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Abstract: This paper presents an updated full-discretization method for milling stability prediction
based on cubic spline interpolation. First, the mathematical model of the time-delay milling system
considering regenerative chatter is represented by a dynamic delay differential equation. Then, in
a single tooth passing period, the time is divided into a finite time intervals, the state item and the
time-delay item are approximated in each time interval by cubic spline interpolation and third-order
Newton interpolation, respectively. Afterward, a transition matrix is constructed to represent the
transfer relationship of the teeth in a period. Finally, based on Floquet theory, the milling stability
lobes can be obtained. Meanwhile, in order to improve computational efficiency, an optimized
method is proposed based on the traditional algorithm and the proposed method has high precision
without losing high efficiency. Finally, several milling experiments are conducted to verify the
accuracy of the proposed method, and the results show that the predicted results agree well with the
experimental results.

Keywords: milling stability; delay-differential equation; computational efficiency; Floquet theory

1. Introduction

Chatter is a serious problem in the milling of a thin-walled workpiece such as aero-
engine blades, casings, impellers, blisks etc., which not only reduces the surface quality and
production efficiency but also shortens the life of machine spindles and cutters. Therefore,
it is necessary to investigate chatter in the milling of thin-walled workpieces for obtaining
chatter-free operations.

Up to now, chatter has been studied by considering the time-varying milling pro-
cess system by several researchers, including T. Insperger [1–3], Chandiramani [4], and
Eksioglu [5] et al. From these studies, we found that in the milling process, considerable
valuable results on chatter are investigated by a mathematical model of a time-periodic
delay differential equation (DDE), and stability lobes diagram can be used to obtain the
chatter-free process parameters more accurately.

To investigate machine stability considering regeneration chatter, a considerable number
of methods, including analytical methods, numerical methods, and experimental methods,
have been proposed to predict the stability lobes diagram (SLD), e.g., the analytical meth-
ods [6], the temporal finite element methods [7], the semi-discretization and full-discretization
methods [8,9], the time domain numerical simulation methods [10], and the experimental
methods [11]. Among the methods mentioned above, the semi-discretization methods and
full-discretization methods are widely used due to their efficiency and accuracy.

In recent years, Altintas [12] proposed a zero-order analytical (ZOA) method by the
Fourier series average method of dynamic milling force coefficient. Then, Merdol [13]
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transformed the low radial immersion milling dynamics into an eigenvalue problem by
considering the tooth spacing angle and tooth passing frequencies for accurately predicting
the stability lobes diagram. The semi-discrete cycloid method based on the nonlinear
cutting force milling model was presented by Faassen [14] for investigating the stability of
a milling system, which was proved effectively.

Furthermore, to obtain a high-precision stability lobe diagram, the numerical meth-
ods, including the numerical integration method [15,16], Runge–Kutta-based discretiza-
tion method [17], and precise integration method [18] were developed. Shortly after
that, a semi-discrete method (SDM) was proposed by Insperger [19] and then, a full-
discretization method (FDM) was presented by Ding et al. [20]. Later on, a second-order
FDM method [21], third-order FDM method [22], high-order FDM method [23], Hermite
interpolation FDM [24], and the update FDM [25] are successively proposed. It is proved
that the accuracy and efficiency of these methods were improved to some extent. However,
these extended methods have more complex algorithm structures, which will take more
calculation time and obtain the low convergence accuracy to a certain degree.

Therefore, to obtain a higher convergence rate and computational efficiency, a novel
update FDM based on Spline–Newtons interpolation is proposed in this paper. The most
important difference of the proposed method compared with the existing methods is that
the cubic spline interpolation method was utilized to handle the state item and the third-
order Newton interpolation method was used to approximate the time-delay item. The
remainder of the paper is organized as follows. In Section 2, a systematic mathematical
model and algorithm are described in detail. In Section 3, the rate of convergence esti-
mates of the proposed method is calculated compared with some existing method. In
Sections 4 and 5, two benchmark examples for a one degrees of freedom (DOF) milling
model are given to illustrate the accuracy and efficiency of the proposed approach. Some
verified experiments are conducted and analyzed in Section 6. Finally, some conclusions
are presented.

