) from a previously reported bi-in-
stitutional study cohort5. No significant difference in clinical parameters was observed between the two centres 
(see Table 1). All patients in this cohort have undergone multiparametric (mp) MRI, consisting of T2 weighted 
and diffusion weighted imaging (DWI), prior to standard chemo-radiotherapy treatment (CRT), using either 
an Intera (Achieva) or Ingenia scanner (Philips Healthcare, Best, The Netherlands) (centre A, 91 patients) or a 
Magnetom Avanto system (Siemens Healthcare, Forchheim, Germany) (centre B, 49 patients) with a phased array 
surface coil. Both T2w and DWI sequences were axially angled perpendicular to the tumour axis defined on a sag-
ittal scan. The diffusion sequence was performed using b-values B0, B500, and B1000 (centre A) or B1100 (centre 
B). Patients did not receive bowel preparation. As described previously, all research was performed according to 
guidelines and regulations of The Netherlands5. In short, according to the Dutch law, retrospective studies are not 
subject to the Medical Research Involving Human Subjects Act and informed consent is not required22. Detailed 
parameters of the sequences are specified in Table 2.

Whole-volume tumour segmentations were available for all patients and were done by an experienced reader 
(Reader 1, D.M.J.L.) on the highest b-value (B1000 or B1100) DWI, according to methods previously reported13, 
where the reader created an initial segmentation using a simple region growing algorithm and manually adjusted 
to fit the borders of the tumour. These segmentations were used as ground truth. Additionally, segmentations 

Centre A Centre B Both Centres p-value

N 91 49 140 —

Males/Females 66/25 31/18 97/43 p = 0.498, χ2 test

Age 66.6 ± 9.3 65.6 ± 9.8 66.2 ± 9.4 p = 0.554, t-test

Tumour Volumeα 19.0 ± 22.3 cm3 23.8 ± 29.3 cm3 20.7 ± 25.0 cm3 p = 0.321, t-test

Table 1.  Patient Characteristics. α according to the segmentation performed by the experienced reader. No 
significant difference has been found between the two centres.

Centre A Centre B

Repetition Time 4004–4829 4971 4172–5241 5100 4300

Echo Time 70 70 68–70 79

Number of Slices 50 24 20–24 34 34

Slice Thickness (mm) 5 5 5 5 6

Slice Gap (mm) 0.5 0.5 0.5 0.5 0

In-Plane Resolution 2.50 × 3.11 
(−3.18) 1.87 × 2.31 1.82 × 2.27 1.70 × 1.30 2.0 × 2.0

Echo train length 1 1 1 1 1

N. Signal Averages 4 5 5 6 6

b-values 0, (100), 500, 
1000 0, 500, 1000

0, 
(25,50,100), 
500, 1000

0, 500, 1000 0, 300, 1100

Fat Suppr. Tech. STIRδ SPIRγ/fatsatα SPAIRβ SPIRγ/fatsatα SPIRγ/fatsatα

Echo Planar Im. 53–55 55 61 148 150

Table 2.  Sequence parameters of the diffusion-weighted imaging used during the study period. αFat Saturation, 
βSpectral Attenuated Inversion Recovery, γSpectral Pre-saturation with Inversion Recovery, δShort T1 Inversion 
Recovery.
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performed on the same dataset and in the same manner by an independent reader (Reader 2, M.J.L.) were 
retrieved. These segmentations were used as additional check.

Imaging data of 140 patients were included in our analysis. Patients were assigned to discovery or validation 
dataset depending on their identifier: even numbers were assigned to discovery dataset (N = 70), odd numbers to 
validation dataset (n = 70). For the discovery dataset, there were no errors within the imaging data and segmen-
tations, and therefore 70 cases were used for training. For the validation dataset, three cases had to be excluded 
due to misalignment between DWI and T2 caused by an error in the DICOM metatags, one case where the DWI 
suffered from severe ghosting artefacts, and one case in which the segmentation file was corrupted. This resulted 
in 65 cases that could be used for validation.

