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Abstract
Recent developments in the field of single-cell genomics (SCG) are changing our understanding of how functional phenotypes
of cell populations emerge from the behaviour of individual cells. Some of the applications of SCG include the discovery of
new gene networks and novel cell subpopulations, fine mapping of transcription kinetics, and the relationships between cell
clonality and their functional phenotypes. Immunology is one of the fields that is benefiting the most from such advance-
ments, providing us with completely new insights into mammalian immunity. In this review, we start by covering new im-
munological insights originating from the use of single-cell genomic tools, specifically single-cell RNA-sequencing.
Furthermore, we discuss how new genetic study designs are starting to explain inter-individual variation in the immune re-
sponse. We conclude with a perspective on new multi-omics technologies capable of integrating several readouts from the
same single cell and how such techniques might push our biological understanding of mammalian immunity to a new level.

Introduction

Inter-cellular heterogeneity within seemingly homogeneous
cell populations has recently emerged as an important source
of functional variation within and across samples (1). Over the
past few years, technical and methodological developments in
the field of single-cell genomics (SCG) have unveiled new biolog-
ical insights that were previously masked due to measurement
approaches that used bulk samples of cells (1,2). By studying
gene expression at the single-cell level, one can estimate both
the frequency and the strength of transcriptional bursts (3), re-
flecting the level of noise in gene expression, that is strong but
infrequent transcription bursts lead to more noise than small
but frequent bursts (4–6). Differential burst behaviour can exist
for genes with similar mean expressions in bulk populations, so
that biological differences are missed when only bulk samples
are analyzed (3,7,8). This detailed information about gene ex-
pression can be extracted for each allele (maternal versus

paternal) individually, particularly if full-length transcript RNA-
seq methods are used (4,6,9).

Another level of information inherent within single-cell RNA-
sequencing data are gene regulatory interactions and networks,
which can be inferred from correlations and clustering of gene
expression variability across large numbers of single cells (10,11).
Furthermore, single-cell RNA-seq data from individual T or B
cells allow one to fine map their clonality and lineage through
the somatically recombined T- or B-cell receptor sequences in ad-
dition to maintaining the expression information of all the other
expressed genes. This reveals direct correlations between their
clonal origin and functional phenotypes (12), information that is
impossible to obtain by direct bulk analysis.

Beyond the insights mentioned above, a major advantage of
SCG methods is that they allow the discovery of new cell states
or cell types within a sample (Fig. 1A). SCG methods have fre-
quently led to the discovery of new subtypes of cells without a
priori knowledge about cell type-specific markers. One of the
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most commonly investigated systems by SCG technologies has
been the mammalian immune system, which consists of a wide
variety of cell types responsible to fight infection and cancer.
Early single-cell transcriptomic studies showcased the feasibil-
ity of identifying distinct cell types from a complex tissue and
revealing potential novel markers for specific cell types (13–15).
Recent studies further demonstrated that it was possible to

uncover new hidden cell subpopulations within very similar
cells (16–20). Examples include steroidogenic mouse T helper 2
cells (16), mouse Th2 developmental stages (17), different sub-
populations within human ILC3 cells (20), mouse Th17 cells (18),
the highly divergent subpopulations of mouse invariant natural
killer T (iNKT) cells (21), and most recently, three cellular states
during mouse CD4þT-cell activation (22).
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Figure 1. Single-cell measurements retain critical cellular heterogeneity information that is lost by bulk genomics assays. (A) Bulk measurements of a cell population

cannot distinguish different cellular states. Single-cell analyses can reveal different cell subpopulations and predict/investigate cell skewing upon receiving external

stimuli. (B) Single-cell measurements provide higher temporal resolution and a more comprehensive overview of a dynamic process.
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In this review, we will address how new developments in
SCG are changing our understanding of biology, with a specific
focus on the immune system. The immune system displays tre-
mendous genetic and environmentally determined inter-
individual variation and has a central role in determining hu-
man health, so is a fertile area for the application of SCG
methods.