2. Systematic Mathematical Model and Algorithm

For a conventional milling process, a schematic diagram of milling a thin-walled sec-
tion while considering regenerative chatter is given in Figure 1. Without loss of generality,
the dynamic model of the milling process system considering the regenerative effect can be
expressed by a n-dimensional linear time periodic system with a single discrete time delay
as follows: .

X(t) = A0X(t) + A(t)[X(t)− X(t− T)] (1)

where A0 is a constant matrix, A(t) is a time-periodic matrix, and A(t) = A(t + T), T is the
time period which equals to the time delay, and X(t) is the relative displacement between
the cutter and workpiece. In order to solve Equation (1), time period T can be equally
divided into m small-time intervals, and T = mh, where m is an integer and h is the range
of each interval. Then, the dynamic response of Equation (1) can be obtained by a direct
integration method on each time interval kh ≤ t ≤ (k + 1)h:

X(t) = eA0(t−kh)X(kh) +
∫ t

kh

{
eA0(t−ε)[A(ε)X(ε)−A(ε)X(ε− T)]

}
dε. (2)
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Let X(kh) = Xk with k = 0, 1, . . . , m, when t = (k + 1)h, Equation (2) can be equivalently
converted to the following form:

Xk+1 = eA0hXk +
∫ h

0
eA0ε[A(kh + h− ε)X(kh + h− ε)−A(kh + h− ε)X(kh + h− ε− T)]dε (3)

Next, the integral term in Equation (3) should be handled. The state item X(kh + h − ε)
can be approximately represented by cubic spline interpolation using Xk+1, Xk, Xk−1, Xk−2.
In addition, two other constraints

.
X(kh − 2h) and

.
X(kh + h) are used in cubic spline

interpolation. Namely, let Ak stands for A(kh):{ .
X(kh− 2h + 0) = A0Xk−2 + Ak−2(Xk−2 − Xk−2−m).
X(kh + h− 0) = A0Xk+1 + Ak+1(Xk+1 − Xk+1−m)

. (4)

At the time interval [tk, tk+1], the state item X(kh + h − ε) can be approximated by cubic
spline interpolation, resulting in:

X(kh + h− ε) = µ1Xk+1 + µ2Xk + µ3Xk−1 + µ4Xk−2 (5)

where
µ1 =

−11hA0 + 18I
15h3 ε3 +

26hA0 − 33I
15h2 ε2 −A0ε + I (6)

µ2 =
−9I
5h3 ε3 +

14I
5h2 ε2 (7)

µ3 =
4I

5h3 ε3 − 4I
5h2 ε2 (8)

µ4 =
−hA0 − 3I

15h3 ε3 +
hA0 + 3I

15h2 ε2. (9)

The time delay item X(kh + h − ε − T) in Equation (3) can be approximately expressed
at four points Xk−m+3, Xk−m+2, Xk−m+1, Xk−m by the third-order Newton interpolation
method as follows:

X(kh + h− ε− T) = λ1Xk−m + λ2Xk−m+1 + λ3Xk−m+2 + λ4Xk−m+3 (10)
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where

λ1 =
ε3

6h3 +
ε2

2h2 +
ε

3h
(11)

λ3 =
ε3

2h3 +
ε2

2h2 −
ε

h
(12)

λ3 =
ε3

2h3 +
ε2

2h2 −
ε

h
(13)

λ4 =
−ε3

6h3 +
ε

6h
. (14)

Subsequently, the time-periodic item A(kh + h − ε) in Equation (3) can be expressed by
linear interpolation which using points A(kh) and A(kh + h), and:

A(kh + h− ε) = Au + Avε (15)

where
Au = Ak+1 (16)