Pre-processing.  All images underwent standardization of the intensities, namely the intensity distribution 
was set to have mean zero and standard deviation one. Deformable registration was applied using the elastix tool-
box23,24 to compensate for the anatomical displacement of organs and tissues in different imaging sequences dur-
ing the acquisition procedure. The DWI-B0 was used as reference image, since it visualizes anatomical structures 
like the T2w and, at the same time, is well aligned to the DWI-B1000. The deformation field was estimated via 
adaptive stochastic gradient descent25 minimizing the advanced mattes mutual information26. Transform bending 
energy27 was used as penalty measure to correct for anatomically unrealistic transformations. To properly simu-
late the small, local movements in the bowels, a dense sampling grid of 4 mm together with a strong weight on the 
penalty measure (1:20) was applied.

Deep Learning (CNN) architecture.  In this study, a CNN architecture was implemented to function as 
voxel classifier. More specifically, for each voxel v we (1) extracted a fixed-size patch surrounding v, (2) classified 
the patch via a trained instance of the CNN, (3) collected the resulting probability, and (4) assigned the resulting 
probability to v. By repeating the procedure for each voxel of each image, we could generate a probability map, 
where p(v) is the probability of voxel v to represent tumour tissue. The segmentation was generated by threshold-
ing of the probability maps (voxels with p(v) ≥ 0.5 were classified as “tumour”, and as “not tumour” otherwise) 
and subsequent selection of the largest connected component. Figure 2 offers a schematic synthesis of the whole 
process.

Patch extraction.  N voxels were randomly sampled from each of the foreground (i.e. tumour region) and 
background (i.e. non tumour region) regions. This ensured a balanced representation of the two classes during 
the training procedure. For each voxel, we extracted the surrounding in-plane patch of size M × M in all MR 
sequences. Each sequence was then fitted in one of the three channels of a standard RGB picture. The ground 
truth associated with each patch was the label of the central voxel.

Some regions are easier to classify, such as hypointensity on the DWI. Other regions instead are more chal-
lenging: for example, the prostate and the tumour regions have similar intensity and heterogeneity on T2w and 
DWI. Intuitively, the classifier should be able to spend more time learning to how to correctly classify these dif-
ficult regions of the image, and less time on regions that are easily classifiable. To translate this concept in imple-
mentation, the background class was divided in three regions: I) the area surrounding the tumour (RB

1) defined 
by morphological dilation of the tumour segmentation with a spherical structural element of 1 cm radius; II) the 
regions hyper-intense on the DWI (RB

2) defined by thresholding on the DWI at µ + 2σ. Since all images have been 
standardized, this operation will result on the thresholding at a value of 2.00; and III) the remaining areas (RB

3) 
defined by the voxels not belonging to either RB

1 or RB
2. We sampled N/4 voxels from RB

1 and RB
3, and N/2 voxels 

from RB
2, summing up to total N non-tumour voxels from the background class. Figure 2a shows a schematic 

representation of the sampling process.

Network Definition.  The network used for the classification of each patch is composed of a total of nine 
layers: two subsequent convolutional layers followed by a max pooling layer; a couple of smaller, subsequent 
convolutional layers, each followed by a max pooling layer; two fully connected layers at the end culminating in 
the output layer. This architecture is similar to the one proposed in ref.28, with the addition of a convolutional and 
max pooling layer. Dropout29 of 1/2 was used after each fully connected layers, and 1/3 after each max pooling 
layer30. Leaky rectified linear unit (ReLu)31 was used as a nonlinearity in each layer, except in the on the output 
layer, where a softmax was used instead. Small filters of 5 × 5 or 3 × 3 are used at each convolutional layer, along 
with stride one and full padding. Stride two was used in the max pooling. Twenty-four features were used in the 
first convolutional layer, number which doubles in each subsequent layer (i.e. 24, 48, 96, 192), amounting for a 
total of 360 filters throughout the entire network. Figure 2b shows a schematic representation the network struc-
ture. Cross entropy was used as cost function, together with a small L2 regularization on the network parameters. 
Adadelta32 with learning rate η = 0.001 and decay ρ = 0.9.

