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“Plants Are Smarter Than We Thought”
was the headline news recently in a lead-
ing journal (Science News, March 6, 2014;
http://news.sciencemag.org/signal -noise/
2014/03/plants-are-smarter-we-thought),
highlighting an article published elsewhere
(Meyer et al., 2014), which presented evi-
dence that plants are able to make smart
decisions in response to predation and
environment. Plants are well known to
have evolved a fascinating adaptability
to environment likely because of their
sessile nature. Among a long list of com-
plex and unique processes that plants
have evolved include the oxygen evolv-
ing process of photosynthesis (Ort and
Yocum, 1996; Demmig-Adams et al.,
2006), which is the life force of ani-
mal/mammalian kingdoms, carried out
by the semi-autonomous organelle, the
chloroplast (Wise and Hoober, 2007);
totipotency such that any cell from any
plant part can divide, differentiate and
yield a fully functional plant (Chupeau
et al., 2013); the ability of and restor-
ing structural (Meyer et al., 2014) and
metabolic memory (Mattoo et al., 2007;
Mattoo and Handa, 2008); the differen-
tiated chromoplasts (from chloroplasts)
that store important nutrients for animal
and human health (Egea et al., 2010); long
distance signaling up and down the whole
plant (Ruiz-Medrano et al., 2001; Köhler
and Mueller-Roeber, 2004); and recogni-
tion and communication via the emission
of select class of volatiles (Holopainen
and Blande, 2012; Das et al., 2013).
Although the phenomenology is well
described, the molecular and biochemical

mechanisms involved in these processes
are better known of some than other of
these complex processes. The applica-
tion of chemistry (and physics) principles
has considerably added to the progress
made in our understanding of plant life
thus far.

Life on earth became possible some
3.5 billion years ago because “chem-
istry begat biology” (Aberlin, 2014).
However, little is known or under-
stood of what led to the transition
from chemistry to biology (Quoted
from Jack Szostak, Harvard Medical
School, February 2012, as appeared in
The Scientist 03-2014). Nonetheless,
the past two centuries witnessed a close
merger between chemistry (and physics)
and biology, producing a distinct plat-
form for biochemistry (Neuberg, 1903
in en.wikipedia.org/wiki/Carl_Neubergı)
to bear on our understanding of the
functions of a living cell and its com-
plex nature. Because of its very nature,
this discipline unearthed common and
distinct alphabets and trends of bio-
chemical processes that led to a concept
of “unity in diversity,” exemplifying
common principles that underlie the
uniformity of life in diverse kingdoms.
Kluyver’s studies on microorganisms
led to the discovery that ecological
microbiology has a biochemical basis
(Kluyver, 1924 in Florkin, 1960). The
discovery that all the diverse organ-
isms harbor same macromolecules and
genetic code led to the knowledge
that all organisms, from microorgan-
isms to human beings, are built from

similar molecular components with some
variations (Berg et al., 2002).

The past century was a witness to
advances in diverse disciplines including
genetics, and micro- and macro-elements
of biological chemistry. Thus, major dis-
coveries were made on biochemical path-
ways (by Krebs, encompassing 1932, 1937,
and 1957), cofactors (for instance, coen-
zyme A, by Fritz A. Lippman), enzymes
(by Wilhelm Kuhne, as early as 1878), pro-
teins (by Sumner), nucleic acids—DNA
(by Watson and Crick) and RNA world
(http://en.wikipedia.org/wiki/History_of_
RNA_biology), cell membrane
function and signaling pathways
(http://en.wikipedia.org/wiki/History_of_
biochemistry). These advances and dis-
coveries brought together pieces of the
puzzle(s) and laid the foundation for mod-
ern day molecular biology, biotechnology
and epigenetic regulation. Progress in the
identification and quantification of low
abundant molecules led to Metabolome,
which delves into the plasticity and/or
homeostasis of primary and secondary
metabolites, while small RNAs (including
snoRNAs and miRNAs) brought to the
fore the regulation by non-coding RNAs.
Now and again, chemistry is having a bear-
ing on the tremendous progress made in
life sciences and our understanding of the
biological processes.

