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Abstract: Information on body posture, postural change, and dynamic and static work is essential in
understanding biomechanical exposure and has many applications in ergonomics and healthcare.
This study aimed at evaluating the possibility of using triaxial acceleration data to classify postures
and to differentiate between dynamic and static work of the back in an experimental setup, based on
a machine learning (ML) approach. A movement protocol was designed to cover the essential degrees
of freedom of the back, and a subject wearing a triaxial accelerometer implemented this protocol.
Impulses and oscillations from the signals were removed by median filtering, then the filtered dataset
was fed into two ML algorithms, namely a multilayer perceptron with back propagation (MLPBNN)
and a random forest (RF), with the aim of inferring the most suitable algorithm and architecture for
detecting dynamic and static work, as well as for correctly classifying the postures of the back. Then,
training and testing subsets were delimitated and used to evaluate the learning and generalization
ability of the ML algorithms for the same classification problems. The results indicate that ML has
a lot of potential in differentiating between dynamic and static work, depending on the type of
algorithm and its architecture, and the data quantity and quality. In particular, MLPBNN can be used
to better differentiate between dynamic and static work when tuned properly. In addition, static
work and the associated postures were better learned and generalized by the MLPBNN, a fact that
could provide the basis for cheap real-world offline applications with the aim of getting time-scaled
postural profiling data by accounting for the static postures. Although it wasn’t the case in this study,
on bigger datasets, the use of MLPBPNN may come at the expense of high computational costs in the
training phase. The study also discusses the factors that may improve the classification performance
in the testing phase and sets new directions of research.

Keywords: Industry 4.0; artificial intelligence; machine learning; job-related disorders; back; posture;
dynamic; static; classification; performance

1. Introduction

Evaluating working postures [1] and particularly their dynamics in space and time [2]
is essential in many disciplines, including for understanding the relation between human
physical workload and the risks of developing work-related musculoskeletal disorders. An
important body of knowledge has been devoted to evaluating the types of postures people
assume during their work, mainly because some of them can lead to pain in various parts of
the body [3]. While there is a high chance for a given individual to develop a work-related
musculoskeletal disorder during his (her) life, poor body postures during work may often
be constrained by the nature of the work itself, such as the characteristics of the tasks or
poor ergonomic design of jobs and workstations [3]. In addition, other constraints may exist
due to the interaction between the worker, the work object, and the environment as specific
to some jobs [4]. Accordingly, the assessment of body postures has become increasingly
important to the fields of ergonomics and human health, mainly because its results are
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helpful in the design and improvement of jobs and workplaces [3], but also because such
results can be linked to those of epidemiological studies [5–11] with the aim of balancing
biomechanical exposure and improving the general work environment. Understanding the
effects of variability and diversity in biomechanical exposure is equally important to bring
evidence on the best postural profiles for given jobs [2]. Such an attempt would probably
need to integrate the results of epidemiological studies, and there is reason to think that it
would require some means for handling accurately labeled long-term data.

Several methods have been developed, tested, and validated to evaluate the postural
conditions of given jobs [12], and statistical improvements were added to some of them so
as to enable comparability of their outputs in terms of postural diversity [13]. Although
useful and widely used, many of them still share an important limitation, namely that of
using samples that are often limited in size, mainly due to the effort required to collect,
analyze, and interpret the data. On the other hand, small sample sizes often affect the
precision of results, irrespective of the strategy used in data sampling [14,15].

The development in new sensing modalities and machine learning has enabled a
diversification of the methods used in postural assessment. Computer vision has become
one of the methods used for long-term data collection and to run analytics based on video
footage and imagery, although the examined activities and postures have frequently been
characterized by low complexity. Examples of studies and reviews on using computer
vision for ergonomic-postural assessment include, for instance, those of [16–19]. Only
a few of them actually addressed the whole body, or complex tasks, while the use of
machine learning techniques for classification has often led to rather low classification
accuracies. Chan et al., 2020, for instance, have found classification accuracies of 80 to
90% when extracting and using the key joints of the human body and data augmentation.
Fernandez et al. [19] have checked the agreement of RULA (Rapid Upper Limb Assessment)
scores provided by a computer vision and machine learning approach with expert-produced
ones. Although they found a good agreement for some tasks, as measured by the Cohen’s
k, in general this metric was around 0.6.

With the development of direct measurement methods, including those based on the
use of accelerometers, new opportunities have emerged for collecting, processing, and
analyzing data in the long term [20] under the umbrella of human activity recognition [21].
A variety of sensor systems have been tested for such purposes, including those used to gain
knowledge on body posture and biomechanics [22]. In addition to using them to recognize
and classify regular human tasks, several other useful applications were approached,
including some deployed in particularly complex work environments characterized by
human–tool interactions [23,24]. Acceleration signals, in particular, have been found to
be very useful in mapping the intensity of human activity events in the time domain
(e.g., [25]). Although the problems related to intra- and interclass variability and similarity
still persist [21], such signals have the ability of creating patterns in magnitude that are
useful in delimitating and statistically learning specific events, particularly when the data
has been collected multi-modally. For instance, the work of [26] has shown the utility
of multi-modally collected acceleration data in developing a system for correctly lifting
weights, while the work of [27] describes a wide spectrum of techniques that were used to
make accelerometer data suitable for human activity recognition.

Similar to the computer vision approach to the problem, the performance of clas-
sification seems to be affected by the complexity of tasks and by the complexity of the
classification experiment. Hu et al. [28] have used an electromagnetic motion-tracking
system and a neural-network-based deep learning approach to recognize the prevalence of
lower back pain. In their experiment, only static standing tasks were considered, reaching
97.2% in classification precision and recall. For a three-class problem and based on signals
collected by accelerometers and gyroscopes integrated in smartphones, Nath et al. [29]
have reached a classification accuracy of 90.2%, based on an implementation of a support
vector machine (SVM) machine learning algorithm. Lifting tasks were also examined by
means of inertial measurement units placed on various parts of the body and machine
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learning, yielding an accuracy of 99.4% for a two-class problem [30]. However, the clas-
sification accuracy was diluted significantly (76.9%) as the complexity of classification
increased. All of these demonstrate the difficulty in correctly classifying complex body
postures, which formed a centerpiece of evaluation in most studies and which may increase
mainly as an effect of diversity in activities or tasks. On the other hand, the sequence of
body postures in a given activity or task may be quite complex, a fact that may add to
the dilution in the classification performance. With regard to the detection of static and
dynamic work, based on acceleration data, Hosseinian et al. [31] have reached classification
accuracies of 93–98.2% and 95.5% with random forest and support vector machine algo-
rithms, respectively. However, their work was focused mainly on activities and not on
body postures.

The possibility of using acceleration signals to classify the main postures of the back,
while differentiating between static and dynamic work by statistical learning, would bring
many benefits to the science and practice of several fields. On the one hand, such a system
could be deployed to evaluate the postures assumed by given subjects in the time domain,
which would be useful in collecting and analyzing long-term postural data to support
ergonomic interventions and healthcare. Meanwhile, if such a system could separate
the dynamic from static work in the time domain, it would be useful in profiling the
variability and diversity of postural change as specific to given jobs. We acknowledge
here the previous work done to test the effectiveness of activity recognition by machine
learning techniques applied to acceleration signals. Such work has focused, for instance, on
recognizing dynamic and static regular tasks [32] or on activity recognition in supervised
and unsupervised trials [33]. The suitability of using acceleration signals and machine
learning techniques to correctly detect postures in complex sequences of movements or
activities while accounting for the type of work has been less studied, making the latest
approach to activity recognition less suitable to postural analysis since many of the tasks
are built upon a sequence of changing postures. In addition, the same work tasks may be
developed at different paces by the same or different individuals (e.g., [25]), which may
result in a high variability of body postures and dynamic and static work. The upper part of
the body, and in particular the back, has been documented to be of a serious concern in terms
of the association between working postures and musculoskeletal disorders (e.g., [34–38]).
Accordingly, this would require a closer eye on the variability in working postures and
dynamic and static work of the back, which means that high amounts of data would be
needed to extract causal information to explain various kinds of disorders. As the collection
of this data has been enabled by the availability of low-cost sensors (e.g., [23–25]), the only
problems that still need to be overcome in extracting useful information from the data are
those related to labelling and finding reliable algorithms to learn and generalize from them.