The discovery set was divided into training set (80%) and test set (20%). The training set was used for train-
ing the net, the test set was used alongside the training procedure to check for model overfitting. The training 
procedure was programmed to stop when no improvement on the cost δ of the test set was made for at least five 
consecutive epochs, where the improvement was defined as δ EPOCH-1 − δ EPOCH > 10–3. The implementation of the 
algorithm was based on popular Python libraries: Lasagne and Theano33.

Statistical Analysis.  Segmentations were generated by feeding the patch of each voxel of mpMR to the algo-
rithm and assigning the resulting probability to that voxel. The segmentation was generated by thresholding of the 
probability map at p = 0.5. Additional selection of the largest component allowed the exclusion of small isolated 
voxels, which might pass unseen by most human readers. Figure 2c shows an example of this process.

In stochastic processes where samples are randomly selected, the result might often be not representative, 
with a significant variance in the final classification results. To evaluate the stability of the algorithm, we repeated 
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the entire sampling, training and testing procedure four times and compared the segmentations generated by the 
different runs of the algorithm.

Results
Deep Learning (CNN) Training.  To develop a deep learning based algorithm for the fully automatic local-
ization and segmentation of rectum tumours, we used independent discovery and validation datasets to develop 
an CNN-based network and validate its performance. The CNN was trained on multiparametric MR imaging 
(1.5T, T2-weighted and DWI) of 70 patients, using the segmentations performed by expert reader 1. For each 
patient, 5000 patches (size M × M = 21 × 21 voxels) were created by combining T2-weighted, and DWI images, 
for both tumour and non-tumour areas (Fig. 2a). The discovery data consisted of an independent discovery set 
(totalling 560 K patches) and test set (140 K patches). The algorithm reached a loss on the discovery set of 0.275 
and 0.331 on the test set. The accuracy was 0.895 and 0.871, respectively. Figures 3a,b and c show the improve-
ment of accuracy, the minimization of the cost function and its improvement over time. Notice from the graph 
presented in Fig. 3c that no major improvement on the cost function has been recorded after the 50th epoch.

Validation of CNN classifier.  The performance of the CNN classifier was validated on the validation data-
set consisting of multiparametric MR imaging of 65 patients. For each patient volumetric tumour segmentations 
were generated and compared to both expert readers (Fig. 1b). Three cases had to be excluded where there was 
no agreement between expert readers. Therefore, data of 62 patients were used to validate the performance of 
the classifier. For all cases, the CNN could successfully generate volumetric tumour segmentations. To evaluate 
the performance of the CNN on a voxel-by-voxel bases, the area under the curve (AUC) was computed between 
the CNN probability maps and the segmentations of the experienced readers. The AUC of the resulting proba-
bility maps was very high for both readers, AUC = 0.99 (0.05 SD), with no significant difference between readers. 
Figure 3d shows AUC distributions for both readers.

From the probability maps we then generated volumetric segmentations. To evaluate the performance of the 
segmentation the Dice Similarity Coefficient (DSC) was used. The DSC is a statistical measure of spatial overlap 
frequently used to compare segmentations. The average DSC between the two expert readers was high (0.83, 

Figure 2.  Scheme of the Proposed Solution. (a) On the left-hand side, a multiparametric representation of the 
imaging is created via fusion of corresponding slices from different sequences into the colour channels of the 
RGB model. In the centre, the label map is first divided in tumour region (RT) and the background regions (RB) 
according to the delineation done by the experienced reader. On the right-hand side, N voxels (together with 
their surrounding patch) are then randomly sampled from these regions to maintain a balance between number 
of voxels representing the tumour and number of voxels representing healthy tissue. (b) The architecture of the 
network, which is trained with the patches of the images in the discovery set. The patches of the images in the 
test set are used to control for model overfitting. (c) The 3D probability map is generated by classification of each 
voxel using the trained model. The probability map is thresholded to find the components where the probability 
of tumour is higher than the probability of healthy tissue. The largest component is selected as segmentation of 
the tumour.
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SD = 0.13). The DSC between the algorithm and Reader 1 was 0.68 (0.07 SD) and Reader 2 was 0.70 (0.07 SD), 
with no significant difference detected between the two distributions (p = 0.31, t-test). Figure 3e shows DSC 
distributions between the algorithm and each reader, and between the two readers. Figure 1b show an example 
of a tumour successfully delineated by the algorithm (0.99 AUC, 0.85 DCS). Notice that the CNN was trained on 
segmentations of expert reader 1 in the discovery dataset. However, on the validation dataset the performance of 
the CNN was similar with both readers (Fig. 3e), demonstrating the generalizability of the network.