The application of the innovative
recombinant DNA technology enabled
transfer of genes across kingdoms, cre-
ating the modern day biotechnological
intervention to revolutionize research,
and changing for good the paradigms in
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agricultural and medical research (Cohen
et al., 1973). Transgenic research is the
buzzword for all sorts of remedial mea-
sures, be that to prevent/solve diseases,
produce recombinant products, or grow
more food. Because of the totipotency
of the plant cells, plant biologists were
able to transform and develop plants
engineered with novel, heterologous and
endogenous genes. This has enabled
unambiguous confirmation of gene func-
tion in planta and testing the novel
genotypes for global changes in macro-
molecules and micromolecules alike. The
detection, unambiguous identification,
quantification and fast analysis of min-
utest amounts of cellular micromolecules
including plant hormones has materi-
alized through high resolution superior
gas chromatography, ultra high perfor-
mance liquid chromatography coupled
to triple-quadrupole mass spectrome-
ter, and Nuclear Magnetic Resonance
(NMR) Spectroscopy, and this has
become instrumental in understanding
the chemical footprints during different
phases of growth and development of
plants.

The human genome sequencing was
completed ahead of expected time, and
this success catalyzed moves to sequence
other genomes including crop plants,
all expedited by the progress made in
Information Technology - mining the
data and putting pieces of the puz-
zle together in shortest time possible.
Progress in the Genomics (http://www.

sciencemag.org/site/feature/misc/webfeat/
plantgenomes/feature.html) field ush-
ered in the Epigenomics (Schmitz and
Zhang, 2011) science, and together they
have thrown the whole biological kingdom
wide open to new research, furthering our
understanding of the fundamental basis
of life, development and regulation. The
length and breadth of data that accumu-
late each day is humongous and has led to
the active collaboration in the interface of
bioinformatics and biology. This merging
of two disciplines has enhanced the timely
solutions and brought to bear on the way
science in this century is being conducted
worldwide.

More importantly, these advances in
technology and biology have prepared
the groundwork for the benefit of the
humankind by providing reagents and

roadmaps to solve the issues world is faced
with at this time. This is most applicable
and needed for human welfare, to have
agricultural sustainability and feed the
world, because there clearly is an increas-
ing population growth trend throughout
the globe except in Europe. World human
population is expected to reach close to 9.6
billion by 2050 (http://esa.un.org/wpp/).
The production capacity to grow more
food to meet the demands of the bur-
geoning population gets complicated in
view of the limits in the arable land
that is less and less available, declining
trends in crop yields, less sustainability of
resources such as water, and losses due
to abiotic and biotic stresses. Added to
the challenge in producing more (nutri-
tious) food is the need to fight malnu-
trition and reduce extensive chemical use
in agriculture for a cleaner environment.
Breeding strategies employing marker-
assisted selection for high yielding vari-
eties as well as for identifying germplasm
resistant to abiotic and biotic stresses are
already in vogue. Another approach is to
introduce agronomically important genes
and those that can help crops withstand
environmental extremes into major and
minor crops using genetic engineering
technology.

MAKING BIOTECHNOLOGY MORE
SUSTAINABLE
Biological revolution—genetic engineer-
ing and biotechnology—has a promise
to enhance crop resilience and make a
breeder’s dream come true: produce more
in a shorter time, reduce our reliance on
agricultural chemicals such as pesticides
and fungicides, and add to environment-
friendly sustainable agriculture (Mattoo,
2013). Some of the desirable traits that
have been successfully introduced into
crops by genetic engineering include insect
resistance, disease resistance, herbicide tol-
erance, chilling tolerance, delayed fruit
ripening, prolonged shelf-life, texture and
processing attributes. Irrespective of this
promise, the rapid pace in the devel-
opment of novel engineered crops and
the considerable interest generated among
growers and consumers, the application
of this technology and/or acceptance of
genetically engineered foods world-wide
has been hampered by continued debate
on the safety of such produce. These issues

include ethical concerns, potential toxicity,
selection markers, undesired gene flow,
development of resistance against herbi-
cides and pesticides. Significant research
efforts have gone into satisfying the
consumers’ concerns. Risk assessment
studies have focused on determining the
substantial equivalence of genetically engi-
neered food and traditionally-bred wild
type crops. In such studies, optimized
unambiguous methodologies are required
to search for differences between the engi-
neered and non-engineered food. Many
studies in the literature have not revealed
any unusual compound in the genetically
engineered crops, suggesting that they
are basically substantially equivalent to
non-engineered foods (Baker et al., 2006;
Mattoo et al., 2006; Sobolev et al., 2010;
Farre et al., 2011).

Plant-breeding programs normally
include assessing and accounting the influ-
ence of genetic background (G), ecosystem
environment (E), and G × E interac-
tions singly and/or together on their
impact on the growth and development
of crops/plants, particularly for producing
suitable genotypes for multiple environ-
ments (El-Soda et al., 2014). Evaluating
these parameters also helps understand
plant fitness trade-offs and evolutionary
ecology El-Soda et al. (2014). Because
the genetically engineered plants harbor
a modified gene(s) and the positioning of
the introduced gene is mostly a random
event, it seems important that such plants
be tested for agronomic and biological
performance in the fields under multiple
ecosystem services to assess which pro-
duction system is conducive for impact on
different parameters of the engineered
plant(s) grown side by side the non-
engineered wild type control(s). Studies of
this kind/nature reported in the literature
are miniscule.