The goal of this study was to test whether it is possible to differentiate between static
and dynamic work while correctly identifying the postures of the back assumed by a
subject, by a machine learning approach to the data collected by a triaxial accelerometer in
a controlled setup. Accordingly, the objectives of this study were: (i) to identify and apply
a suitable denoising procedure to the accelerometer data; (ii) to identify the most suitable
machine learning algorithms to classify the data on back posture and dynamic and static
work from a set of two choices, namely neural networks and random forests; and (iii) to
use the most high-performing machine learning algorithms to learn and generalize on the
data of postural, dynamic, and static work of the back.

2. Materials and Methods
2.1. Experimental Design and Data Collection

An experimental protocol was developed in this study, with the main aim of collecting
data for the static and dynamic work, by taking into consideration the main postures that
one may assume for the back. A voluntary healthy subject (25 years old, 68 kg in weight,
and 179 cm in height) agreed to mimic the back movements as described by the protocol
(Table A1), based on informed consent and free will to participate in the study. The subject
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was instructed to make his movements at full extent and at low speed with the main aim
of facilitating data labelling. Each type of movement was preceded by maintaining an
orthostatic posture (Figure 1a) for a certain amount of time (Table A1), followed by bending
the back (to the left and right side of the body at full extent, Figure 1b,c), maintaining
the bent posture of the back for a given amount of time (Table A1), and returning to
orthostatic posture, which was also maintained for a given amount of time (Table A1).
Similar procedures were followed by the subject to bend his back forward, bend his knees
(back straight), and to bend and twist his back forward to the right and left, respectively
(Figure 1d–g), resulting in six subprotocols of movement. By excluding the orthostatic
posture, a given movement and posture maintained was repeated ten times in a continuous
sequence for each movement type, resulting in a total of 60 repetitions (10 repetitions for
each subprotocol).
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ment subprotocol and between the repetitions of a given subprotocol; (b) back bent to the left of the 
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A painted rod was used to point the vertical, to align the subject to the orthostatic 
posture and to guide a researcher that observed the movements done by the subject (Fig-
ure 1). Two paper boxes were used to help the subject self-guide in his movements of 
bending and twisting the back forward and sideways (Figure 1f,g). The boxes were placed 

Figure 1. Description of the main postures of the back reached and maintained by the subject
during the implementation of the movement protocol: (a) orthostatic posture maintained before
each movement subprotocol and between the repetitions of a given subprotocol; (b) back bent to
the left of the subject; (c) back bent to the right of the subject; (d) back bent forward; (e) knees bent,
back straight; (f) back bent forward and twisted to the left; (g) back bent forward and twisted to the
right; (h) placement of the datalogger, and the datalogger used to collect acceleration data, including
axis orientation.

A painted rod was used to point the vertical, to align the subject to the orthostatic
posture and to guide a researcher that observed the movements done by the subject
(Figure 1). Two paper boxes were used to help the subject self-guide in his movements
of bending and twisting the back forward and sideways (Figure 1f,g). The boxes were
placed on the floor at angles of ca. 45◦ from the plane of the room wall, which was taken as
reference for the experiment. During the implementation of the movement protocol, the
subject was guided by the researcher regarding the beginning and end of each movement,
as well as on the time needed to maintain a given posture, which was done with the help
of the time counter of the video camera used to record the experiment. The camera used
was a GoPro Hero 10, which was placed on a table at ca. 3 m from the subject and set to
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continuously record all the events of the experiment in a narrow field of view, at 60 frames
per second and at a resolution of 1080 pixels.

Acceleration data was collected by an Extech® VB300 (Extech Instruments, FLIR
Commercial Systems Inc., Nashua, USA v2017, Figure 1h) triaxial acceleration datalogger,
which was placed on the back of the subject in between the scapulae, close to the junction
of the thoracic and cervical vertebrae. The datalogger was attached to the subject’s shirt by
adhesive tape, and it was placed so that the y-axis was oriented towards the vertical plane,
from the bottom to the top of the room; the x-axis was on the horizontal, in the right-to-left
plane, parallel to the room’s wall; and the z-axis was on the horizontal, in the front-to-back
plane, which was perpendicular to the room’s wall. Before placing it on the subject, the
datalogger was set up with dedicated software to continuously collect data at a rate of
20 Hz, in normal record mode and by manual start. Once the video camera was started, the
datalogger was placed on the subject, it was started, and the experiment was implemented
according to the described protocol.

2.2. Data Processing

Following the experiment, the video footage and data collected by the accelerometer
were downloaded and stored in a personal computer. Video footage was available in the
MP4 format, while the accelerometer data was exported in a tabulated form supported by
the Microsoft Excel® (Office 2021 Professional, Microsoft, Redmond, WA, USA) .xls format,
along with an ID and a time label.

In total, 34,639 observations were retained for processing from the data collected
during the experiment, in the form of the magnitude of responses of the x, y, and z axes
(Figure 2), including the Euclidian norm and a date and time label for each observation
sampled at 20 Hz. Video data, as well as the magnitude of acceleration and changes in
it, were used as a reference to label each observation according to the real events that
occurred during the experiment, and codes were given to each of the observations recorded
as triaxial acceleration responses. For this purpose, a coding procedure was developed
(Table 1) to account for the posture of the back and legs and the presence or absence of
movement (dynamic vs. static work). The tasks described in Figure 1 and Tables 1 and A1
were chosen with the aim of covering the most common degrees of freedom characterizing
the potential movements of the back, therefore on generalization criteria. The concept
used to differentiate between dynamic and static work was as follows: each instance in
which any kind of intended movement was done according to the described protocols was
classified as dynamic work, while keeping a given posture, including the orthostatic one,
was classified as static work.

For example, if a given observation was found to belong to the subject’s movement to
bend his back to the left, then the attributed code was BblLsPt (B—back, bl—bent to the
left, L—legs, s—straight, P—presence of movement, t—true); orthostatic postures were
characterized by the code BsLsPf. Prior to labelling, based on the media files and the
patterns in the magnitude of acceleration data, the periods of placing and taking down the
accelerometer from the subject were removed, and only the data covering the protocols
were retained.

2.3. Noise Removal

Providing an enhanced capability for a machine learning algorithm to accurately clas-
sify based on an acceleration input signal may require processing procedures to minimize
intra-class variability and inter-class similarity. Acceleration signals integrate gravitational,
movement, and noise components (e.g., [39,40]). In static conditions, the vector magnitude
(Euclidian norm) of triaxial acceleration is, ideally, close to 1 [41]. However, movement
adds to the responses in magnitude [40] on the relevant axes, while temperature may offset
the readings, depending on the study location [41]. Among the techniques used to remove
the noise from the acceleration signals, median filtering has been proven to be very useful,
mainly because it helps preserve the location of inter-class edges in the time domain. A
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basic description of the median filter and its properties in altering the geometry of a signal
is given, for instance, in [42]; accordingly, median filters hold the capability of removing
impulse noise and reducing oscillations at the first pass of the signal through the filter. The
extent to which noise can be removed depends largely on the quality and characteristics of
the signal, as well as on the size (sliding window) of the median filter. This study used an
iterative, trial-and-error procedure, by applying median filters of various odd sizes over the
triaxial data, starting from a window size of 3. Following each iteration, the filtered data
were plotted and visually compared against the original data collected on the three axes.
The lowest widow size at which the filter succeeded in removing impulses and oscillations
was kept as final, and the resulting data were prepared for testing the performance of
machine learning algorithms.
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Figure 2. An example of the raw data collected by the triaxial accelerometer for the subprotocol
A1, involving back bending to the left of the subject: the x, y, and z axes in the legend stand for the
responses (g) on x, y, and z axes, respectively; right end part of the figure (from 7050 to 7500 50-ms
increments) shows in the responses on the three axes during part of the time in which the ortho-
static posture was maintained; relatively static responses in the figure indicate the time in which
a given posture was maintained; increments and decrements in magnitude indicate the time in
which movements were done to change a given posture. Note: the signal contained impulse noise
and oscillations.

