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THE BIGGER PICTURE Existing literature-curated protein-protein interaction (PPI) databases usually
aggregate cell-type-agnostic interactions, yet PPIs are dependent on environmental conditions. Thus,
new methods and resources for inferring the context in which a PPI is reported will extend their application
and use in disease-centric modeling. We expect the resource presented in this article to be of high interest
to those querying known interactions of proteins of interest, reconstruction and analyses of molecular inter-
action networks, and multi-omics data integration approaches.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Protein-protein interaction (PPI) databases are an important bioinformatics resource, yet existing literature-
curated databases usually represent cell-type-agnostic interactions, which is at variance with our under-
standing that protein dynamics are context specific and highly dependent on their environment. Here, we
provide a resource derived through data mining to infer disease- and tissue-relevant interactions by anno-
tating existing PPI databases with cell-contextual information extracted from reporting studies. This
resource is applicable to the reconstruction and analysis of disease-centric molecular interaction networks.
We have made the data and method publicly available and plan to release scheduled updates in the future.
We expect these resources to be of interest to a wide audience of researchers in the life sciences.
INTRODUCTION

Network biology is an emerging trend in biomedical research

that takes a systems-based approach to understanding biolog-

ical processes and modeling complex disease, whereby inter-

acting molecules—rather than individual genes—are mapped

to phenotypic outcomes.1 An accurate reconstruction of the in-

teractions of the proteome would allow for a detailed under-

standing of how interacting proteins carry out cellular functions,

explain biological phenomena, and predict the consequences of

interventions. There is currently a large selection of repositories

for protein-protein interactions (PPIs) and an ever-growing num-

ber of experimentally observed or computationally predicted in-

teractions. Efforts have emerged, such as the Proteomics Stan-

dard Initiative Common Query Interface (PSICQUIC), to

aggregate these interactions across various providers, enabling

querying of millions of interactions based on a subset of interac-

tors or detection methods.2,3 This has proved to be an essential

resource for network-based analyses, mapping interactome net-

works, and seeding advanced network models.4
This is an open access article under the CC BY-N
Whereas literature-curated interactions often include the

experimental assays supporting the interaction, there is less

emphasis on describing the biological context (e.g., the cell lines)

in which an interaction was assayed in vitro. Protein dynamics

are context specific and highly dependent on their environment.

For example, it was reported that amajority of protein complexes

measured in yeast were dependent on environmental condi-

tions.5 Without context, one ignores the dynamic rewiring of bio-

logical networks and assumes PPIs measured across heteroge-

neous cellular contexts are uniformly relevant to a given

biological system under study.6 This assumption has been

shown to be false and that local conditions of observed interac-

tions are important considerations when reconstructing net-

works for exploring specific biological subsystems.7 Thus, re-

searchers should consider querying reported interactions

relevant to the model under investigation. Previous efforts to

infer environmental specificity of PPIs include integration of tis-

sue-specific gene expression information—such as GTEx—

whereby two proteins in a PPI that are both expressed above a

certain threshold in a given tissue are deemed available for
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Figure 1. A Graphical Overview

The schematic describes the organization of exist-

ing bioinformatics resources to create three map-

ping tables—(A) the PPI table which maps in-

teractions to reporting publications, (B) the PID

table which maps publications to extracted cell

lines, and (C) the CLA table which maps cell-line

accessions to official cell-line names and associ-

ated cell-type information—to generate (D) the

presented dataset of contextualized PPIs.
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interaction.8,9 Here we present an alternative approach of utiliz-

ing associated cell lines within the original publication of litera-

ture-curated PPIs to infer environmental context.

In summary, multiple lines of evidence suggest that the cellular

context of reported PPIs is an important factor in determining the

relevance of their use toward other biological research efforts.

Here we present a data mining method for annotating existing

PPI databases with contextual information in an attempt to

determine their biological relevance.