The algorithm resulted in a relatively poor result (DSC < 0.50) in ten cases. Figure 4 show an example of a 
tumour correctly classified by the algorithm but resulting in a poor DSC after thresholding and selection of the 
biggest connected component (0.98 AUC, 0 DCS), as the tumour was not the biggest component. In this case, the 
testicles (visualized in the lower part of the image) were assigned a probability greater than 0.5, enabling them to 
survive the threshold procedure and be selected as candidate segmentation.

Stability of the Sampling Process.  To access the stability of the sampling procedure and reproducibility 
of the model across different sampled voxels, the entire discovery and validation procedure was repeated addi-
tional four times. The final validation accuracy resulting from each individual training procedure (between 0.875 
and 0.895), as well as the cross entropy (between 0.268 and 0.30), was stable. Each trained algorithm was used to 
generate the segmentations, resulting in four segmentations for each case. The Intraclass Correlation Coefficient 
(ICC) was used to access the agreement across different nets in terms of DSC. The overall agreement was very 
high (ICC = 0.83, 95% CI 0.77–0.88, p < 0.001).

Discussion
Our aim was to develop a deep learning based network for the fully automatic localization and segmentation of 
locally advanced rectal tumours. Overall results show good performance of the algorithm, with segmentations 
comparable to those performed manually by an expert reader with a DSC of 0.70. In terms of classification, the 
high AUC of 0.99 suggests the ability of the algorithm to properly classify tumour voxels and therefore locate 
cancer tissue in the image. At visual inspection of the probability maps, one can appreciate how non-malignant 
hyperintensity of the DWI are attenuated with lower probabilities, whereas the tumour retains higher values.

After thresholding and selection of the largest component as candidate segmentation, the algorithm achieved 
an overall DSC of 0.70. At first glance, this is lower than the DSC reached between both readers on this dataset. 
In this case however the reader could rely on a semi-automatic procedure (region growing) known to increase 
the DSC13. Fully manual segmentation is reported to provide a lower DSC of 0.6813, leaving open the question of 
whether the region growing algorithm could really provide a much more precise delineation of if the experienced 
readers were partially influenced by the result of the algorithm. Interesting enough, DSC variability was lower 
than the variability between experienced readers (0.07 vs 0.13 SD).

During the training of the CNN classifier, the algorithm showed decreased performance in 10 cases of the 
validation dataset. In each of these cases the AUC was >0.90 but the DSC was zero, suggesting the algorithm 
managed to identify the tumour tissue in the image but failed to select the correct candidate. Seven cases out of 
ten were images acquired at the centre B, which applied an imaging protocol with a larger field of view (FOV). The 
larger FOV inevitably included in the images large chunks of subcutaneous adipose tissue, or anatomical parts – 
e.g. the testicles –, which were not present in the discovery set (Fig. 4). Although the tumour region resulted in 

Figure 3.  CNN Training and Validation. Performance of the CNN on the discovery dataset: (a) accuracy, (b) 
cross entropy and (c) improvement (Δ cross entropy). Improvement shown in panel (c), in computed on the 
test set only, preventing the model from overfitting. Performance of the CNN on the validation dataset: (d) the 
Area under the ROC curve (AUC) of the probability map with respect to the reader segmentation, and (e) Dice 
Similarity Coefficient (DSC) of the generated segmentations.
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higher probability voxels, after thresholding these adipose tissue or anatomical parts were larger than the tumour 
and therefore selected as candidate. Including more examples from centre B will likely enable the network to learn 
to recognize and remove artefacts in these peripheral areas. Figure 4 shows two example cases of a male patients 
from centre B, where the testicles were misclassified as tumour.