2.4. Selection of Machine Learning Algorithms

Two machine learning algorithms were tested to check the learning performance
over the filtered datasets, namely a neural network and a random forest. Both ma-
chine learning algorithms were tested in Orange Visual Programming software [43],
version 3.31.1, which enables the use of several machine learning classifiers under a
widget-based, visual architecture.

A multi-layer perceptron with backpropagation neural network (MLPBNN) algorithm
was used as a first learning option. Following the results and recommendations found in
relevant literature [44,45], the number of hidden layers and of neurons per hidden layer
were set at the maximum enabled by the used software (3 and 100, respectively), in an
architecture of fully connected layers. In addition to the width and depth, MLPBNN
algorithms require tuning for several parameters, such as the activation function, solver,
regularization parameter (α, L2 penalty norm), and number of iterations. The software also
provides functionalities to train and test the algorithm by cross-validation. Based on previ-
ous experience with the acceleration data collected by the same type of datalogger [24,46],
as well as on findings related to the performance of activation functions such as the rectified
linear unit (ReLU) and solvers such as the stochastic gradient-descent-based optimizer
(ADAM) [44,45,47–49], these two hyperparameters were kept the same during the tests.
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Number of cross-validation folds was set at 5, and the maximum number of iterations
at 1,000,000. The regularization term (α) was set successively at 0.0001, 0.001, 0.01, 0.1,
1, 10, and 100. The actual tests were done over all the filtered data (34,639 observations
collected at 20 Hz) by an axis-based fusion [50], which involved feeding the filtered signals
of each axis as input features to the MLPBNN. The number of tests carried out was 14.
This accounted for seven values set successively for the regularization term, and for the
two problems pursued by the study, namely: i) to evaluate the performance of classifying
the dynamic and static work (2 classes); and ii) to evaluate the performance of classifying
the posture of the back (13 classes), which accounted also for the presence or absence
of movement.

Table 1. Description of the coding protocol used in this study.

Feature Code Description and Comments

back B

straight s Includes observations for which the orthostatic posture was maintained,
as well as those for which the knees were bent

bent to the left bl -
bent to the right br -

bent forward bf -
bent forward and twisted to the left btl -

bent forward and twisted to the
right btr -

legs L -

straight s Includes observations for which the orthostatic posture was maintained,
as well as those of bending or bending and twisting the back

knees bent b Includes observations in which the knees were bent according to the
protocol used

presence of movement P

true t Includes observations in which movements were done according to the
protocol (dynamic work)

false f Includes observations in which postures were maintained according to
the protocol (static work)

Random forest (RF) is an ensemble learning algorithm that was first proposed by
Ho [51] as an effective algorithm for problems involving high dimensionality of data. It
was then further developed by Breiman [52] and is currently used for classification and
regression problems. Random forests build on a combination of tree predictors in such a
way that each tree depends on the values of a random vector sampled independently, and
the generalization error converges when the number of trees is very large [52]. More specifi-
cally, RF builds a set of decision trees, where each tree is developed from a bootstrap sample
collected from the training data; for each tree, a subset of attributes is drawn to evaluate
which one is the best for decision making, and the final models builds on a majority voting
coming from the trees. RF has the advantage of using fewer hyperparameters, working well
on highly dimensional data, and training quickly. In Orange Visual Programming software,
two categories of parameters can be tuned, namely the basic properties, among which the
number of trees and attributes used at each split are important, as well as the tree growth
parameters. The same number of tests was carried out using RF, where the number of
attributes used at each split was kept at the default setting provided by the software, while
the smallest subset for splitting was set at 5. Number of cross-validation folds was kept the
same, as in the case of the MLPBNN algorithm. The only tuned parameter was the number
of trees, which was set successively at values of 10, 50, 100, 500, 1000, 5000, and 10,000.

Selection of the best performing ML algorithms was based on the performance metrics
described in Section 2.6. From each class of ML algorithms (MLPBNN, RF), the best
performing ML architectures were selected based on the highest classification accuracy and
recall and on the lowest cross-entropy, respectively. The final best performing architectures
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were compared against each other based on the same performance metrics and the best-
performing ones were kept as final for training and testing purposes.

2.5. Training and Testing

For training and testing purposes, the data was split into two subsets, of which
the training one was designed to include the data of the first seven movements of each
subprotocol (Table A1), including half of the data characterizing the time spent in orthostatic
posture between each subprotocol. The rest of the data, including the last segment of the
orthostatic posture following all the subprotocols, were attributed to the testing subset.
Figure 3 shows the concept used to divide the data into training and testing subsets.
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Figure 3. Data partitioning into training (green strips at the bottom of the figure) and testing (red
strips at the bottom of the figure) data subsets. Legend: Xfiltered, Yfiltered, and Zfiltered are the
values of the signals on the three axes after applying a median filter with a window size of 41; type of
work is an arbitrary signal taking a value of 1 when dynamic work (movement) was present and −1
when static work (no movement) was present.

Following the extraction from the filtered dataset, data corresponding to each subset
were merged into a specific file, resulting in two files, one of which was used for training
and the other for testing purposes. Training and testing phases were done in Orange
Visual Programming software by using the widgets and following the steps described in
Section 2.6. Original data, filtered data used to select the best-performing algorithms, and
data divided into training and testing subsets were stored in Microsoft Excel® spreadsheets.
Details on data processing, filtering, summarization, and artwork development in Microsoft
Excel® are given in Section 2.6.

2.6. Performance Metrics Used in Evaluation, Software Used, and Computer Architecture

There are many metrics that could be used to evaluate the performance of classification.
A detailed description of those relevant in classification applications by machine learning
can be found, for instance, in [53,54]. In this study, the classification accuracy (hereafter
CA), recall (hereafter REC), and cross-entropy (hereafter LOGLOSS) were used as metrics to
(i) choose the best models for training and testing and (ii) evaluate the classification perfor-
mance in the training and testing phases. Classification accuracy stands for the ratio of true
positive and true negative instances that have been correctly classified to the total number
of instances (true positive, true negative, false positive, and false negative) [54], recall is the
ratio of true positives classified as such to the true positives and false negatives [53,54], and
cross-entropy (LOGLOSS) is the negative log-likelihood of a logistic model that returns the
probability of an instance being correctly classified [55].
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All the steps used to process the data were done on a personal computer equipped
with the following software and hardware: system type—Alienware 17 R3 (Dell Inc., Round
Rock, TX, USA); processor—Intel® Core™ i7-6700HQ CPU, 2.60GHz, 2592 MHz, 4 cores,
8 logical processors; installed physical memory (RAM)—16 GB; operating system—Microsoft
Windows 10 Home. Data exported from the dedicated software of the triaxial accelerometer
were stored in a Microsoft Excel® spreadsheet. The same software was used to label the
data, to apply and evaluate the effects of median filters of different sizes, to store and
analyze the performance metrics produced by Orange Visual Programming software [43],
and to build most of the graphics used in this study. Orange Visual Programming software
was used in all the steps that required work with ML algorithms. To support the step
of selecting the best ML algorithms, the required processing workflows were built by
interconnecting the Data, Neural Network, Random Forest, and Test & Score widgets. The
same approach was taken to train the data for the architectures of the best ML models,
supplemented by the Save Model widget to store the trained models. The testing phase
involved the application of the saved models to the testing data subset using the Data,
Load Model, and Predictions widgets, in conjunction with the Confusion Matrix widget,
and data were exported to Microsoft Excel®, where more detailed analyses were done to
identify and explain misclassifications.

3. Results
3.1. Characterization of the Input Dataset and Signal Filtering

The input dataset contained 34,639 observations, of which 16,224 (ca. 46.8%) charac-
terized dynamic work, and the rest (18,415, ca. 53.2%) static work. The slight imbalance
between these two classes was due to those instances characterizing the time spent in
orthostatic posture between the subprotocols (as described in Table A1) and at the end of
the experiment, as shown, for instance in Figure 3.