Av = (Ak −Ak+1)/h. (17)

Then, substituting Equation (5), Equation (10), and Equation (15) into Equation (3)
leads to the interpolated item X(kh + h − ε), X(kh + h − ε − T) and A(kh + h − ε) are taken
into Equation (3), and the DDE is approximated by an ordinary differential equation (ODE),
which can be simplified as follows:

Pk+1Xk+1 = PkXk + Pk−1Xk−1 + Pk−2Xk−2 + Pk−m+3Xk−m+3
+Pk−m+2Xk−m+2 + Pk−m+1Xk−m+1 + Pk−mXk−m

(18)

where
Pk+1 = I− (a1Au + a2Av) (19)

Pk = Φ0 + (b1Au + b2Av) (20)

Pk−1 = c1Au + c2Av (21)

Pk−2 = d1Au + d2Av (22)

Pk−m+3 = e1Au + e2Av (23)

Pk−m+2 = f1Au + f2Av (24)

Pk−m+1 = g1Au + g2Av (25)

Pk−m = h1Au + h2Av. (26)

Define:
Φ0 = eA0h (27)

Φ1 =
∫ h

0
eA0εdε = A−1

0 (Φ0 − I) (28)

Φ2 =
∫ h

0
εeA0εdε = A−1

0 (hΦ0 −Φ1) (29)

Φ3 =
∫ h

0
ε2eA0εdε = A−1

0 (h2Φ0 − 2Φ2) (30)

Φ4 =
∫ h

0
ε3eA0εdε = A−1

0 (h3Φ0 − 3Φ3) (31)

Φ5 =
∫ h

0
ε4eA0εdε = A−1

0 (h4Φ0 − 4Φ4). (32)
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In addition, the coefficients in Equations (19)–(26) can be expressed as:

a1 =
−11hA0 + 18I

15h3 Φ4 +
26hA0 − 33I

15h2 Φ3 −A0Φ2 + Φ1 (33)

a2 =
−11hA0 + 18I

15h3 Φ5 +
26hA0 − 33I

15h2 Φ4 −A0Φ3 + Φ2 (34)

b1 =
−9
5h3 Φ4 +

14
5h2 Φ3 (35)

b2 =
−9
5h3 Φ5 +

14
5h2 Φ4 (36)

c1 =
4

5h3 Φ4 −
4

5h2 Φ3 (37)

c2 =
4

5h3 Φ5 −
4

5h2 Φ4 (38)

d1 =
−hA0 − 3I

15h3 Φ4 +
hA0 + 3I

15h2 Φ3 (39)

d2 =
−hA0 − 3I

15h3 Φ5 +
hA0 + 3I

15h2 Φ4 (40)

e1 =
1

6h3 Φ4 −
1

6h
Φ2 (41)

e2 =
1

6h3 Φ5 −
1

6h
Φ3 (42)

f1 =
−1
2h3 Φ4 −

1
2h2 Φ3 +

1
h

Φ2 (43)

f2 =
−1
2h3 Φ5 −

1
2h2 Φ4 +

1
h

Φ3 (44)

g1 =
1

2h3 Φ4 +
1
h2 Φ3 −

1
2h

Φ2 −Φ1 (45)

g2 =
1

2h3 Φ5 +
1
h2 Φ4 −

1
2h

Φ3 −Φ2 (46)

h1 =
−1
6h3 Φ4 −

1
2h2 Φ3 −

1
3h

Φ2 (47)

h2 =
−1
6h3 Φ5 −

1
2h2 Φ4 −

1
3h

Φ3. (48)

Then, if the matrix Pk+1 in Equation (18) is nonsingular, Equation (18) can be given by:

Xk+1 = P−1
k+1PkXk + P−1

k+1Pk−1Xk−1 + P−1
k+1Pk−2Xk−2 + P−1

k+1Pk−m+3Xk−m+3

+P−1
k+1Pk−m+2Xk−m+2 + P−1

k+1Pk−m+1Xk−m+1 + P−1
k+1Pk−mXk−m

(49)