Massively parallel single-cell sequencing: what it tells
us so far?

In recent years, the field of SCG has advanced rapidly and revolu-
tionized our view of many biological processes. Due to the devel-
opment of both single-cell capture technologies and whole
genome/transcriptome amplification methods, it is now feasible
to interrogate the genome and quantify gene expression from
single cells by next generation sequencing (NGS). The first step in
a typical SCG experiment is to capture individual single cells.
This can be done by traditional fluorescence-activated cell sorting
of single cells into individual wells of 96- or 384-well plates, or by
using microfluidic platforms such as the Fluidigm C1 or micro-
droplet technologies (23–25). Once individual cells are captured,
the cells are lysed, and the genomic DNA or mRNA is amplified
by specific protocols to make NGS libraries for sequencing. For
single-cell genome sequencing, see two recent reviews by Huang
et al (26) and by Gawad et al (2); for single-cell RNA sequencing
(scRNA-seq), see a recent review by Kolodziejczyk et al (1).

The genome is usually considered stable during develop-
ment due to the low error rate of DNA replication (27,28).
However, errors do occur, and over sufficient cell divisions, ge-
nomic heterogeneity within the same organism due to these so-
matic mutations—also known as genetic mosaicism—are
expected. This genomic heterogeneity can have profound influ-
ences on both unicellular and multicellular organisms.
Although current genome-wide association study (GWAS) has
been very successful in identifying genetic variants that are re-
sponsible for many human diseases, most of the discoveries are
based on studies conducted at the level of the tissue or individ-
ual (29,30). The genetic differences among individual cells are
largely neglected and cannot be observed when taking the aver-
age signal from a bulk population. However, the genetic hetero-
geneity of different cells is important in many complex traits,
such as cancer (31,32). It is likely that single-cell DNA sequenc-
ing, as well as other SCG technologies, will shed light on the role
of somatic mutations in the coming years.

Single-RNA sequencing has provided many new insights
into immunity in the past few years. For instance, Mahata et al
investigated the gene expression profiles of many individual
mouse T helper 2 (Th2) cells and identified a novel subgroup of
Th2 cells that produce the steroid pregnenolone, indicating that
this specific Th2 subtype contribute to immune homeostasis via
steroidogenesis (16). In a more recent study of the same group,
Proserpio et al pinpoint the relationship between cellular prolif-
eration and differentiation during ex vivo Th2 differentiation
and in vivo malaria infection, revealing three distinct cell states
with different cytokine secretion and proliferation rates.
Specifically, the cytokine-secreting T cells proliferate twice as
fast as activated cells that do not express cytokines (22).

Gaublomme et al studied the heterogeneity of gene expres-
sion during the differentiation of Th17 cells in mice. They used
both in vivo Th17 cells from central nervous system (CNS) and
lymph nodes (LN) from an experimental autoimmune encepha-
lomyelitis model of autoimmunity along with in vitro differenti-
ated Th17 cells. Data from scRNA-seq indicated that Th17 cells

span a spectrum of cellular states with distinct gene expression
signatures; furthermore, novel regulatory factors important for
Th17 self renewal were identified (18). In a later study,
Björklund et al investigated the heterogeneity of human innate
lymphoid cells (ILCs) by performing scRNA-seq on hundreds of
CD127þ ILCs and natural killer (NK) cells from human tonsils
(20). Clustering the transcriptomes of 648 cells revealed four dis-
tinct populations of cells that correspond to four known ILC
populations: ILC1, ILC2, ILC3 and NK cells. More interestingly,
the ILC3 group appeared to be very heterogeneous, and further
clustering on 1,958 annotated immune genes separated ILC3
cells into three different subpopulations, two out of which have
never been described in humans before (20).