RESULTS

To demonstrate our method, we start with interactions from the

Human Integrated Protein-Protein Interaction Reference (HIP-

PIE), a manually curated subset of experimentally detected

PPIs from PSICQUIC. To date, HIPPIE contains 391,410 interac-

tions from 41,330 publications sourced from various providers,

including IntAct, MINT, BioGRID, HPRD, DIP, BIND, and

MIPS.8 Each entry takes the form of two protein interactors—

identified by their encoding gene symbol—and zero, one, or

multiple PubMed identifiers (PIDs), in addition to other relevant

information such as the types of experimental evidence support-

ing the interaction. The PIDs link to the original studies in which

an interaction was reported. With these PIDs, one can reference

the reporting studies to further understand the context in which

an interaction was observed, such as the cell lines used to

conduct the experiment. This information is valuable in deter-

mining which interactions are relevant to the context of one’s

own biological study, yet the manual curation of cellular context

for hundreds of thousands of interactions is time intensive.10

Here we present an approach to automating this process

through the use of two additional resources: NCBI’s PubTator

and ExPASy’s Cellosaurus. PubTator is a text mining tool for

literature curation that extracts bioconcepts (e.g., gene, disease,

chemical, mutation, species, and cell line) from text and has pre-

processed and annotated roughly 3 million full-text PubMed

Central articles.11,12 Cellosaurus describes many of the available

cell lines used in biomedical research. It provides unique cell-line

accessions (CLA) for more than 100,000 cell lines, which can be
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mapped through a controlled vocabulary

to various cell-line attributes, including an

official cell identifier or name, category,

species of origin, etc., as well as synonyms

and common spelling variations or

misspellings.13

Using these resources, we created a

simple method for annotating a large
collection of PPIs with cell-type contextual information. The

basic workflow consists of mapping PPIs and their supporting

publications reported in HIPPIE to cell lines reported in these

studies extracted via PubTator to official cell-line identifiers

and various cell-line attributes described in Cellosaurus. The

idea is that the originating article for an interaction will likely

describe one or more cell lines used in the study (e.g., in the

methods section) and that these cell lines may have been used

to carry out the experiment itself or are at least relevant to the in-

teractions reported. By extracting this information to annotate

existing interactions, we can filter interactions by cell-line

context based on the biological system/state we are inter-

ested in.

We developed a fast and reproducible pipeline for annotating

literature-curated PPIs with associated PIDs. The pipeline can

efficiently annotate hundreds of thousands of interactions in a

few minutes. It does so by fetching and processing the raw

bulk data of HIPPIE, PubTator, and Cellosaurus and generating

three mapping tables (Figures 1A–1C). The first table (PPI table)

maps interactions to reporting publications (one to many), the

second (PID table) maps publications to extracted bioconcepts

(cell line) and cell-line accession numbers (one to many), and

the third (CLA table) maps cell-line accessions to official cell-

line names and associated cell-type information (one to one).

Due to the multi-mapping nature of the data, original interactions

can be supported bymultiple studies, each of which could report

multiple cell lines. Therefore, we create an entry in the contextu-

alized dataset for each combination observed. Using these ta-

bles, the pipeline executes the routine described in Figure 2 to

create the dataset of contextualized PPIs (Figure 1D).

Interactions are ignored if they do not have supporting publi-

cations or have publications where cell lines are not reported

or cannot be extracted. The result is a data frame of original

PPIs with additional columns, including cell name, category,

species, etc., for all annotatable PPIs (contextualized PPIs).

This format is compatible with the primary use case envisioned

for the data: building interaction networks by filtering on one or

more cell types relevant to a biological setting or question of in-

terest. Application of this routine to the latest versions (as of June



Figure 2. The Main Routine Behind PPI Context

The pseudocode includes the main routine executed in the data pre-pro-

cessing pipeline for creating contextualized PPI entries from the three map-

ping tables. The tool can be downloaded fromGitHub, which includes example

commands for installing the required Python dependencies and fetching the

raw data.
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2020) of the previously described resources started with 391,410

original interactions and found at least one publication for

385,740 interactions. This resulted in a final contextualized data-

set of 1,016,726 unique interaction/cell line pairs across 2,012

unique cell lines, originating from 247,065 interactions. We found

that a majority of the contextualized interactions were derived

from papers reporting human-derived cancer cell lines (Fig-

ure 3B). A majority of the reported interactions indeed come

from commonly used cell lines such as HeLa and HEK29314

(Figure 3A).