Several window sizes of the median filter were tested over the original signals collected
on the three axes by the accelerometer. Using a sliding window size of 41 for median
filtering seemed to be the best strategy to remove the impulse noise on all the three axes, as
shown in Figure 4, which compares the original values recorded on the three axes to their
filtered counterparts. From the experience of applying several sizes of median filters on the
original signals, it was observed that for static postures, median filters of smaller window
sizes have successfully removed most of the impulse noise. However, for dynamic parts of
the signal, lower window sizes failed to remove the oscillations caused by the movements
done by the subject; by using a filter size of 41, these oscillations were removed from those
signal parts characterizing the dynamic work, as shown in Figure 4 (black box on the right
side). By removing the impulse noise and oscillations, which characterize largely intra-class
variability, the used window size of the median filter was successful in providing an altered
signal so as to enhance inter-class separability.

3.2. Selection of the Machine Learning Algorithms

Figure 5 summarizes the main results regarding the variation of the selected classifica-
tion performance metrics (CA—classification accuracy; REC—recall; and LOGLOSS—cross-
entropy) as a function of values selected for hyperparameter tuning. Figure 5a–c shows
the results of classification accuracy, recall, and cross-entropy for the MLPBNN model
trained to check the classification performance of separating the data into two classes,
namely dynamic and static work of the back. For fine-tuned regularization parameters
(α = 0.0001 and 0.001, respectively), the achieved classification accuracy (CA, standing for
correctly classified instances) was high, accounting for ca. 89%. For the same conditions,
the recall (REC) reached similar values, and the training error (LOGLOSS) accounted for
26.7% and 26.3%, respectively. Accordingly, as a first observation, the best outcomes in
terms of classification performance of the MLPBNN machine learning algorithm when
trying to differentiate between dynamic and static work of the back were achieved for a
regularization term α set at 0.001 (CA = 88.85; REC = 88.85; LOGLOSS = 26.35).
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Figure 4. Effect of axial signal filtering by a median filter with a window size of 41. Legend: Xoriginal,
Yoriginal, and Zoriginal are the original values collected by the accelerometer on the x, y, and z axes,
respectively; Xfiltered, Yfiltered, and Zfiltered are the values of the signals on the three axes after
applying a median filter with a window size of 41; type of work is an arbitrary signal taking a value
of 1 when dynamic work (movement) was present and −1 when static work (no movement) was
present. Note: the time domain from 0 to ca. 5100 (50 ms increments) corresponds to the subprotocol
A1 (Table A1), and the time domain from ca. 5100 to 5500 (50 ms increments) (right part of the figure)
corresponds to keeping an orthostatic posture before starting subprotocol A2; details given in black
box indicate the utility of the used median filter in removing both impulse noise and oscillations
during dynamic work.

In Figure 5d–f, the classification performance results are shown for the MLPBNN
model trained to differentiate between the 13 classes characterizing the postures of the
back, by accounting for the type of work (dynamic or static). Although the results of the
classification accuracy (CA, ca. 85%) and recall (REC, ca. 85%) were promising for α set
at 0.0001 and 0.001, respectively, the values of cross-entropy (LOGLOSS) increased signifi-
cantly, being almost doubled in comparison to those of the model trained to differentiate
between the dynamic and static work of the back. Beyond α set at 0.001, both CA and
REC presented lower values, and LOGLOSS increased substantially. Up to α = 1, the area
under the receiver operating characteristics (ROC) curve (AUC, data not explicitly given
herein) kept a relatively constant trend in values (AUC > 0.9) for both MLPBNN models,
indicating that the classifier used was performing rather well for these settings of the
regularization term. Beyond this value, the AUC values decreased accordingly, indicating a
lower performance of the MLPBNN models. Training the first set of seven models (dynamic
vs. static work, data not explicitly given herein) took around 5 h, while training the second
set of seven models (13 back posture classes, data not explicitly given herein) took close
to 6.5 h by the computer architecture described in Section 2.6. However, for both models,
there were no trends in time spent as a function of the value of the regularization term.

The maximum classification accuracy (CA) for the two-class (dynamic vs. static work)
RF model was achieved with 500 trees and preserved its value irrespective of further increases
in the number of trees in the model (Figure 5g). In fact, in this case, CA was higher by almost
4% compared to its best counterpart from the MLPBNN model. Recall values (REC, Figure 5h)
followed a similar trend as a function of the number of trees used to train the model, with
the maximum value (92.6%) reached at 500 trees and preserved beyond this point. For the
same RF model (Figure 5g–i), the cross-entropy (LOGLOSS) had the highest value when the
number of trees was set at 10, and it decreased significantly to 24.8% when the number of
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trees was set at 10,000. Accordingly, the minimum LOGLOSS of the RF model was 1.5% less
compared to its minimum counterpart from the MLPBPNN model.
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Figure 5. Variation in classification accuracy (CA), recall (REC), and cross-entropy (LOGLOSS) by
parameter tuning: (a–c) results of the two-class problem of evaluating the classification performance
over dynamic and static work by the MLPBNN as a function of the regularization term; (d–f) results of
the 13-class problem of evaluating the classification performance over back postures by the MLPBNN
as a function of the regularization term; (g–i) results of the two-class problem of evaluating the
classification performance over dynamic and static work by the RF as a function of the number of
trees; (j–l) results of the 13-class problem of evaluating the classification performance over back
postures by the RF as a function of the number of trees.
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For the 13-class problem (Figure 5j–l), the RF was consistent in providing a better clas-
sification performance (CA, REC, LOGLOSS) compared to the MLPBNN model developed
for the same problem. Values of CA and REC were found to reach their maximum when the
number of trees was set at 500 (87.8%); maximum values were preserved beyond this point,
and the minimum LOGLOSS value was found when the number of trees was set at 10,000.
Nevertheless, the value of LOGLOSS was still high, and it most likely indicated a higher
classification error. The area under the ROC curve (AUC, data not explicitly given herein)
was more consistent in values in the case of the RF models, irrespective of the number of
trees. It took the minimum values when the number of trees was set at 10, a condition for
which it accounted for 0.968 in the case of the two-class problem and for 0.979 in the case of
the 13-class problem. Training time (data not explicitly given herein) varied proportionally
with the number of trees used in the model, accounting for ca. 4 h for the first seven models
and for ca. 3.5 h for the last seven models.

Since the MLPBNN models with the regularization parameter set at 0.001 and 0.0001
provided the best results for the 2- and 13-class classification problems, these models
were selected for training and testing purposes from the MLPBNN class. Based on the
results shown in Figure 5, the RF model class consistently provided a better classification
performance irrespective of the classification problem. From this class of models, an RF
machine learning algorithm with the number of trees set at 10,000 was further selected for
the training and testing phases for both classification problems.

3.3. Classification Performance in the Training and Testing Phases

Table 2 gives an overview on the data included in the training and testing subsets,
with a focus on the classes of dynamic and static work of the back. The filtered triaxial set
contained 34,639 instances, of which, following the procedures described in Section 2.5, ca.
68% (23,625 instances) were used for training the machine learning models. The rest of the
data (11,014 instances, ca. 32%) were used for testing purposes.

Table 2. Description of the data subsets used for training and testing.

Dataset Work Type Number of
Observations Share in Subset Share in Data

Training Dynamic 11,609 49.14 33.50
Static 12,016 50.86 34.70
Total 23,625 100.00 68.20

Testing Dynamic 4,615 41.90 13.30
Static 6,399 58.10 18.50
Total 11,014 100.00 31.80

The instances characterizing the dynamic and static work of the back were relatively
well balanced in both subsets (Table 2), accounting for ca. 49% and 51% (training subset),
and for ca. 42% and 58% (testing subset), respectively. The higher share of instances
characterizing the static work of the back in the testing subset was due to the inclusion
of the last part of the filtered dataset, which characterized the orthostatic posture at the
end of the experiment (Figure 3). Altogether, there was a relative balance between the
instances characterizing the dynamic (ca. 47%) and static (ca. 53%) work of the back in the
initial dataset.