According to Equation (49), a discrete map could be defined as:

QNk+m = RNk (50)
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where
Nk = [Xk−m, Xk−m+1, · · · , Xk−1, Xk]

T . (51)

In addition, Q and R can be expressed as:

R =



0 0 0 0 0 0 · · · 0 0 0 I
Pk,m Pk,m−1 Pk,m−2 Pk,m−3 0 0 · · · 0 Pk,−2 Pk,−1 0

0 Pk+1,m Pk+1,m−1 Pk+1,m−2 Pk+1,m−3 0 · · · 0 0 Pk+1,−2 0
0 0 Pk+2,m Pk+2,m−1 Pk+2,m−2 Pk+2,m−3 · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 · · · Pk+m−3,−2 Pk+m−3,−1 Pk+m−3,0 Pk+m−3,1
0 0 0 0 0 0 · · · 0 Pk+m−2,−2 Pk+m−2,−1 Pk+m−2,0
0 0 0 0 0 0 · · · 0 0 Pk+m−1,−2 Pk+m−1,−1


(52)

Q =



I 0 0 0 · · · 0 0 0 0 0 0
Pk,0 Pk,1 0 0 · · · 0 0 0 0 0 0

Pk+1,−1 Pk+1,0 Pk+1,1 0 · · · 0 0 0 0 0 0
Pk+2,−2 Pk+2,−1 Pk+2,0 Pk+2,1 · · · 0 0 0 0 0 0

...
...

...
...

. . .
...

...
...

...
...

...
0 0 0 0 · · · Pk+m−3,−2 Pk+m−3,−1 Pk+m−3,0 Pk+m−3,1 0 0
0 0 0 0 · · · 0 Pk+m−2,−2 Pk+m−2,−1 Pk+m−2,0 Pk+m−2,1 0
0 −Pk+m−1,m−2 −Pk+m−1,m−3 0 · · · 0 0 Pk+m−1,−2 Pk+m−1,−1 Pk+m−1,0 Pk+m−1,1


(53)

It is clear that Q and R are both a (2m + 2) × (2m + 2) dimensional matrix. Therefore,
the transition matrix V in a single tooth passing period can be defined as:

V = Q−1R. (54)

Now, according to Floquet theory [26], the stability of the system can be determined
by judging whether the modulus of the eigenvalues of the transition matrixes are less than
1 or not. If not, the system is unstable, otherwise, it will be stable.

Remark: If Pk+1 is singular, the processing method in Ref. [20] can be utilized. From
Equations (52) and (53), it can be seen that 8m variables need to be calculated complicatedly
compared with the first-order and second-order FDM, which leads to the increase of calcu-
lating time. To enhance the calculation efficiency, the traditional algorithms compressed the
2m + 2 dimensional matrix into a m + 2 dimensional matrix, and calculated the eigenvalues
of the transition matrix in one period in the whole region, then, the stability boundary
is drawn. However, a novel algorithm is proposed to obviously improve computational
efficiency. It is well known that the machining process is stable below the boundary of
the SLD and is unstable on the upper boundary of the SLD, while on the stable boundary
the eigenvalue of the transition matrix is 1, represented by the spindle speed and depth of
cut. According to the constraints of the spindle speed and depth of cut, the modulus of the
transition matrix eigenvalues are calculated and judged with 1. If the value is more than 1,
the algorithm stops, otherwise it continues, which is only the modulus of transition matrix
eigenvalues that are less than 1 and calculated for the stability boundary, which can greatly
improve the computational efficiency by reducing the calculation of the eigenvalues in the
unstable region.

3. Rate of Convergence Estimates

To verify the fast convergence rate of the proposed method, a one DOF dynamic
milling system is selected, and the proposed method is compared to the 0th SDM, 1st FDM,
2nd FDM, 3rd FDM, and Hermite FDM.