It is imperative that controlled field
studies of genetically engineered and other
crops are carried out in an unambiguous
manner alongside the wild type to ascer-
tain which production system may pro-
vide the best medium. Such studies are
expected to provide new ways to leverage
growth enhancement, crop resistance to
stresses, and improve the nutrient content
of the edible produce in an eco-friendly
environment. For instance, a major agri-
culturally utilized genetic event is the
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introduction of the Bacillus thuringenesis
(Bt) protein gene in diverse crops, particu-
larly cotton and maize, to make these crops
resistant to insect pests (Marvier et al.,
2007; James, 2013). The Bt crops have gen-
erated good revenue both for the farmer
and the industry. However, like the non-
engineered crops that suffer losses because
of the adaptability of insects and micro-
bial pathogens, it is expected that Bt crops
and other such novel genetic materials will
also be manipulated by the pathogens in
the long run. Thus, in the field evaluation,
populations of western rootworm were
identified that had developed resistance to
multiple Bt-maize toxins (Gassmann et al.,
2014). In the above-mentioned context,
i.e., developing a friendlier ecosystem suit-
able for growing each crop with a unique
genetic event(s), it is of critical importance
to understand their long-term perfor-
mance in practical terms as well as a novel
resource to discern various players in bio-
logical adaptability. Thus, studies that were
geared to test the effect of natural preda-
tors in a defined ecosystem on the per-
formance of Bt crops demonstrated that,
indeed, natural enemies of insects help
delay the development of insect resistance
to Bt crops (Liu et al., 2014). Just as in con-
ventional breeding strategies, so with novel
biotech crops any unusual observation(s)
in field performance behavior will have to
be scientifically tackled and rectified.

DEVELOPING ROBUST CROP PLANTS
TO RESIST ABIOTIC STRESSORS
Plant growth in nature is compromised
on a daily basis because plants expend
energy to adjust and adapt to changing
environment, which becomes more pre-
carious under additional stresses due to
drought and extreme temperatures, for
instance, excessive summer temperatures
of the tropics, or in cooler climatic sit-
uations. Thus, water availability, temper-
ature, soil properties and ecosystem can
dictate the growth response and yield of
a crop plant. Moreover, each plant adapts
to environment based on the genetic make
up, accordingly impacting growth, devel-
opment and yield (Porter and Semenov,
2005).

Molecular responses to unfavor-
able environment include a medley of
genes and signal transduction pathways
that are tightly regulated and empower

plants to combat the stress conditions.
Although much of this regulation is
at transcriptional, post-transcriptional,
and post-translational levels, the intri-
cacy is of essence at the transcriptional
level involving chromatin modification
and remodeling, cis-regulatory elements
located upstream and downstream the
coding region of the gene, and trans reg-
ulatory transcription factors (Luo et al.,
2012). Also, other important players that
are directly or indirectly associated with
imparting tolerance to abiotic stresses
include protective proteins (including
dehydrins, heat shock proteins—HSPs,
Late Embryogenesis Abundant proteins—
LEA Vierling, 1991; Wang et al., 2004;
Kazuko and Shinozaki, 2006; Lipiec et al.,
2013; Mu et al., 2013), osmolytes (pro-
line/trehalose/sugars Fougere et al., 1991;
Petrusa and Winicov, 1997; Wingler, 2002;
Avonce et al., 2006; Ito et al., 2006; Ge
et al., 2008; Zhang et al., 2010; Hayat et al.,
2012; Yanhui et al., 2012), glycine betaine
(Sakamoto and Murata, 2002; Quan et al.,
2004; Wang et al., 2010; Chen and Murata,
2011), signaling molecules (polyamines
Roy and Wu, 2002; Navakouidis et al.,
2003; Capell et al., 2004; Kasukabe et al.,
2006; Alcázar et al., 2010; Wi et al., 2006;
Liu et al., 2007; Kusano et al., 2008;
Wen et al., 2008; Cheng et al., 2009;
Kalamaki et al., 2009; Gill and Tuteja,
2010; Shukla and Mattoo, 2010; inosi-
tol Xiong et al., 2001; Sengupta et al.,
2008); and hormones (abscisic acid—
ABA Davies and Zhang, 1991; Saradhi
et al., 2000; ethylene—C2H4 Hinz et al.,
2010; Quan et al., 2010; Xiong et al., 2013;
and methyl jasmonate—meJA Bartels and
Sunkar, 2005; Vincour and Altman, 2005;
Wu et al., 2008; Jan et al., 2013), several of
which have been validated for mitigating
abiotic stresses.