Figure 6 shows the results on the classification performance of the dynamic and
static work of the back in the training and testing phases by the best performing model
architectures of MLPBNN and RF as identified in Section 3.2. By a MLPBNN with α set at
0.001, the overall classification accuracy (CA, 88.7%) and recall (REC, 88.7) in the training
phase were close in value to those from the pre-evaluation phase. At the class level, the
REC metric returned a significantly higher value (94.5%) in the case of the static work.
Cross-entropy error (LOGLOSS) was estimated at the same value irrespective of the class.
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Figure 6. Classification performance in the training and testing phases to differentiate dynamic from
static work: (a) by a MLPBNN machine learning algorithm with α set at 0.001; (b) by a RF machine
learning algorithm with number of trees set at 10,000.

In the testing data subset, however, the classification performance decreased consid-
erably, with CA and REC accounting for 78.3%, representing a dilution in classification
performance of ca. 10%. Therefore, for the MLPBNN, this means that the algorithm per-
formed better in the learning phase, but its ability to generalize was lower. Still, close to
80% of the data were correctly classified in the testing phase, which is a promising result
given the complexity of the input signal. Similar trends in the classification performance
were found for the RF model (Figure 6b), which, on the one hand, performed even better in
the training phase, where it accounted for values of CA and REC of 93.2%. Taken on classes,
the values of CA for the dynamic and static work were the same (93.2%), and similarly to
the MLPBNN model, the REC metric of the static class was higher (96.1%). Cross-entropy
error (LOGLOSS, 24%) also decreased in comparison to the pre-evaluation phase, and it had
the same value irrespective of the class. In the testing phase, on the other hand, the results
indicated a higher dilution of performance, with values of CA and REC of ca. 71%, which
were lower by ca. 22% compared to the training phase. Based on the above, the MLPBNN
algorithm performed slightly better in generalizing on the test data subset, although it
returned lower values of classification performance metrics in the training phase. As such,
it was more stable across the training and testing phases compared to RF.

Figure 7 shows the patterns in data from the testing subset, along with the misclassifi-
cations found by comparing the actual and predicted classes of the MLPBNN (α = 0.001)
and RF (number of trees = 10,000) algorithms when differentiating between the dynamic
and static work of the back. For the MLPBNN model, which was taken as an example
to explain the patterns in the data and their effects on the classification performance, the
correctly classified instances accounted for 8,624, standing for ca. 78% of the testing data
(Figure 7a, classifier = −1.5). In particular, the static work of the back was evenly correctly
classified compared to the dynamic work. Correct classifications of the static work can be
observed, for instance, at the right part of the figure where the orthostatic posture was kept
at the end of the experiment, as well as in other parts of the figure where the values of the
filtered signal of the y axis (Yfiltered) approached the value of −1, which meant that the
body was kept in an orthostatic posture.
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(number of trees = 10,000) algorithm. Legend: classifier—an arbitrary signal showing the correct
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In those cases where the data pattern showed constancy along the axis of the time
domain, the events were correctly classified, with most of such instances representing static
work. However, in some transition parts along the signals’ patterns, as well as in some
points from the time domain in which such transitions began or ended (inter-class edges),
the data have been misclassified. An example of intra-class similarity can be seen, for
instance, in the time data range from ca. 3300 to ca. 4600 (50 ms increments) (Figure 7a).
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This data segment corresponded to the subprotocol A3 (bending back forward), which
explains the data pattern in the Zfiltered signal, which was in contrast to most of the
rest of the subprotocols. Accordingly, this time frame was the one characterized by the
highest frequency of misclassifications (classifier = −2 g, Figure 7a), emphasizing the effect
that intra-class similarity may have on the classification performance. Based on the data
transferred to and interpreted in a Confusion Matrix widget, 932 (20% of the actual class)
of the instances labeled as dynamic and 1458 (22% of the actual class) of those labeled as
static work were misclassified.

Figure 7b, on the other hand, shows the pattern in misclassification in the case of
the RF algorithm used to differentiate between the dynamic and static work. Although
the patterns in misclassification were similar to those of the MLPBNN algorithm, the
difference was in the frequency of misclassifications, which was obviously higher. The
correctly classified instances accounted for 7826, representing ca. 71% of the testing data.
Misclassifications of dynamic work decreased to approximately half (ca. 11% of the actual
data on dynamic work) compared to those specific to the MLPBPNN algorithm. However,
the difference in misclassification occurred mostly at the expense of classifying static as
dynamic work (2715 instances, ca. 42% of the actual data on static work). An example
of such misclassifications may be seen at the right part of Figure 7b (between 10,300 and
11,000), where the actual class was that corresponding to keeping an orthostatic posture of
the body.

Results showing the training and testing performance of the two machine learning
algorithms (MLPBNN and RF) on the 13-class postural problem are shown in Tables 3 and 4,
respectively. Compared to the classification accuracy (CA) and recall (REC) values returned
by the pre-evaluation tests, the performance in the training phase of the MLPBNN machine
learning algorithm seemed to improve by half of one percent. In addition, the lowest
LOGLOSS errors, as well as the highest values of classification accuracy (CA) and recall
(REC), were found for those classes characterizing the static work (class codes ending with
“f”, Table 3). In the testing phase, however, the overall classification performance was
significantly lower, showing a low ability to generalize over the data.

A similar trend in classification performance was found for the RF machine learning
algorithm (Table 4) in the sense that static work was better classified in the training phase
(higher CA and REC and lower LOGLOSS). The training phase also showed that the overall
values of CA, REC, and LOGLOSS were improved compared to the pre-evaluation test. In
the testing phase, however, the classification performance was poorer compared to that of
the MLPBNN algorithm.

Table 3. Classification performance in the training and testing phases to differentiate the postures of
the back by the MLPBNN machine learning algorithm with the regularization term set at α = 0.0001.

Phase Class
Classification Performance Metrics

CA REC LOGLOSS

Training Overall 0.855 0.855 0.425
BbfLsPf 0.993 0.923 0.015
BbfLsPt 0.969 0.642 0.095
BblLsPf 0.994 0.986 0.014
BblLsPt 0.979 0.865 0.052
BbrLsPf 0.994 0.955 0.016
BbrLsPt 0.979 0.807 0.059
BbtlLsPf 0.996 0.974 0.010
BbtlLsPt 0.974 0.776 0.076
BbtrLsPf 0.987 0.888 0.026
BbtrLsPt 0.969 0.716 0.096
BsLbPf 0.982 0.921 0.038
BsLbPt 0.951 0.625 0.116
BsLsPf 0.940 0.978 0.140

Testing Overall 0.707 0.707 1.142
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Table 4. Classification performance in the training and testing phases to differentiate the postures of
the back by an RF machine learning algorithm with 10,000 trees.

Phase Class
Classification Performance Metrics

CA REC LOGLOSS

Training Overall 0.887 0.887 0.528
BbfLsPf 0.996 0.949 0.009
BbfLsPt 0.972 0.722 0.131
BblLsPf 0.997 0.973 0.008
BblLsPt 0.983 0.904 0.053
BbrLsPf 0.997 0.969 0.011
BbrLsPt 0.984 0.863 0.065
BbtlLsPf 0.998 0.976 0.011
BbtlLsPt 0.977 0.821 0.104
BbtrLsPf 0.994 0.949 0.017
BbtrLsPt 0.972 0.781 0.110
BsLbPf 0.989 0.940 0.033
BsLbPt 0.961 0.732 0.137
BsLsPf 0.956 0.969 0.151

Testing Overall 0.615 0.615 2.289

4. Discussion

Detailed data collected over the long term to evaluate body postures and frequency
of dynamic and static work are essential in the attempt to understand the mechanisms
that govern human biomechanical exposure during work, having several applications in
ergonomics and healthcare [56–60]. This study evaluated the possibility of using signals
collected by triaxial accelerometers and machine learning techniques to classify the posture
of the back and to differentiate dynamic from static work in an experimental setup.