Despite a bias toward popular cell lines, there still remain suf-

ficient interactions for many less common cell lines to perform
disease-centric modeling through filtered PPIs. For example,

we reconstructed a molecular interaction network using PPIs

from the breast cancer cell lines MCF-7 and MDA-MB-231,15

resulting in a breast cancer-centric network of 4,645 nodes

and 9,015 edges. By deriving PPIs annotated with breast can-

cer cell lines, we would expect these interactions to be exper-

imentally validated in said cell lines or at least reported in a

context relevant to breast cancer. Thus, this network should

exhibit known properties of a breast cancer model better

than non-breast cancer networks. To test this hypothesis, we

assessed the network’s ability to rediscover known disease

genes through network propagation and compared it with the

results from networks generated with other top cell lines in

the dataset.16

To this end, we used the random walk with restart (RWR) al-

gorithm, a popular method for network propagation.17 RWR

measures the proximity of nodes in a graph to a given seed

or set of seed nodes. The algorithm randomly traverses the

graph starting from seed nodes and moving with a given

restart probability.18 It exploits the disease module hypothe-

sis, which postulates that disease genes are likely to be close

to one another in a given network.19 Hence, highly traversed

nodes (other than the disease-gene seeds) are classified as

disease genes with high probability. Using this algorithm, we

tested if the breast cancer network was more efficient at

recovering known breast cancer disease genes. We queried

538 breast cancer genes from DisGeNET20 and adopted a

standard random resampling approach, whereby the 538-

gene set was randomly split in half, with half used as the

seed set and recovery scored on the left-out half as the

area under the receiver operating characteristic, with the pro-

cess repeated 100 times.

We compared the recovery scores of the breast cancer

network with those of networks built from interactions annotated

with the other most frequent 30 cell lines. For each network, we

ranked and compared the mean recovery score across the 100

iterations. We found the breast cancer network to outperform
Figure 3. Summary of Contextualized PPIs

The processed dataset provides cell-line informa-

tion for each contextualized PPI. The summary plots

compare the frequencies of annotations for

contextualized PPIs,including (A) the most

frequently annotated cell-line names, (B) cell-line

species of origin, (C) cell-line sex, and (D) cell-line

category. The majority of annotations were human

cancer-derived cell lines.
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Table 1. Network Propagation of Disease Genes