Recently, Engel et al combined scRNA-seq with bulk H3K27ac
ChIP-seq data to investigate the heterogeneity of mouse iNKT
subsets (NKT0, NKT1, NKT2 and NKT17). Distinct gene expres-
sion programs were identified for different iNKT subsets. More
importantly, a substantial difference between cells from within
the same subsets was prominent, especially in the NKT2 subset.
Interestingly, one particular enhancer, HS V, from within the
classical Th2 locus control region (33,34), was identified as a key
enhancer for the expression of the cytokine IL-4 in NKT2 cells
(21). These studies beautifully illustrate how cells within seem-
ingly homogeneous population can be quite different. Indeed,
even among well-defined cell types, new cell subpopulations
can often be found.

Human genetic variation of the healthy immune
response

Despite living in an environment, full of life threatening microor-
ganisms, our immune system ensures that humans thrive on
our planet. The essential role of the immune system is illus-
trated by the devastating effects of primary and acquired immu-
nodeficiencies that can lead to persistent infection, cancer
susceptibility and even death (35). Uncontrolled immune re-
sponses against self (autoimmunity) can lead to extensive tissue
destruction and complex clinical manifestations (36). Primary
immunodeficiencies are normally associated with one (or a few)
well-defined genetic mutations (37), while autoimmune disor-
ders are complex multifactorial diseases where both environ-
ment and genetics play a role (36). Despite several single-
nucleotide polymorphisms (SNPs) associated with autoimmu-
nity, only a small fraction of carriers develop autoimmunity (38).

The genotypic and phenotypic diversity present in autoim-
mune disorders is also present in the immune response of
‘healthy’ individuals (39–41). Using a cohort of twin siblings,
Brodin et al (42) have estimated that the inter-individual varia-
tion of CD8 T-cell and B-cell subpopulations is mainly driven by
the environment, while CD4 T cells have shown a high degree
of heritability (42). Eosinophils, neutrophils and some NK cell
features have also shown a high degree of heritability, while
monocytes have shown a low heritability. Orru et al (43) geno-
typed a non-twin cohort and analysed more than 200 immune
traits, identifying a variable degree of heritability depending on
the analysed trait. An especially high degree of heritability was
found in CD4 T regulatory cells (Tregs) (43). Tregs are responsi-
ble for regulating the extent of the immune response and so
play a major role in diseases like cancer and autoimmunity.
Therefore, understanding the genetic basis of immune system
variation in healthy individuals can improve our understanding
of how diseases develop (44).

The studies investigating human immune variation men-
tioned above have primarily made use of flow cytometry to
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define populations and analyse specific protein expression in
thousands of single cells. Despite their tremendous contribution
to our understanding of immune variation, there are limitations
to this technology. The number of parameters analysed tends to
be small, and they must be selected a priori, generating an ascer-
tainment bias. Genomic technologies offer an alternative to
overcome such biases. Dimas et al (45) analysed primary fibro-
blasts, Epstein-Barr virus–immortalized B cells (lymphoblastoid
cell lines or LCLs), and T cells from the same individual and
identified cell-type specific regulatory mechanisms. By combin-
ing genotyping with unbiased whole cell transcriptome analy-
sis, they were able to identify expression quantitative trait loci
(eQTLs) that controlled gene expression in a cell-type specific
way (45), establishing a new paradigm for the study of genetic
variation in the immune system.

By analysing peripheral blood total CD4þT cells, Murphy et
al (46) identified eQTLs regulating expression of IL23R and IL12R,
two cytokine receptors essential for an appropriate immune re-
sponse, and believed to be involved in autoimmune disorders.
To minimize the effects related to the environment and the life
history of the cells, Raj et al (47) analysed naive CD4 T cells, and
identified several eQTLs in loci associated with autoimmune
diseases, such as rheumatoid arthritis and multiple sclerosis,
meaning that the relevant genes are differentially regulated by
distinct genetic variants, mostly in non-coding regions (47).
While resting naive CD4 T cells display a large number of
eQTLs, analysis of effector memory CD4 T cells has identified
only a few additional eQTLs (48), including variants in the IL23R
locus. Regulatory CD4 T cells also display several eQTLs for
genes like ENTPD1, FCRL1, and CD52 (49). Despite our knowl-
edge of the role of many of the genes identified in these studies,
such as IL23R (50) and CD52 (51), our overall understanding of
the immune cell functions of several of these genes is fairly lim-
ited. Further investigations are needed to fully clarify the im-
pact of such genetic variants.