The remaining three cases from centre A showed large fat suppression artefacts, rarely present in the rest of 
the dataset. Most likely, the scarcity of these examples is the reason of misclassification. This indeed represents the 
main drawback of supervised learning procedures in general, which are often unable to properly classify under-
represented cases. The same effect can be observed on a microscale in Fig. 1, where the segmentation generated 
by the algorithm includes non-tumoural hyperintensities, representing some fluid in the rectal lumen. Its under 
representation in the training set, and the vicinity to the tumour leads the algorithm to assign a tumour probabil-
ity >0.5 – yet smaller than the probability assigned to the tumour.

Deep learning has been largely used before for segmentation tasks in medical imaging. Out of all possible 
architectures, we chose this for its straightforwardness and, most importantly, the limited number of images 
required for training the algorithm. The strategy of using multiple patches from the same patient allows us to 
generate a large imaging tensors upon which the algorithm can be trained. The patch size chosen allows focusing 
on a small region without including too much surrounding, but can still generalize textural patterns of specific 
tissues and organs. Larger patches in fact (e.g. M = 35) as well as smaller patches (e.g. M = 11) resulted in higher 
training error. These small patches, however, might not provide enough anatomical information needed in some 
other applications. In Fig. 4, for example, we can see how the algorithm selected a group of voxels outside the pel-
vis. Fully convoluted end-to-end procedures, such as the one presented in SegNet34 or U-Net35,36 where 2D slices 
of MR volumes or entire 3D volumes are fed to a network able to directly generate the target segmentation, would 
represent an alternative approach worth investigating. Such approach would recognize unlikely tumour locations 
outside or on the border of the pelvic area, and exclude them automatically. The patch based approach adopted in 
this study aims to provide the network with an artificially balanced, multiparametric training set from a relatively 
small dataset via a weighted sampling procedure favouring more challenging regions such as tumour borders and 
diffusion hyperintensities often found in nearby prostate and seminal vesicles.

Neuroradiology remains the main area of focus of research on segmentation algorithms, and several algo-
rithms and architectures have been proposed for brain tumour segmentation, especially in the context of mul-
tiparametric imaging37–39. Imaging of the lower abdomen however poses a challenge to automatization, partially 
because of the bowel movements, which makes it challenging to use voxel-wise mpMRI, and partially because of 
the high number of artefacts. Although bowel movements can be partially attenuated by deformable registration 
protocols, such as the one designed in this study, the result is yet suboptimal and needs to be investigated further. 
Common artefacts are learned as false positive by the algorithm, recognized and removed from the result. Rare 
artefacts and presence of anatomical parts not seen in the discovery set are still misclassified.

Figure 4.  Example cases. Six example cases of the segmentation performed by the CNN. The algorithm 
correctly localized and segmented the tumour in case I to IV (small FOV images), but failed in cases with larger 
FOVs (cases V and VI) where parts of the cavernous bodies of the penis were erroneously included in these 
examples.
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This algorithm represents a preliminary result to support the utilization of deep learning in colorectal MR. 
We intend to further optimize the protocol, mainly by (1) focusing on alternative architectures which account for 
anatomical location, and (2) shortening the time needed for the segmentation.

Conclusions
Our results demonstrate that deep learning can perform accurate localization and segmentation of rectal cancer 
in MR imaging in the majority of patients. Deep learning technologies have the potential to improve the speed 
and accuracy of MRI-based rectum segmentations, as manual delineation have shown to be reader dependent 
and often time consuming, which limits its utility in practice and represents one of the major obstacles in the 
design of large quantitative imaging studies. Automatic segmentation procedures, such as the one presented in 
this study, aim to overcome this obstacle by offering a viable alternative to manual delineation. Further validation 
of these technologies is warranted before clinical application. But if these methods proves reliable its impact 
in clinical management of rectal cancer could be significant providing an efficient and accurate tool to assess 
residual tumour burden after preoperative treatment with subsequent better stratification of patients for organ 
preservation resulting in a higher quality of life.
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