The rate of convergence can be clearly determined by the local discretization error
(LDE). As stated in the literature [19], for the 0th SDM, the LDE is O(h2). The LDE of FDM
with the 1st, 2nd, 3rd, and Hermite are O(h2), O(h3), O(h4), and O(h3) [24,27], respectively.
For the proposed method, the LDE is O(h4).
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All operations are from the same computer environment: Matlab 2018b, Inter(R)
Core(TM) i5-4210H CPU @ 2.90 GHz 2.90 GHz. The milling system parameters are derived
from the Ding [20]: The damping ratio ζ, model mass mt, and natural frequency wn are
0.011, 0.03993 kg, and 1844 Hz, respectively. The cutter has two flutes. The cutting force
coefficients are Ktc = 6 × 108 and Krc = 2 × 108.

The spindle speed n is selected as 5000 rpm, and the axial depths of cut ap is selected
as 0.1 mm, 0.2 mm, 0.5 mm, and 0.80 mm, respectively. The exact eigenvalues |µ0| corre-
sponding to different axial depths of cut are 0.7368, 0.8192, 1.0726, and 1.2880, respectively.
The LDE can be known as the absolute value of difference between the current eigenvalue
|µ| and exact eigenvalue |µ0|.

As shown in Figure 2, the LDE of the 0th SDM, 1st FDM, 2nd FDM, 3rd FDM, Hermite
FDM, and the proposed method are analyzed. From Figure 2, it can be clearly seen that the
proposed method has a faster convergence rate. It should be mentioned that the proposed
method is able to converge to a sufficient accuracy when the discrete number m is small.
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1st FDM, 2nd FDM, 3rd FDM, Hermite FDM, and the proposed method. (a) Axial depth of cut ap is
0.1 mm, exact eigenvalue |µ0| is 0.7368. (b) Axial depth of cut ap is 0.2 mm, exact eigenvalue |µ0| is
0.8192. (c) Axial depth of cut ap is 0.5 mm, exact eigenvalue |µ0| is 1.0726. (d) Axial depth of cut ap

is 0.8 mm, exact eigenvalue |µ0| is 1.2880.

4. Computational Accuracy Analysis

Under low and high immersion ratio conditions, the effectiveness of the proposed
method is verified in terms of both computational efficiency and accuracy of milling stability
prediction by comparing with other methods. The modal parameter selection is consistent
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with Section 3 of this paper. Equation (1) is the dynamic state-space model of the milling
system, where constant matrix A0 and time-periodic matrix A(t) can be express as:

A0 =

[
−ζwn 1/mt

mt(ζwn)
2 −mtwn

2 −ζwn

]
(55)

A(t) =
[

0 0
−aph(t) 0

]
(56)

h(t) =
N

∑
j=1

g(ϕj(t)) sin(ϕj(t))(Ktc cos(ϕj(t)) + Krc sin(ϕj(t))) (57)

ϕj(t) =
2πn
60

t + (j− 1)
2π

N
(58)

g(ϕj(t)) =
{

1 ϕst < ϕj(t) < ϕex
0 otherwise

(59)

where ϕj(t) is the angular position of the j-th cutter tooth, and ϕst and ϕex are the starting
and exiting edge positions of the tool in contact with the workpiece, respectively. For down-
milling, ϕst = arccos(2a/D− 1) and ϕex = π; for up-milling, ϕst = 0 and ϕex = arccos(1 − 2a/D),
where a/D is the radial immersion ratio.