Genome sequencing of model and
crop plants before and after exposure to a
given stress has identified candidate genes
whose role(s) in response to different abi-
otic stresses can then be tested/validated
by expression and down-regulation in
homologous as well as in heterologous sys-
tems. Thus, stress responsive genes includ-
ing specific transcription factors have been
identified by comparative transcriptomics.
Enormous activity regarding validated
data on a few crops for the involve-
ment of transcription factors (b-ZIP,

ERF/AP2 family, DOF, HD-ZIP, MYB,
NAC, WRKY, and Zn-finger) (Riechmann
and Ratcliffe, 2000; Dubouzet et al., 2003;
Hu et al., 2006; Ito et al., 2006; Mittler,
2006; Nakashima et al., 2007; Weiste et al.,
2007; Wu et al., 2008; Xiang et al., 2008;
Zou et al., 2008; Gao et al., 2009; Lu et al.,
2009; Oh et al., 2009; Jeong et al., 2010;
Su et al., 2010; Takasaki et al., 2010; Zhang
et al., 2010; Zhao et al., 2010; Wan et al.,
2011; Liu et al., 2012; Yang et al., 2012;
Jan et al., 2013), and other genes (CDPKs,
HAP/CAAT, HSPs-LEA family, MAPKKK)
(Vierling, 1991; Saijo et al., 2000; Wang
et al., 2004; Chandra Babu et al., 2004;
Shou et al., 2004; Kazuko and Shinozaki,
2006; Xu et al., 1996; Nelson et al., 2007;
Xiao et al., 2007; Ning et al., 2010; Duan
and Cai, 2012; Lipiec et al., 2013; Mu
et al., 2013) have shown the true promise
of these candidates as stress modulators.
Members from each transcription factor
family show protective phenotypes against
multiple stresses such as cold, drought
and excess salt (summarized in Figure 1;
Shukla and Mattoo, 2013; Mattoo et al.,
2014). Similarly, engineering targeted
metabolic pathways enable multi-throng
efforts to produce and sustain agricultural
commodities for the benefit of the farmer
and the consumer (Reugera et al., 2012).

Such successful efforts on engineer-
ing crop plants for resistance to differ-
ent abiotic stresses have started paying
dividends since industry has generated
some drought resistant germplasm for
the farmers. This progress in translating
basic research into viable products offers a
roadmap for intensifying efforts to develop
resistant germplasm for all the major and
minor crops and test them under varied
climatic conditions and different ecosys-
tems worldwide.

NUTRIENT-ENHANCED PRODUCE AND
HUMAN HEALTH
It is more and more recognized that
phytonutrient-rich diet containing high
dose of antioxidants/vitamins, present in
fruit and vegetables, potentially prevents
polygenic diseases such as epithelial can-
cers, diabetes, atherosclerosis, hyperten-
sion, cardiovascular diseases and osteo-
porosis (Mattoo et al., 2010; Shukla and
Mattoo, 2010; Fatima et al., 2013). This is
the reason that antioxidant/vitamin sup-
plements are available over the counter
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FIGURE 1 | Players that empower crop plants to withstand abiotic stresses—drought,

temperature extremes and high saline soils. (A) Small molecules such as osmolytes, biogenic
amines and hormones. (B) Transcriptional factors. (C) Heat shock proteins (chaperone proteins) and
protein kinases.

in pharmacies and grocery stores world-
wide. The well-known health-promoting
phytonutrients that have been proposed
to alleviate disease symptoms and reduce
incidence of diseases include carotenoids
(β-carotene, lutein, lycopene), polypheno-
lics/flavonoids, vitamins C and E, isoth-
iocyanates and glucosinolates. That dis-
ease and nutrition are intertwined in
humans is becoming relevant in this sci-
ence/technology, post-genomic era and
the beneficial effects seem linked to
interactions among different antioxidants
present in food, although little is known
about the nature of these interactions
(Shukla and Mattoo, 2010; Fatima et al.,
2013). Thus, the need for a dense nutri-
ent intake through eating a variety of
foods including grains, fruits and vegeta-
bles has been emphasized in the dietary
guidelines for Americans (http://www.