Cell name Nodes Edges Density Assortivity Mean AUROC SD Delta

BRCA 4,645 9,015 8.4 3 10�4 �1.8 3 10�1 0.693 0.028

Breast Expressed 10,850 180,342 3.1 3 10�3 �6.8 3 10�2 0.691 0.014 0.002

HEK293 11,069 79,207 1.3 3 10�3 �7.4 3 10�2 0.664 0.017 0.029

HEK293T 13,884 116,709 1.2 3 10�3 �8.2 3 10�2 0.659 0.014 0.034

HeLa 13,824 149,136 1.6 3 10�3 �5.4 3 10�2 0.658 0.015 0.034

MEF (C57BL/6) 4,189 8,689 9.9 3 10�4 �2.2 3 10�1 0.643 0.023 0.049

DU145 3,219 8,075 1.6 3 10�3 �5.5 3 10�1 0.637 0.031 0.055

Jurkat 2,467 5,953 2.0 3 10�3 �4.1 3 10�1 0.637 0.034 0.056

HCT 116 11,936 82,956 1.2 3 10�3 1.1 3 10�2 0.633 0.018 0.060

Schneider 2 4,228 18,745 2.1 3 10�3 �7.2 3 10�2 0.632 0.028 0.060

U2OS 6,667 25,309 1.1 3 10�3 �2.7 3 10�1 0.631 0.020 0.061

SW480 1,763 4,316 2.8 3 10�3 �4.0 3 10�1 0.629 0.029 0.063

MCF-10A 11,469 61,722 9.4 3 10�4 �3.7 3 10�2 0.627 0.018 0.066

Hep-G2 1,304 3,728 4.4 3 10�3 �3.0 3 10�1 0.626 0.046 0.066

BL-21 5,135 11,433 8.7 3 10�4 �2.0 3 10�1 0.625 0.021 0.068

NCI-H1975 1,295 3,546 4.2 3 10�3 �4.3 3 10�1 0.618 0.041 0.074

LS513 1,246 3,486 4.5 3 10�3 �4.4 3 10�1 0.603 0.038 0.089

NIH 3T3 2,914 4,806 1.1 3 10�3 �2.9 3 10�1 0.603 0.030 0.090

HT-29 1,693 4,219 2.9 3 10�3 �3.7 3 10�1 0.601 0.034 0.092

HeLa Kyoto 4,992 16,901 1.4 3 10�3 �1.1 3 10�1 0.601 0.022 0.092

MCF-10AT 11,112 57,754 9.4 3 10�4 �1.4 3 10�1 0.597 0.018 0.096

K-562 1,922 3,687 2.0 3 10�3 �3.8 3 10�1 0.596 0.036 0.096

MRC-5 2,015 3,538 1.7 3 10�3 �3.7 3 10�1 0.583 0.022 0.109

T-REx-293 5,395 19,558 1.3 3 10�3 �4.1 3 10�1 0.581 0.022 0.111

HeLa S3 8,756 39,157 1.0 3 10�3 1.0 3 10�1 0.580 0.019 0.112

Sf9 1,819 3,159 1.9 3 10�3 �2.0 3 10�1 0.575 0.029 0.118

JON 1,354 3,629 4.0 3 10�3 �4.1 3 10�1 0.574 0.036 0.119

SH-SY5Y 8,422 27,864 7.9 3 10�4 �1.5 3 10�1 0.571 0.023 0.122

HEK 6,161 19,569 1.0 3 10�3 �2.2 3 10�1 0.546 0.022 0.147

293T/AT1 1,994 3,315 1.7 3 10�3 �3.1 3 10�1 0.518 0.028 0.174

hTERT-RPE1 2,553 6,577 2.0 3 10�3 �4.2 3 10�1 0.486 0.035 0.206

A comparison of the recovery of breast cancer disease genes in a breast cancer-centric network and networks built from non-breast cancer interac-

tions, in addition to measured graph properties, including nodes, edges, density, and assortivity. Delta values measure the difference in mean AUROC

(area under the receiver operating characteristic) of 100 repeats between the BRCA network and the rest.
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networks built from non-breast cancer interactions at rediscov-

ering known breast cancer genes (Table 1). There are many

cell lines compared with which BRCA performs significantly bet-

ter, and these would be primary candidates for removal when re-

constructing a breast cancer-centric interaction network.

Although encouraging that BRCA outranks other networks, it

performs only marginally better than networks built from

commonly used non-breast cancer cell lines such as HEK293

and HeLa. This is likely due to inspection bias toward well-stud-

ied disease genes known to play a role in multiple cancers (e.g.,

TP53) and commonly assayed in these well-established and

widely adopted cell lines.21–23 In addition, we tested a network

based on PPIs filtered for breast tissue expression (Breast Ex-

pressed) and found it had a recovery score roughly equal to

that of BRCA, suggesting that both methods—literature mining

and tissue expression—of inferring context are similar and could

be used in complementary ways.
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We performed an additional test to determine if interactions

were relevant to their derived cell-line annotations. In partic-

ular, we selected two genes known to be highly specific to

breast cancer, BRCA1 and BRCA2, and counted the number

of PPIs (interactions) involving one or both of these genes

and annotated with breast cancer cell lines (MCF-7 and

MDA-MB-231) compared with those annotated with one of

the other cell lines. The expectation was that breast cancer

annotated interactions should have a significantly higher pro-

portion of interactions involving BRCA1 and/or BRCA2 than

non-breast cancer annotated interactions. Indeed, relative to

the total number of interactions in each network, we found

BRCA1/2 interactions much more likely to be annotated with

breast cancer cell lines, supporting our assumption that the

method is extracting relevant cell-line interactions and that

other PPIs annotated with these cell lines are also likely rele-

vant to breast cancer (Table 2).



