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ABSTRACT: The presence of salinity affects the accuracy of
existing correlations used in the equation of state. Moreover, the
variation of salinity is often ignored in the systematic analysis of the
phase diagram, resulting in a large error in the final calculation
result. It is obvious that the conventional phase equilibrium
calculation is not applicable in a high-salinity reservoir. By
introducing the hydrocarbon−brine binary interaction coefficient
and α-function, combined with the definition of salinity, and
considering the variation of salinity under different pressure and
temperature conditions, a more perfect phase equilibrium
calculation model was established. The complete phase diagram
was drawn, and the calculation results of salinity distribution are
obtained. The effect of the mole percentage of water and salt
content on the phase behavior was simulated. Finally, the phase distribution simulation is carried out based on the measured data.
The phase state and salinity variation law of a high-salinity reservoir are obtained. According to the fluid composition of different
periods, the real phase state of the high-salinity reservoir can be monitored in real time. It can provide a theoretical basis for the gas
reservoir development and the dynamic evaluation of gas storage injection and production with a hydrocarbon−brine two-phase
system.

■ INTRODUCTION
In the process of oil and gas processing and numerical
simulation of oil and gas reservoirs, a large number of
hydrocarbon−water mixed systems are often involved.1,2 The
separation of components from the mixture is particularly
important. Accurate phase equilibrium calculation and physical
parameter prediction have gradually become the basis and key.
For aqueous systems, the three-phase flash calculation

method is mostly used. Li3 and Okuno4 simplified the binary
interaction coefficient in the three-phase flash calculation.
Based on the quadratic expression, the binary interaction
coefficient is decomposed into two parameters to improve the
flash calculation efficiency. Based on this, Mohebbinia et al.5

developed a four-phase flash calculation algorithm and applied
the modified PR equation of state to aqueous mixtures.
Comparing with the traditional flash calculation method, the
speed of flash calculation by using the simplified method is
significantly improved. The results show that the saturation
pressure changes significantly after addition of water into the
hydrocarbon system. Zhao6 used the improved Wong−Sandler
mixing rule and nonrandom two-liquid (NRTL) model to
propose a simple and reliable phase model for component
reservoir simulation and conducted the flash calculations for
the gas−water system under reservoir temperature and
pressure. The model can maintain good stability in dealing

with strong polar fluid and hydrocarbon fluid systems.
Wyczesany7 used different models to calculate the vapor−
liquid equilibrium for low pressure and high pressure
separately and compared their accuracy.
In order to ensure the stability of the calculation, the

algorithm processing method is proposed in many cases.8−11
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Figure 1. Water sampling analysis results.
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Hinojosa-Goḿez et al.12 took into account the continuity of
the phase boundary and combined with the inverse barrier
function to solve the gas−liquid−liquid three-phase equili-
brium calculation model, which improved the stability of the
algorithm. Lindeloff and Michelsen13 proposed an algorithm
that can trace the two- and three-phase boundaries
encountered, and a relatively complete phase diagram is
obtained. Wang et al.14 proposed an artificial neural network
(ANN) model to accelerate the flash simulation process. Zhao

et al.15 and Michelsen16 proved that the use of simplified
variables can greatly accelerate the solution of the continuous
replacement iteration problem of two-phase flash and improve
the computational performance by comparing with the
traditional flash calculation model. Ebadi et al.17 combined
the MBF algorithm with the flash calculation model to quickly
determine the saturation pressure.
With the deepening of research, some scholars18−21 have

proposed four-phase and multiphase flash calculation methods.
Under formation conditions, Neshat et al.,22 Achour et al.,23

Wang et al.,24 and Sandoval et al.25 carried outgas−liquid flash
calculations through considering the influence of the capillary
force. The modified method greatly improves the accuracy of
the calculation considering the capillarity effect.26 In addition,
the calculation of phase equilibrium is also well applied under
high-pressure conditions such as frozen soil and seabed.27

At present, a variety of calculation methods for phase
equilibrium have been proposed,28−31 and some of the above
theories have been implemented in software.32 However, most
of the above studies did not consider the influence of salinity
on phase distribution, and there was a lack of systematic
analysis of the phase diagram for brine systems. In a few
studies, only the salinity is regarded as a constant.5 In the
process of actual gas reservoir exploitation, salt deposit is easy
to occur in the near-wellbore area, causing the change of
formation water salinity.33−35 The salinity is always affected by
reservoir temperature and pressure. Through field fluid
sampling, the ion concentration in different periods of a well
in the Wen 23 gas field is shown in Figure 1; it was found that
the main component of salt was NaCl. In order to clearly
characterize the phase characteristics, only the gas and liquid
phases are distinguished. Therefore, considering the variation
of salinity under reservoir conditions, the phase equilibrium
calculation model of the hydrocarbon−brine system was
established. The phase behavior under different salt contents
was simulated. The calculation results and distribution law of
salinity are given. Finally, the conclusions of this work are
presented.