Monocytes play an essential role in orchestrating the im-
mune response: they are capable of presenting antigens and se-
creting cytokines fundamental for effector function and
immune cell regulation (52). Several eQTLs have been identified
in monocytes (53,54). The variant rs10784774 at the 12q15 locus
was shown to regulate a series of genes, with an especially
strong effect detected for LYZ and CREB1, genes with important
functions for bacterial defense and transcriptional regulation of
monocytes (55,56). Neutrophils are another subset of cells es-
sential for the direct bacterial destruction and immune cell reg-
ulation via secretion of cytokines (57). Hundreds of eQTLs have
been identified to regulate gene expression in human neutro-
phils (58), including several associated with neutrophil function.
One example is rs933222, which was shown to be associated
with the expression of RAC2, a gene involved in the NADPH oxi-
dase complex, which is essential for generating the oxidative
burst necessary for pathogen killing (58,48).

The studies discussed above suggested the dominance of
cell-type specific eQTLs, with very few eQTLs shared across
multiple cell types. However, a recent study from Peters et al
(59) analysed monocytes, CD4 T cells, CD8 T cells, B cells and
neutrophils from the same donor. Instead of first computing
eQTLs for each cell type and then comparing the lists with each
other, they used a Bayesian model (eQTL Bayesian Model
Averaging, or ‘eQTLBMA’) to integrate the analysis of eQTLs
from the five different cell types within the same model (59).
They identified around 45% of the detected eQTLs in all five of
the cell types analysed. This result is in marked contrast to pre-
vious studies where, for instance, only 21.8% of the detected

eQTLs were shared between monocytes and B cells (54). This
suggests that appropriate study designs and data analysis
approaches are crucial for establishing the real impact of ge-
netic variants in immune cells.

Four dimensions in genomic data analysis

Most genomic studies analyse cells in their steady state.
However, many biological processes such as cancer progression,
cellular differentiation and immune response are dynamic. In
the context of a dynamic process, different cells may behave
differently or respond/progress at different speeds (Fig. 1B). One
classic example is the development of the nematode
Caenorhabditis elegans. By exploiting the variation and asyn-
chrony in worm development, Francesconi and Lehner identi-
fied thousands of eQTLs during a 12-hour developmental
period. This provides a deep characterization of the genetic ar-
chitecture of the worm’s regulation of development (60).

T-cell activation is another dynamic process in which
antigen and inflammatory cytokines mediate extensive tran-
scriptional changes. Ye et al (61) analysed gene expression in
CD4 T cells during polyclonal T-cell receptor activation under
neutral or T helper 17 (Th17) polarising conditions. Despite high
inter-individual variability in their cytokine responses, this vari-
ability did not have high heritability. Cytokine receptors
displayed less inter-individual gene expression variability, yet
several eQTLs appear to regulate their expression level (61).
Importantly, more than half of the eQTLs identified were not de-
tected when only resting CD4 T cells from the exact same donors
were analysed—in other words, they were only revealed upon
activation/polarisation (47). Hu et al (48) also analysed CD4 T cells
after polyclonal activation and in addition to several eQTLs asso-
ciated with gene expression; they identified rs389862, a variant
that directly influences the direct proliferative capacity.