Table 2. Targeted Enrichment by Cell Line

Cell name Interactions BRCA1/2 % p FDR

MDA-MB-231 4,185 152 0.036 2.6 3 10�133 7.9 3 10�132

MCF-7 6,577 67 0.010 7.0 3 10�26 1.0 3 10�24

MCF-10A 62,019 174 0.003 1.9 3 10�5 1.9 3 10�4

MCF-10AT 57,832 163 0.003 2.8 3 10�5 2.1 3 10�4

U2OS 26,221 83 0.003 8.5 3 10�5 5.1 3 10�4

BL-21 11,981 27 0.002 3.3 3 10�1 1.0

MEF (C57BL/6) 9,265 21 0.002 3.4 3 10�1 1.0

NIH 3T3 5,031 10 0.002 5.7 3 10�1 1.0

K-562 4,197 7 0.002 7.5 3 10�1 1.0

JON 3,641 6 0.002 7.5 3 10�1 1.0

HCT 116 85,366 164 0.002 8.0 3 10�1 1.0

Sf9 3,414 4 0.001 9.2 3 10�1 1.0

Hep-G2 3,854 2 0.001 1.0 1.0

SW480 4,351 1 0.000 1.0 1.0

DU145 8,123 4 0.000 1.0 1.0

Jurkat 6,245 1 0.000 1.0 1.0

HeLa 179,407 285 0.002 1.0 1.0

HeLa S3 39,911 35 0.001 1.0 1.0

SH-SY5Y 27,964 17 0.001 1.0 1.0

T-REx-293 19,912 6 0.000 1.0 1.0

HEK 20,382 4 0.000 1.0 1.0

HeLa Kyoto 17,093 1 0.000 1.0 1.0

HEK293T 140,112 132 0.001 1.0 1.0

HEK293 85,737 45 0.001 1.0 1.0

Schneider 2 18,789 0 0.000 1.0 1.0

hTERT-RPE1 6,739 0 0.000 1.0 1.0

HT-29 4,271 0 0.000 1.0 1.0

MRC-5 3,597 0 0.000 1.0 1.0

NCI-H1975 3,550 0 0.000 1.0 1.0

LS513 3,487 0 0.000 1.0 1.0

A comparison of the annotation of BRCA1/2-interactions across the most frequent cell lines. The significance was computed with a hyper-geometric

test for over-representation and p values were adjusted for multiple comparisons using the Benjamini-Hochberg method (FDR).
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Reproducibility and Extension
In addition to hosting the presented data online, we also

developed a command line interface utility for downloading

and processing the raw data for reproducing our results and

extending the method. The only prerequisite is access to a

machine with Python installed. The repository can be cloned

from GitHub to any local directory in addition to installation

of the required Python dependencies through the following

commands:

$ git clone https://github.com/montilab/ppi-context

$ pip install -r requirements.txt

The full pipeline, which includes downloading and processing

of raw data, can be run through a single command:

$ python ppictx.py –download –run

Given the constantly evolving nature of the repositories our

approach uses as its input this pipeline is an essential contribu-

tion. The pipeline can optionally take as arguments file paths to

the expected raw files locally stored if users wish to process

alternative versions of the data. This pipeline is readily extensible
to annotating interactions with additional cell-line information

available on Cellosaurus as well as text mining methods alterna-

tive to PubTator.

DISCUSSION

PPI databases are an important bioinformatics resource. Exist-

ing literature-curated databases usually represent cell-type-

agnostic interactions that are not sufficiently specific to a domain

of study to significantly improve the predictive accuracy and

specificity of the learned models.24,25 Due to the dynamic rewir-

ing of biological networks in different cellular states and environ-

ments, an ability to pre-filter interactions by individual cell lines

and types will increase confidence that a given interaction is pre-

sent in a given biological context and will enhance our ability to

model these systems. Here we present a method for annotating

existing and future literature-curated PPI databases with cell-

contextual information. We also generated a cleaned dataset

for general use, immediately applicable to support typical PPI-
Patterns 2, 100153, January 8, 2021 5
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based analyses with additional context, such as querying known

interactions of proteins of interest, reconstruction and analyses

of molecular interaction networks, and multi-omics data integra-

tion approaches.