■ METHODOLOGY
Phase Equilibrium Model. The PR-state equation is

widely used in phase equilibrium calculation, and its expression
is
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Figure 2. Phase equilibrium calculation flowchart.

Table 1. Maximum NaCl Solubility in 100 g of Water

T (°C) 0 10 20 25 30 40
NaCl (g) 35.65 35.72 35.89 35.96 36.09 36.37
T (°C) 50 60 70 80 90 100
NaCl (g) 36.69 37.04 37.46 37.93 38.47 38.99

Figure 3. Phase diagram at different salt contents (C1, C10, and H2O
system).
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Figure 4. Salinity distribution result (mol/kg). The corresponding salt content ms in (a−f) is 0.001, 0.01, 0.02, 0.03, 0.05, and 0.1 mol, respectively.
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For the liquid phase
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When brine exists in the system, the improved water
component α coefficient and the binary interaction coefficient
of introduced hydrocarbons and brine are expressed as5
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Figure 5. Liquid water distribution result (%). The corresponding salt content ms in (a−f) is 0.001, 0.01, 0.02, 0.03, 0.05, and 0.1 mol, respectively.
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Salinity is calculated based on the salt content and liquid water
content
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Gas−liquid equilibrium conditions (equality condition of
fugacity)
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Calculation Process. Phase equilibrium calculation can be
completed by iterative solution of simultaneous equations.
Different from the conventional phase equilibrium calculation,
the salinity in the solution process also needs repeated iterative
calculation. The process is shown in Figure 2. The salinity
should be kept in the corresponding range at different
temperatures. The maximum NaCl solubility in 100 g of
water at different temperatures is shown in Table 1. Assuming
that under initial conditions, the salt is soluble in water, the
initial value of salinity can be defined as

=
+
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■ RESULTS AND DISCUSSION
Light hydrocarbons such as methane in natural gas are the
main components, and the content of heavy hydrocarbons is
less. Therefore, the two cases of considering heavy hydro-
carbons and not considering heavy hydrocarbons are simulated
correspondingly. First, the components in the simulation
system include light hydrocarbon, heavy hydrocarbon, and
water, and the molar percentage is 50, 20, and 30%,
respectively. The effect of the salt content on the phase

behavior is shown in Figure 3. When ms = 0.001 mol, it can be
considered that the salt content in the reservoir is very little or
basically absent. It can be seen that the phase diagram changed
greatly after considering the salinity. With the increase of the
salt content in the system, the amount of dissolved salt in the
liquid phase increases. The solubility of light hydrocarbons
(methane) in the liquid phase decreases, and bubbles are prone
to appearing in the liquid phase, resulting in an increase in the
bubble point line. Therefore, the pressure range of the gas−
liquid two-phase region increases. The increase of the salt
content leads to the decrease of the temperature range in the
gas−liquid two-phase region, and the critical temperature of
the total system decreases. In addition, with the increase of the
salt content, the dew point line in the phase diagram moves to
the left and the dew point pressure gradually increases at the
same temperature.
In the actual reservoir, the total amount of salt is constant.

Under the same component content conditions, the reservoir
salinity distribution curve with pressure and temperature is
drawn, as shown in Figure 4. The salt is dissolved in liquid
water, and the liquid water content can be calculated according
to LHd2O = (1 − V)·xHd2O. The calculation results are shown in
Figure 5. Similar to the conventional phase diagram, the phase
state can be distinguished by the envelope. In the pure liquid-
phase region, the salinity and liquid water content are constant.
Within the envelope, the salinity and its variation range
decrease with the increase of the liquid water content. When
the temperature gradually increases, the liquid water content
decreases and tends to be saturated, and the salinity also
increases sharply. After entering the vapor phase, there is no
liquid water and all salt is precipitated.
When there are only 70% methane and 30% water in the