Performance of supervised classification by machine learning algorithms depends
largely on the quality of the input signals, labeling quality, and complexity of classification.
Quality of the input signals, including here triaxial acceleration, may be quantified by
several statistical parameters including the signal-to-noise ratio (SNR) and coefficient of
variation (CV) [61]. Improving the SNR of a signal is typically done by signal processing
techniques such as filtering, which can be implemented by various types of filters. Follow-
ing a visual examination of the data in this study, a median filter with a sliding window
size of 41 instances has shown a good ability to remove impulses and oscillations from the
triaxial signals. On the other hand, the window size of a median filter may largely depend
on the signal patterns in either the time or frequency domain, which inherently represent
the type of underlying processes being studied. Smaller window sizes would be useful in
preventing losses in original data, although several ways of imputing it in the filtered signal
have been described by the relevant literature [42]; however, their outcomes in terms of
classification performance may differ as a function of the strategy used for filtering. Recent
studies, including some that considered acceleration data, have used window sizes of three
observations [46,62] with diverging results. For instance, [46] found that simple median
filtering by a window size of 3 instances was useful in enhancing the classification accuracy
for a process characterized by a rather low variability of acceleration in the time domain.
The study of [62], on the other hand, found that filtering-to-the-root by a median filter with
a window of 3 instances has brought less utility in the attempt to enhance the classification
performance. Since the representation of the signal in the time domain was supported in
this study by the finest sampling rate enabled by the datalogger (20 Hz), it was almost
impossible to prevent the occurrence of impulse noise and oscillations. Although these
types of noise could be subject specific, it is more likely that filtering the data collected
inter-individually would provide a common ground for reaching acceptable classification
performances for the same architecture of a machine learning algorithm.

In general, labelling the data, particularly with post hoc procedures applied to ac-
celerometer signals, is a challenging task [21]. In this study, the strategy used to provide
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an external reference for labelling tasks was to record the experiment by a video camera.
This strategy was complemented by designing the protocol to be done in slow motion to
enable data labelling. Nevertheless, the labelling effort was consistent, as it was based on
observing the patterns in the data and cross-checking the events from media files with
those from the input data set. As the sampling rate was set to its finest value, there were
difficulties to overcome in the labelling effort. Such difficulties arose from the number
of classes and the human capability of accurately separating their occurrence in the fine-
sampled input dataset. Although the best effort was given to accurately separating the
classes in the time domain, there is some uncertainty in relation to the accuracy of labelling
that cannot be accounted for. However, further research could be focused on integrating
the process of labelling with that of pre-evaluation by machine learning, to check, by an
iterative procedure, if improvements could be added to the classification performance.

The complexity of classification depends, among other things, on the patterns found
in the signal and the number of classes required by an experiment. Although for the human
eye, it could be easy to identify different events in such patterns (which was, in general,
the case of this study), supervised machine learning approaches to the problem need to
overcome several other limitations, such as the class imbalance, intra-class variability,
and inter-class similarity [21]. Accordingly, there is no known best solution in terms of a
machine learning algorithm class to be used for a given problem, as there is no known
best architecture of an algorithm from the same class to solve that problem. That is the
reason why this study selected two classes of machine learning algorithms based on the
evidence from previous research (e.g., [23,24]), their statistical properties [44,51,52], and
the experience of the authors with them [24,45,46,62], as well as for trying to learn by
pre-evaluation from the data by altering the hyperparameters of the used algorithms.
However, good results obtained by a pre-evaluation will not absolutely guarantee that a
given architecture of the machine learning algorithm will perform similarly in the testing
datasets. This was proven by this study for both classes of machine learning algorithms.
As shown by the results, at first glance, the RF seemed to highly outperform the MLPBNN
machine learning algorithm. However, this did not hold true in the training and testing
phases, in which the MLPBNN has preserved a better generalization ability, although it
returned lower values in terms of classification accuracy and recall.

The lower performance in the testing phase was less likely to come from the class
imbalance issues, which is one of the main challenges in applications of human activity
recognition [21]. This is because the data used in both the training and testing phases
was relatively balanced. An exception was found for the testing data subset in which the
static work accounted for more instances. However, this class was generally characterized
by a pattern that did not produce severe misclassifications, at least in the case of the
MLPBNN algorithm. In contrast, some differences and uncertainty may have come from
the amplitude of movements and variation in movement speed, which, although they
were guided, were rather at the control of the subject. To enhance the separability of the
data, the datalogger was placed on the subject as far as possible from the thorax–legs joint.
This choice was based on the intuition that wider displacements in signals during back
movements could be obtained in such a setup. For instance, findings of previous studies
indicated a high differentiation between static and dynamic work when the signals were
collected at the chest level [31]. Another problem could be that of drifts in the signals
caused by location changing of the datalogger on the subject’s body. This last issue can
represent a guiding point in finding ways of preserving the invariability of dataloggers’
location, which was difficult to control with the design of this study. Most likely, this effect
was recorded in the data collected on the z-axis, which did not follow the same pattern
over time and over different types of movement. Therefore, it is possible that variation
in movement amplitude and speed, as well as the location drifts, have caused some data
misclassification, which ultimately may explain the differences in performance in the three
phases: (i) pre-evaluation and selection of the models, (ii) training, and (iii) testing.



Healthcare 2022, 10, 916 18 of 22

Pre-evaluation of the models has used all the data, allowing the machine learning
algorithms to learn on them; therefore, the results of this phase were seen as common, with
a high classification performance. Training of the algorithms used approximately 70% of
the dataset, capturing most of the variation, including that recorded on the z-axis (see
Figure 4 for an example); therefore, the ability to learn was likely to be high. In contrast,
only the last three movements of each subprotocol were kept for testing. If systematically or
by chance the patterns in these data segments were different, then they would have affected
the classification performance in the testing phase. Other misclassification problems could
have been produced by the intra-class variability and inter-class similarity [21], which were
characteristic of this study (some examples may be seen in Figure 7).

Keeping in mind the limitations described above, the overall results of this study
indicate that it is possible to accurately differentiate at least between the dynamic and
static work of the back in the time domain by an MLPBNN algorithm applied to a complex
experimental setup. For the used dataset, it is likely that a random sampling without
replacement of the data in the training and testing subsets would have given a chance for
better results, a problem which may be explored further. As there were evident differences
in classification performance between the results of the two tested algorithms, it is likely
that other classes of machine learning techniques or architectures set for them would
produce different results. This is a reason for further exploring the problem of increasing
the classification performance. Some tests were done (data not presented in this study)
with Bayes classifier (BC) and support vector machines (SVM), as these are well supported
by Orange Visual Programming software [43], but at an initial stage, the results were poorer
than those of MLPBNN and RF. This does not exclude the possibility that a fine-tuned SVM,
for instance, would provide better results. Since the classification performance depends on
the information carried by input signals, further work could explore, for an experiment
such as that described herein, the possibility of using fewer signals, as well as of using
paired combinations of the tree axial signals.

Altogether, median filtering of the triaxial acceleration signals, followed by pre-
evaluation of two machine learning algorithms, including hyperparameter tuning, were
the main adaptations used in this study to enhance the ability of separating the dynamic
and static work, while accounting for the posture of the back. All of these contribute to
our knowledge on how acceleration data and machine learning can be used to map the
postural profile and separate dynamic and static work, which have important applications
in healthcare. MLPBNN performed better, which is an indication that this class of algo-
rithms could be suitable for real-world, unconstrained applications. In particular, static
work was more accurately detected, which could be used in real-world applications to infer
postural profiles, including by generalization to different subjects characterized by different
anthropometrics. This is mainly because the workflow used in this study normalizes the
data [43] to balance the variability of observations’ magnitudes in a delimited range before
feeding it into the MLPBNN. The computational efficiency, on the other hand, could be one
of the limitations of using MLPBNN, at least in the training phase, since the RF generally
trains faster. However, for the best architectures found in the pre-evaluation tests, the
results on training time (data not shown herein) were comparable. This does not mean that
training over larger datasets will preserve this balance in computational efficiency in the
training phase. Testing, on the other hand, runs very fast, enabling an efficient offline data
classification, assuming that new data would be available.