Our approach assumes that cell lines extracted from report-

ing articles can be used to infer the biological context in which

an interaction was detected, rather than identifying the natural

cellular context in which a PPI would take place. More specif-

ically, we expect extracted cell lines to have been used for

experimental assays that either directly observe or are rele-

vant to the reported interaction. Under this assumption, ex-

tracted cell lines can be used to infer the disease or tissue

relevance of annotated interactions. We use breast cancer

as a primary example to support these assumptions in finding

that breast cancer-centric PPI networks are enriched for

breast cancer-relevant interactions and display expected

network properties such as the proximity of known breast

cancer-disease genes.

A limitation of the method was the availability of interaction-

associated publications on PubMed pre-mined with PubTator.

We were able to extract at least one cell line for 6,146 of

potentially 41,329 articles, leaving room for improvement.

However, since many of these articles report multiple interac-

tions, the majority of original interactions were still annotated

with at least one cell line. For example, the most frequent

article (PubMed: 28514442)26 was associated with 56,297 in-

teractions. In addition, this study assayed the observed inter-

actions in HEK293T cells, exemplifying the disproportionate

frequencies at which interactions are annotated with popular

cell lines such as HEK. This relates to a third limitation, which

is that many PPIs are tested in cell lines such as HEK, due to a

high transfection efficiency rather than their relevance to the

interrogated interaction.27 However, the primary purpose of

the presented dataset is to provide researchers with an addi-

tional tool to make informed decisions about which literature-

curated PPIs are relevant to their research needs. Some PPIs

(e.g., those from high-throughput assays in HEK-related cells)

may not provide contextual information researchers can

leverage, while others (e.g., PPIs from many small-scale

studies annotated with cell lines not primarily used as expres-

sion vectors) are likely to be more applicable. Last, direct

comparisons of distinct context-specific networks are limited

by the unequal and unknown sets of tested interactions per

cell line (e.g., some cell lines are overstudied while some are

understudied). Therefore, the absence of PPIx in a given cell

line could be because those proteins were interrogated and

found not to interact, or their interaction was never tested un-

der those conditions; we cannot distinguish between

these cases.

Despite these limitations, the major use case envisioned for

the presented contextualized PPIs—building interaction net-

works relevant to a biological system of interest—will serve as

an important resource to researchers. Furthermore, the contex-

tualized dataset contains over 100 cell lines with at least 500 in-

teractions each, facilitating an important filtering of non-relevant

interactions and the application towardmeaningful analyses—as

exemplified by our breast cancer network—for a variety of

research domains. As PPI resources continue to grow in size,

so too will the contextualized dataset, as we plan to release
6 Patterns 2, 100153, January 8, 2021
scheduled updates of the data. In addition, we expect these an-

notations to improve as more full-text articles become available

on PubMed Central and text mining resources such as PubTator

improve and grow in coverage of available articles.

Conclusion
We use existing literature-curated PPI databases and available

text mining resources to annotate interactions with cell-contex-

tual information. The contextualized dataset is freely available

and ready for use immediately in network-based analyses.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for data or additional code should be

directed to and will be fulfilled by the lead contact, Anthony Federico

(anfed@bu.edu).

Materials Availability

This study did not generate any reagents or materials.

Data and Code Availability

The presented data and method are freely available online. The processed

data are hosted on GitHub in addition to the source code for raw data fetching

and pre-processing, which is implemented in Python and compatible with all

major operating systems. We have also provided comprehensive documenta-

tion with code examples for working with the processed data.

Repository: github.com/montilab/ppi-context

Commit: 81e31020e6e4244ec23065c72d1fe614256b6391

Documentation: montilab.github.io/ppi-context

Operating systems: Linux, OS X, Windows

Programming languages: R, Python

License: GNU GPLv3
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