system, the effect of the salt content on the phase behavior is
shown in Figure 6. The critical parameters of methane and
water are quite different, and it is difficult to see the parameters
such as bubble point, dew point, and critical temperature from
the phase diagram. However, the miscible region and the
single-phase region can still be clearly distinguished by the
envelope. The increase of the salt content will also expand the
range of the gas−liquid two-phase region and shift the
envelope line to the right. The salinity calculation results are
shown in Figure 7. Similarly, the closer it is to the gas phase,
the lesser the water in the liquid phase and the higher the
salinity.
In order to reflect the relatively real phase characteristics of

actual natural gas, considering the hydrocarbons and non-
hydrocarbons in natural gas, the simulated components are
redefined as shown in Table 2. The salt content ms is 0.02 mol.
The simulation results are shown in Figure 8. It can be seen
from the contour lines in the figure that the gas percentage
increases with an increase of temperature. The higher the
temperature, the more obvious the effect of pressure on the gas
percentage. Similarly, under high-temperature conditions, the
percentage of liquid water, the percentage of water vapor, and
the salinity change more obviously with pressure.

■ CASE STUDY
Selecting oilfield actual components for calculation: The
formation pressure is 38.6 MPa and the reservoir temperature
is 120 °C (393.15 K). The unit molar component in the
reservoir contains 0.0211 mol of salt by fluid sampling. The
fluid composition is shown in Table 3. The main components

Figure 6. Phase diagram at different salt contents (C1 and H2O
system).
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are methane and water with less heavy hydrocarbons. The
phase diagram is shown in Figure 9. The corresponding salinity
calculation results are shown in Figure 10. With the continuous
exploitation of the reservoir, the formation pressure decreases
and the temperature is relatively stable. The salinity variety
with pressure is shown in Figure 11. As the pressure continues
to drop, the percentage of gas (V) increases, the liquid water
(VHd2O) decreases, and therefore, the salinity (csw) increases.
Until below the dew point pressure, the system is all gas; there

Figure 7. Salinity distribution result (mol/kg). The corresponding salt content ms in (a−f) is 0.001, 0.01, 0.02, 0.03, 0.05, and 0.1 mol, respectively.

Table 2. Percentage of Fluid Components Simulated

component mole (%) component mole (%)

C1 0.58 CO2 0.01
C2 0.03 N2 0.01
C3 0.03 H2S 0.01
C4 0.03 H2O 0.3
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is no salinity. The dew point pressures at different temper-
atures can also be obtained from the phase diagram. For
example, the dew point pressures at 393.15, 413.15, and 433.15
K are 1.08, 2.02, and 3.52 MPa, respectively. Then, guidance is
provided for the reasonable control of the working system.
According to the calculation results, the underground phase
distribution and salinity variety can be monitored in real time.
The calculation of fluid property parameters and reservoir
parameters can be carried out subsequently.

Figure 8. Fluid component percentage and salinity distribution results.

Table 3. Fluid Composition Percentage

component mole (%) component mole (%)

C1 0.7940 C7 0.0013
C2 0.0133 CO2 0.0130
C3 0.0024 N2 0.0101
C4 0.0013 H2S 0.0182
C5 0.0001 H2O 0.1447
C6 0.0016

Figure 9. Measured phase diagram.
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■ CONCLUSIONS

(1) The phase equilibrium calculation model of the
hydrocarbon−water system considering salinity is
established through introducing the binary interaction
coefficient of hydrocarbon−salt water and α-function. In
each iterative calculation process, the salinity is
calculated according to the molar fraction of liquid
water and salt contents. Compared with the conven-
tional phase equilibrium calculation method, the number
of iterations is increased. However, it can better reflect
the real phase behavior characteristics of high-salinity
reservoirs.

(2) The phase distribution under different salt contents and
water contents was simulated. The salinity has a great
influence on the phase behavior. After considering the
salinity, the miscible zone in the phase diagram is
expanded and the critical temperature is reduced.
Similarly, the salinity calculation results can be obtained.
With less liquid water, salinity rises sharply.

(3) The phase diagram was drawn by using the oilfield real
component data, and the salinity calculation results were
obtained. This method can realize the purpose of real-
time monitoring of high-salinity reservoirs and provide a
theoretical basis for a more realistic understanding of
reservoir fluid properties.
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f i fugacity
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L molar percentage of the liquid phase
LH2O molar percentage of liquid water
MH2O molecular weight of water, g/mol
Ms molecular weight of salt, g/mol
ms mole number of salt per mole component in the system,

mol
V molar percentage of the gas phase
xi molar percentage of component i in the liquid phase
yi molar percentage of component i in the gas phase
zi molar percentage of component i in the total system
φi fugacity coefficient
ω acentric factor
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