Compared to the findings of the previous studies using accelerometers as information
collectors, which were typically focused on activity recognition, this study proves that
it is possible to use triaxial acceleration signals to correctly classify by machine learning
algorithms the posture and dynamic and static work of the back by considering a high
number of classes (13 classes tested in this study), an approach that was less common in
previous studies. The study also indicates that the classification performance of triaxial
signal dilutes as the number of target classes increases (i.e., 2 class vs. 13 class problem),
providing a ground for improvements such as selecting other combinations of axial signals,
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augmentation techniques, or other types of machine learning algorithms for training and
testing tasks. Assuming an out-of-lab application of the study concept, it is likely to find
similar patterns in the data for similar setups and movements, as the protocol used covered
the main degrees of freedom in back movements. Therefore, in jobs characterized by fixed
workstations, the approach may be readily available, while in those involving walking, it
should be updated by integrating new data.

This study was experimental, so the possibility of training and testing higher-performing
machine learning algorithms on real-world collected acceleration data to differentiate
between static and dynamic work, and particularly to infer the postures of the back, needs
to be pursued further. Depending on the algorithms used, such an attempt would have
to rely on large amounts of data, and it would need to include the variability brought by
anthropometry and task specificity. This would be a significant challenge in terms of the
data labelling effort, for which new solutions are required and which will be provided,
most likely, by the advancement in computer vision, unsupervised and deep convolutional
learning, or multi-modal sensing.

5. Conclusions

Machine learning could be a suitable approach to the problem of postural classifi-
cation and detection of dynamic and static work of the back in the time domain based
on acceleration data. This is supported, in particular, by the results obtained in the pre-
evaluation phase of this study, in which the classification accuracy and recall were of 85%
to 93%, depending on the type of problem, class of machine learning algorithm used,
and its architecture. Although the results obtained in the testing phase indicated a lower
generalization performance, as is known to happen, the general performance of a machine
learning algorithm in classification problems depends on the amount and quality of data
fed to it. Once a sufficient amount of fine-labelled acceleration data becomes available, a lot
of potential will be unleashed in detecting and classifying complex body postures in the
time domain, including those postures that overlap on both dynamic and static work. In
turn, these will enable the capability of building postural profiles for various types of jobs
and linking them to the results of epidemiological studies to reach conclusions regarding
their effect on human health and to intervene for improvement.
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Appendix A

Table A1. Movement and posture change protocol used in this study.

Protocol Subprotocol Full Description

A
Full movement at low speed

A1

Maintaining the orthostatic posture for ca. 30 s;
Bending the back to the left at full extent;

Maintaining this posture for approximately 5 s;
Returning to orthostatic posture and maintaining it for ca. 5 s;

Repeated 10 times.

A2

Maintaining the orthostatic posture for ca. 30 s;
Bending the back to the right at full extent;

Maintaining this posture for approximately 5 s;
Returning to orthostatic posture and maintaining it for ca. 5 s;

Repeated 10 times.

A3

Maintaining the orthostatic posture for ca. 30 s;
Bending the back forward at full extent;

Maintaining this posture for approximately 5 s;
Returning to orthostatic posture and maintaining it for ca. 5 s;

Repeated 10 times.

A4

Maintaining the orthostatic posture for ca. 30 s;
Flexing the kneels at full extent with the back straight;

Maintaining this posture for approximately 5 s;
Returning to orthostatic posture and maintaining it for ca. 5 s;

Repeated 10 times.

A5

Maintaining the orthostatic posture for ca. 30 s;
Bending and twisting the back to the forward-left at full extent;

Maintaining this posture for approximately 5 s;
Returning to orthostatic posture and maintaining it for ca. 5 s;

Repeated 10 times.

A6

Maintaining the orthostatic posture for ca. 30 s;
Bending and twisting the back to the forward-right at full extent;

Maintaining this posture for approximately 5 s;
Returning to orthostatic posture and maintaining it for ca. 5 s;

Repeated 10 times.

References
1. Vieira, E.D.; Kumar, S. Working postures: A literature review. J. Occup. Rehabil. 2004, 14, 143–159. [CrossRef]
2. Mathiassen, S.E. Diversity and variation in biomechanical exposure: What is it, and why would we like to know? Appl. Ergon.

2006, 37, 419–427. [CrossRef]
3. Helander, M.A. Guide to Human Factors and Ergonomics, 2nd ed.; Taylor & Francis: Abingdon, UK, 2006; pp. 167–185.
4. Corella Justavino, F.; Jimenez Ramirez, R.; Meza Perez, N.; Borz, S.A. The use of OWAS in forest operations postural assessment:

Advantages and limitations. BUT Ser. II For. Wood Ind. Agric. Food Eng. 2015, 8, 7–16.
5. Amorim, A.B.; Simic, M.; Papas, E.; Zadro, J.R.; Carrillo, E.; Ordoñana, J.R.; Ferreira, P.H. Is occupational or leisure physical

activity associated with low back pain? Insights from a cross-sectional study of 1059 participants. Braz. J. Phys. Ther. 2019,
23, 257–265. [CrossRef]

6. Van Rijn, R.M.; Huisstede, B.M.A.; Koes, B.W.; Burdorf, A. Associations between work-related factors and specific disorders at the
elbow: A systematic literature review. Rheumatology 2009, 48, 528–536. [CrossRef]

7. Balogh, I.; Arvidsson, I.; Björk, J.; Hansson, G.-Å.; Ohlsson, K.; Skerfving, S.; Nordander, C. Work-related neck and upper
limb disorders—Quantitative exposure-response relationships adjusted for personal characteristics and psychosocial conditions.
BMC Musculoskelet. Disord. 2019, 20, 139. [CrossRef]

8. da Costa, B.R.; Vieira, E.R. Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal
studies. Am. J. Ind. Med. 2010, 53, 285–323. [CrossRef]

9. Roffey, D.M.; Wai, E.K.; Bishop, P.; Kwon, B.K.; Dagenais, S. Causal assessment of awkward occupational postures and low back
pain: Results of a systematic review. Spine J. 2010, 10, 89–99. [CrossRef]

10. Swain, C.T.V.; Pan, F.; Owen, P.J.; Schmidt, H.; Belavy, D.L. No consensus on causality of spine posture or physical exposure and
low back pain: A systematic review of systematic reviews. J. Biomech. 2020, 102, 109312. [CrossRef]

11. van der Molen, H.F.; Foresti, C.; Daams, J.G.; Frings-Dresen, M.H.W.; Kuijer, P.P.F.M. Work-related risk factors for specific shoulder
disorders: A systematic review and meta-analysis. Occup. Environ. Med. 2017, 74, 745–755. [CrossRef]

http://doi.org/10.1023/B:JOOR.0000018330.46029.05
http://doi.org/10.1016/j.apergo.2006.04.006
http://doi.org/10.1016/j.bjpt.2018.06.004
http://doi.org/10.1093/rheumatology/kep013
http://doi.org/10.1186/s12891-019-2491-6
http://doi.org/10.1002/ajim.20750
http://doi.org/10.1016/j.spinee.2009.09.003
http://doi.org/10.1016/j.jbiomech.2019.08.006
http://doi.org/10.1136/oemed-2017-104339


Healthcare 2022, 10, 916 21 of 22

12. David, G.C. Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. Occup. Med.
2005, 55, 190–199. [CrossRef]

13. Borz, S.A.; Iordache, E.; Marcu, M.V. Enhancing working posture comparability in forest operations by the use of similarity
metrics. Forests 2021, 12, 926. [CrossRef]

14. Brandl, C.; Mertens, A.; Schlick, C.M. Effect of sampling interval on the reliability of ergonomic analysis using the Ovako Working
posture Analyzing System (OWAS). Int. J. Ind. Ergon. 2017, 57, 68–73. [CrossRef]

15. Borz, S.A.; Castro Pérez, S.N. Effects of sampling strategy on the accuracy of postural classification: An example from motor-
manual tree felling and processing. Rev. Pădurilor 2020, 135, 19–41.