To date, thousands of genetic variants that are associated
with complex traits have been identified by GWAS and deep se-
quencing (62). The majority of the genetic variants are located
outside protein-coding regions (63,64), indicating that they are
involved in the regulation of the gene expression. Hawkins et al
(65) performed ChIP-seq to analyse the global chromatin state
of Th1 and Th2 CD4 T cells, identifying lineage-specific en-
hancers. Strikingly, they found several SNPs associated with au-
toimmune diseases overlapping with these enhancers. For
example, they discovered that rs10774213, an SNP associated
with type 1 diabetes, resides within an enhancer region of the
gene CCND2, and has a BACH2 binding motif. BACH2 is a tran-
scription factor that regulates effector T- cell differentiation
(66), and the enhancer is one of the most prominent super en-
hancer regions in mouse T cells (67). In fact, autoimmune dis-
ease-associated SNPs tend to be enriched in super enhancer
regions (67).

Looking forward to the potential of SCG to make contribu-
tions to immune genetics, one could imagine that SNPs located
in non-coding regions (such as enhancers and super enhancers)
(68) might directly affect transcription kinetics, influencing ei-
ther burst frequency or intensity. The use of single-cell RNA-seq
data will be an invaluable tool to address such questions (3). In
a typical SCG experiment, many single cells are captured and
analysed so that the temporal information is retained within
data from a ‘snap shot’ cell sample (69). By ordering the single
cells in ‘pseudotime’ based on their gene expression profiles,
one can improve temporal resolution of a dynamic biological
process such as differentiation and infection (Fig. 1B), without a
priori knowledge of marker genes (70).
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In an effort to use pseudotemporal ordering of single cells to
study myoblast differentiation, Trapnell et al developed an unsu-
pervised algorithm called Monocle (70). This was one of the first
methods to order single cells in ‘pseudotime’ to quantitatively
measure the progress of single cells through a biological process.
The algorithm revealed interesting findings relating to skeletal
myoblast differentiation, including the switch-like inactivation of
the key regulator ID1, a sequential wave of transcriptional recon-
figuration and eight novel transcription factors that repress dif-
ferentiation (70). These examples demonstrate the power of
single-cell technologies to integrate the analysis of complex cellu-
lar states involved in dynamic temporal processes. We anticipate
that these techniques will give us further insights into processes
such as cell fate decisions during immune responses.

Future outlook: multi-omic single-cell methods for
genetic and transcriptional analysis

Gene expression heterogeneity is commonly observed in many
single-cell transcriptome studies, especially in a dynamic pro-
cess like the immune response where different cells respond to
stimuli in slightly different ways or at different speeds. The ex-
tent to which this heterogeneity is due to stochastic differences
or genetic differences is not clear at the moment. Therefore, in-
tegrating genetic and transcriptomic data at the single-cell level
is extremely appealing and will help us to link individual genetic
variants to individual cell phenotypes. One early study has re-
vealed scQTLs for seven genes where no eQTLs had been identi-
fied by whole-tissue experiments (3). In addition, computational
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efforts are under way to improve the genetic dissection of cer-
tain common traits using data from SCG methods (71).

At the moment, the development of new methods is a very
active area of research in the field of SCG (1,2,72). Many tradi-
tional genome-wide assays are now possible at the single-cell
level (73–81) (Fig. 2), and combined omic methods from the
same cell are now becoming available. Dey et al developed a
combined genomic DNA and mRNA sequencing (DR-Seq)
method (82), and Macaulay et al developed a ‘genome and tran-
scriptome’ sequencing (G&T-seq) method (83). Both methods
combine whole genome amplification and whole transcriptome
amplification to investigate genomic DNA and mRNA from the
same cell, which makes the integration of genetic and transcrip-
tional data at the single-cell level feasible. In a more recent
study, Angermueller et al developed the scM&T-seq method
(84), which was based on G&T-seq where a bisulphite conven-
tion was performed after the physical separation of genomic
DNA from mRNA. This enables the investigation of DNA meth-
ylation and gene expression from the same cell.

Multi-omic profiling from the same single cell will usher in
an exciting new era of single-cell systems biology, such that
hitherto intractable biological questions can be addressed. We
predict that more multi-omic methods from the same single
cell will be developed in future, providing fundamental insights
of a new nature, and revolutionizing the way we investigate ba-
sic biological questions.
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