For a/D = 1, all methods are calculated over a 200× 100-sized grid of parameters under
the condition of n = 5000–10,000 rpm and ap = 0–4 mm. For a/D = 0.1, all methods are calcu-
lated over a 200× 100-sized grid of parameters under the condition of n = 5000–12,000 rpm
and ap = 0–5 mm. The SLDs for a/D = 1 and a/D = 0.1 are shown in Figures 3 and 4. The red
curves in Figures 3 and 4 are the reference curves, calculated by the Hermite FDM at the
discrete number m = 100. It can be seen that the proposed method has a high accuracy both
at a low and high radial immersion ratio. In particular, the 0th SDM, 1st FDM, 2nd FDM,
3rd FDM, and Hermite FDM all have large errors with the reference curve when m = 20 at
the a/D = 1. However, the proposed method almost coincides with the reference curve. For
a/D = 0.1, the 1st FDM agrees best with the reference curve when m = 20, and the proposed
method agrees with the reference curve immediately as m increases.
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5. Computational Efficiency Analysis

To verify the computational efficiency of the proposed method, the time required for
the computation of the FDM in Section 4 for different discrete numbers m is discussed. The
time required for the calculation is shown in Figure 5. From Figure 5, it can be seen that
the proposed method has a faster computational efficiency compared to other methods.
When a/D = 1, the proposed method saves an average of 69.2%, 73.3%,75.4%, and 66.7% of
time compared to the 1st FDM, 2nd FDM, 3rd FDM, and Hermite FDM, respectively. When
a/D = 0.1, the proposed method saves an average of 53.3%, 58.8%, 63.8%, and 47.5% of time
compared to the 1st FDM, 2nd FDM, 3rd FDM, and Hermite FDM, respectively. It can be
seen that the proposed method has a higher computational linear efficiency when a/D = 1.
The main reason is that when a/D = 1, the contact time between the cutter and workpiece
is at a maximum, while the transfer matrix Equation (54) needs to be calculated multiple
times, and the proposed method saves the calculation time required for the stability region.
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6. Verification

To verify the effectiveness of the proposed method in the milling of the thin-walled
plate, some experiments are conducted in this section. The dimension of the plate used
in modal test and machining experiments is 80 × 40 × 3 mm, and all experiments were
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carried out on the three-axis milling center (VMC-850E), which is shown in Figure 6. The
material properties of the workpiece and the cutter parameters are given in Table 1.
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Table 1. The properties of the workpiece and the specifications of the cutter.

Cutter
Diameter (mm) Number of Flutes Helix Angle (◦) Length (mm)

12 2 30 75

Workpiece
Density (g/cm3) Possion’s Ration Young’s Modulus (GPa) Material

4.6 0.34 108 Ti-6Al-4V

6.1. Cutting Force Coefficients Calibration

For cutting force coefficients calibrated, as is known to all, when full-immersion milling
(slot milling) is used, the average milling forces are expressed as:{

Fx = −Na
4 Krc f − Na

π Kre
Fy = Na

4 Ktc f + Na
π Kte

. (60)

Then, for slot milling, five groups of full-immersion milling experiments were carried
out. The machining parameters are the spindle speed 1000 rpm, axial depth of cut at 0.5 mm,
and feed rate at 40 mm/min, 80 mm/min, 120 mm/min, 160 mm/min, and 200 mm/min.

Therefore, the average milling forces at each feed rate are measured by Kistler9257B,
and the cutting-edge components are estimated by a linear regression of the accumulated
data. Next, based on the literature [28], the cutting force coefficients are evaluated as
Ktc = 1120.8 N/mm2, Krc = 2285.6 N/mm2, Kte = 9.16 N/mm, and Kre = 13.21 N/mm.

6.2. Modal Parameters Identification

An impact experiment is conducted for obtaining the modal parameters of the thin-
walled workpiece. The modal parameters of the milling system are obtained by an acqui-
sition instrument DH5981, acceleration sensors (Ref. sensitivity 10.25 mV/g), and modal
hammer (500 N).