16. Aroeira, R.M.C.; de Las Casas, E.B.; Pertence, A.E.M.; Greco, M.; Tavares, J.M.R.S. Non-invasive methods of computer vision in
the posture evaluation of adolescent idiopathic scoliosis. J. Bodyw. Mov. Ther. 2016, 20, 832–843. [CrossRef]

17. Arellano-González, J.C.; Medellín-Castillo, H.I.; Cárdenas-Galindo, J.A. Analysis of the kinematic variation of human gait under
different walking conditions using computer vision. Rev. Mex. Ing. Bioméd. 2017, 38, 437–457.

18. Chan, Y.-W.; Huang, T.-H.; Tsan, Y.-T.; Chan, W.-C.; Chang, C.-H.; Tsai, Y.-T. The risk classification of ergonomic musculoskeletal
disorders in work-related repetitive manual handling operations with deep learning approaches. In Proceedings of the 2020
International Conference on Pervasive Artificial Intelligence (ICPAI), Taipei, Taiwan, 3–5 December 2020; pp. 268–271.

19. Fernández, M.M.; Fernández, J.A.; Bajo, J.M.; Delrieux, C.A. Ergonomic risk assessment based on computer vision and machine
learning. Comput. Ind. Eng. 2020, 149, 106816.

20. Lee, S.; Liu, L.; Radwin, R.; Li, J. Machine learning in manufacturing ergonomics: Recent advances, challenges, and opportunities.
IEEE Robot. Autom. Lett. 2021, 6, 5745–5752. [CrossRef]

21. Bulling, A.; Blanke, U.; Schiele, B. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv.
2014, 46, 1–33. [CrossRef]

22. Stefana, E.; Marciano, F.; Rossi, D.; Cocca, P.; Tomasoni, G. Wearable devices for ergonomics: A systematic literature review.
Sensors 2021, 21, 777. [CrossRef]

23. Keefe, R.F.; Zimbelman, E.G.; Wempe, A.M. Use of smartphone sensors to quantify the productive cycle elements of hand fallers
on industrial cable logging operations. Int. J. For. Eng. 2019, 30, 132–143. [CrossRef]

24. Borz, S.A. Development of a modality-invariant multi-layer perceptron to predict operational events in motor-manual willow
felling operations. Forests 2021, 12, 406. [CrossRef]

25. Marogel-Popa, T.; Chet,a, M.; Marcu, M.V.; Dut,ă, C.I.; Ioras, , F.; Borz, S.A. Manual cultivation operations in poplar stands: A
characterization of job difficulty and risks of health impairment. Int. J. Environ. Res. Public Health 2019, 16, 1911. [CrossRef]

26. Kuschan, J.; Schmidt, H.; Krüger, J. Analysis of ergonomic and unergonomic human lifting behaviors by using Inertial Measure-
ment Units. Curr. Dir. Biomed. Eng. 2017, 3, 7–10. [CrossRef]

27. Godfrey, A.; Conway, R.; Meagher, D.; ÓLaighin, G. Direct measurement of human movement by accelerometry. Med. Eng. Phys.
2008, 30, 1364–1386. [CrossRef]

28. Hu, B.; Kim, C.; Ning, X.; Xu, X. Using a deep learning network to recognise low back pain in static standing. Ergonomics 2018,
61, 1374–1381. [CrossRef]

29. Nath, N.D.; Chaspari, T.; Behzadan, A.H. Automated ergonomic risk monitoring using body-mounted sensors and machine
learning. Adv. Eng. Inform. 2018, 38, 514–526. [CrossRef]

30. Conforti, I.; Mileti, I.; Del Prete, Z.; Palermo, E. Measuring biomechanical risk in lifting load tasks through wearable system and
machine-learning approach. Sensors 2020, 20, 1557. [CrossRef]

31. Hosseinian, S.M.; Zhu, Y.; Mehta, R.K.; Erraguntla, M.; Lawley, M.A. Static and dynamic work activity classification from a single
accelerometer: Implications for ergonomic assessment of manual handling tasks. IISE Trans. Occup. Ergon. Hum. Factor 2019,
7, 59–68. [CrossRef]

32. Yang, J.-Y.; Wang, J.-S.; Chen, Y.-P. Using acceleration measurements for activity recognition: An effective learning algorithm for
constructing neural classifiers. Pattern Recognit. Lett. 2008, 29, 2213–2220. [CrossRef]

33. Ermes, M.; Pärkkä, J.; Mäntyjärvi, J.; Korhonen, I. Detection of daily activities and sports with wearable sensors in controlled and
uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 20–26. [CrossRef]

34. Maakip, I.; Keegel, T.; Oakman, J. Predictors of musculoskeletal discomfort: A cross-cultural comparison between Malaysian and
Australian office workers. Appl. Ergon. 2017, 60, 52–57. [CrossRef]

35. Palikhe, S.; Yirong, M.; Yoon Choi, B.; Lee, D.-E. Analysis of musculoskeletal disorders and muscle stresses on construction
workers’ awkward postures using simulation. Sustainability 2020, 12, 5693. [CrossRef]

36. Mallapiang, F.; Muis, M. The relationship of posture working with musculoskeletal disorders (MSDs) in the weaver West Sulawesi
Indonesia. Gac. Sanit. 2021, 35 (Suppl. S1), S15–S18. [CrossRef]

37. Rajesh Kumar, K.V.; Elias, S. Real-time tracking of human neck postures and movements. Healthcare 2021, 9, 1755. [CrossRef]
38. Alseminy, M.A.M.M.; Chandrasekaran, B.; Bairapareddy, C. Association of physical activity and quality of life with work-related

musculoskeletal disorders in the UAE young adults. Healthcare 2022, 10, 625. [CrossRef]
39. Vähä-Ypyä, H.; Vasankari, T.; Husu, P.; Mänttäri, A.; Vuorimaa, T.; Suni, J.; Sievänen, H. Validation of cut-points for evaluating

the intensity of physical activity with accelerometry-based Mean Amplitude Deviation (MAD). PLoS ONE 2015, 10, e013813.
[CrossRef]

http://doi.org/10.1093/occmed/kqi082
http://doi.org/10.3390/f12070926
http://doi.org/10.1016/j.ergon.2016.11.013
http://doi.org/10.1016/j.jbmt.2016.02.004
http://doi.org/10.1109/LRA.2021.3084881
http://doi.org/10.1145/2499621
http://doi.org/10.3390/s21030777
http://doi.org/10.1080/14942119.2019.1572489
http://doi.org/10.3390/f12040406
http://doi.org/10.3390/ijerph16111911
http://doi.org/10.1515/cdbme-2017-0002
http://doi.org/10.1016/j.medengphy.2008.09.005
http://doi.org/10.1080/00140139.2018.1481230
http://doi.org/10.1016/j.aei.2018.08.020
http://doi.org/10.3390/s20061557
http://doi.org/10.1080/24725838.2019.1608873
http://doi.org/10.1016/j.patrec.2008.08.002
http://doi.org/10.1109/TITB.2007.899496
http://doi.org/10.1016/j.apergo.2016.11.004
http://doi.org/10.3390/su12145693
http://doi.org/10.1016/j.gaceta.2020.12.005
http://doi.org/10.3390/healthcare9121755
http://doi.org/10.3390/healthcare10040625
http://doi.org/10.1371/journal.pone.0134813


Healthcare 2022, 10, 916 22 of 22

40. van Hees, V.T.; Gorzelniak, L.; León, E.C.D.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.; Horsch, A.;
et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily
physical activity. PLoS ONE 2013, 8, e61691. [CrossRef]

41. van Hees, V.T.; Fang, Z.; Langford, J.; Assah, F.; Mohammad, A.; da Silva, I.C.M.; Trenell, M.I.; White, T.; Wareham, N.J.; Brage,
S. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An
evaluation on four continents. J. Appl. Physiol. 2014, 117, 738–744. [CrossRef]

42. Leeb, S.B.; Ortiz, A.; Lepard, R.F.; Shaw, S.R.; Kirtley, J.L. Applications of real-time median filtering with fast digital and analog
sorters. IEEE/ASME Trans. Mechatron. 1997, 2, 136–143. [CrossRef]
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