In tests, for a different measured position on the workpiece, the dynamic response is
different. Therefore, considering the clamping constraints, the impact measured points 1,
2, and 3 distributed on the thin-walled plate are shown in Figure 7a. Point 1 and point 3 are
symmetric with respect to point 2, and point 2 locates the middle of the thin-walled plate
edge. Next, all the vibration responses on the different measured points are obtained, and
according to the experimental results, we found that the vibration response at point 1 is
the same as that at point 3. In addition, considering the unstable state in the cut-in and
cut-out region, the representative point 2 are chosen for measuring responses, as shown
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in Figure 7b,c, and the experimental setup is shown in Figure 6. Therefore, the modal
parameters in point 2 are identified and listed in Table 2.
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Table 2. Modal parameters of the cutter and workpiece.

System Natural Frequencyω
(Hz) Damping Ratio ζ Stiffness k (N·m−1)

Workpiece (Mode no.1) 575 0.007 1.19 × 106

Workpiece (Mode no.2) 1820 0.012 1.31 × 107

Cutter in X direction 2126 0.036 1.45 × 108

Cutter in Y direction 2134 0.033 1.47 × 108

6.3. Machining Tests

In this section, in order to validate the accuracy of the proposed approach for quickly
and accurately predicting the stability of the milling system, the four degree of freedom
in the X and Y direction for the milling cutter and workpiece in the X and Y direction for
thin-walled section are considered. According to the proposed method, the stability lobe
diagram with the discrete number m = 40 at the a/D = 0.1 is calculated, and the milling
parameters are determined based on the stability lobe diagram as shown in Figure 8. The
milling parameters in points A(n = 1500 rpm, ap = 0.2 mm) and C(n = 2500 rpm, ap = 0.4 mm)
are stable parameters, while the points B(n = 1500 rpm, ap = 0.6 mm) and D(n = 3000 rpm,
ap = 0.4 mm) are located in the unstable cutting region. All the dynamic responses in
different points are measured and investigated, and only the dynamic response and its
spectrum in points A, B, C, and D are shown in Figure 9. From Figure 9a,c, it can be seen
that there is only the tool tooth passing frequency (i.e., 200 Hz, 400 Hz, 600 Hz, 650 Hz,
666 Hz, 833 Hz, 875 Hz, and 917 Hz.). From Figure 9b,d, it can be seen that the chatter
frequency (i.e., 520 Hz, 580 Hz, 620 Hz, 660 Hz, 690 Hz, 790 Hz, 860 Hz, and 910 Hz.) occurs
besides at the tool tooth passing frequency (i.e., 100 Hz, 200 Hz, 300 Hz, 400 Hz, 500 Hz,
600 Hz).
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In addition, in order to more clearly investigate the milling chatter, the morphologies
of the machined surface at different points are shown in Figure 10. From Figure 10, we can
see that the machining chatter occurs at observation points B and D, which can be observed
from the rough surface quality and obvious vibration.
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7. Conclusions

(1) A novel updated FDM is proposed to predict the milling SLD. The cubic-spline
interpolation and the Newton interpolation are introduced to approximate the state item
and time-delay item, respectively. A discrete map is established between the current state
matrix and the previous state matrix, and the SLD is obtained based on the eigenvalue
modulus judgement criterion of the transition matrix.

(2) An iterative algorithm is proposed to obviously improve computational efficiency.
The calculation of the transition matrix eigenvalues in the chattering region is eliminated.
The simulation results of a benchmark example with two different radial immersion ratios
show that the algorithm has a faster computational efficiency than other methods, especially
when the radial immersion ratio is large.

(3) The proposed method has obvious advantages in terms of computational accuracy
and convergence speed than other methods. In terms of calculation accuracy, it already
coincides with the reference curve when the discrete number m is small whether the radial
immersion ratio is large or small. In addition, it has a faster convergence speed both in the
stable or unstable region, and this part will be further studied in the future.

(4) A series of milling experiments under different spindle speeds are designed to
verify the accuracy of the proposed method. The experimental results show that the
proposed method is in good agreement with the experimental value.
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