dietaryguidelines.gov).
The increasing interest in the bioac-

tive molecules present in grains, fruits and
vegetables has catalyzed research interest
in developing definitive basic informa-
tion on their content, with more than
40 such molecules having been identified
and deemed essential for a healthy life
(Failla, 2012). The quantity required of
each nutrient to decrease “disease risk”
is a critical factor while bioavailability of
nutrients in a diet determines how much
of the good nutrient’s potential is real-
ized (Shukla and Mattoo, 2010; Fatima
et al., 2013). Although grains, vegetables,
and fruits are sources of antioxidants and

vitamin nutrients, the levels in general
are low, likely due to tight genetic and
developmental controls of their metabolic
pathways during plant growth and devel-
opment (Paine et al., 2005). Further,
biosynthetic pathways for phytonutri-
ents and their regulation are incomplete
in many instances, and “germplasm”
with higher accumulation of phytonu-
trients is not easily available. Modern
tools of metabolomics have already over-
come these limitations by identifying,
purifying and quantifying hundreds
of biochemicals (Mattoo et al., 2006;
Saito and Matsuda, 2010). Mutagenesis
and TILLING (Targeting Induced Local
Lesions in Genomes) approaches are being
used to use selection against genes that
negatively regulate biosynthesis or accu-
mulation of phytonutrients (Zhang et al.,
2009; Handa et al., 2011).

Molecular genetics is now providing
tools to identify and characterize genes
regulating the biosynthesis of phytonu-
trients in plants. Thus, genetic/metabolic
engineering of the rate limiting steps in
the biosynthesis of a compound has facili-
tated increased levels of phytonutrients in
plant tissues/organs (Shukla and Mattoo,
2010; Fitzpatrick et al., 2012; Fatima et al.,
2013; Handa et al., 2014). Animal and
human trials can help determine which
nutrient(s) needs to be enhanced through
molecular strategies designed to increase
their contents in grains, vegetables, and
fruits. Interestingly, the human health
paradigm has been revised to include

preventive, dietary intervention to amelio-
rate diseases and physiological disorders.
More scientific research and validation are
required before phytonutrients become a
“mantra” for healthy living (Handa et al.,
2014).

Regulatable promoters fused to het-
erologous genes allowed higher levels of
carotenoids to accumulate in a fruit-
specific manner in tomato (Rosati et al.,
2000; Dharmapuri et al., 2002; Fraser
et al., 2002; Mehta et al., 2002), and
similarly in other instances where consti-
tutive promoters were employed (Römer
et al., 2000; D’Ambrosio et al., 2004).
Use of regulatable promoters fused to the
E. coli DXS gene (Enfissi et al., 2005)
or suppression RNAi to downregulate
the photomorphogenesis regulatory pro-
tein gene DET1 (Davuluri et al., 2005)
also led to high levels of carotenoids in
tomato fruit. Also, metabolic engineer-
ing of polyamine biosynthesis in tomato
by introducing fruit-specific expression of
yeast S-adenosylmethionine (SAM) decar-
boxylase gene led to 200–300% increase
in lycopene content (Mehta et al., 2002)
while constitutive expression of yeast sper-
midine synthase increased carotenoid con-
tent by 40% (Nambessan et al., 2010).
TOMATO AGAMOUS-LIKE 1 (TAGL1),
a MADS-box transcription factor, expres-
sion resulted in higher accumulation
of lycopene and naringenin chalcone
(Itkin et al., 2009). Another study used
RNAi-mediated fruit-specific suppression
of 9-cis-epoxycarotenoid dioxygenase 3
(NCED3) to suppress ABA synthesis to
stimulate accumulation of upstream com-
pounds such as β-carotene and lycopene
in transgenic tomato fruits (Sun et al.,
2012). In this regard, a mutation in zep1
caused ABA-deficiency in tomato plants
with concomitant accumulation of 30%
more carotenoids in mature red tomato
fruit (Galpaz et al., 2008).

A few other selective examples of engi-
neering phytonutrient content are:

GDP-L-galactose phosphorylase
(VTC2) expression increased vitamin C
level in tomato, strawberry, and potato
by 2-6 fold (Bulley et al., 2012); mam-
malian GTP cyclohydrolase I caused
140-fold increase in pteridine and 2-
fold increase in folate, and by combining
with aminodeoxychorismate synthase
(PABA biosynthesis), folate levels were
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increased 19-fold (Diaz de la Garza
et al., 2007); expression of α-tocopherol
methyltransferase and γ-tocopherol
methyltransferase, respectively in soy oil
and lettuce, increased vitamin E several-
fold (see Fatima et al., 2013); simultaneous
expression of genes for β-carotene, ascor-
bate, and folate biosynthetic pathways
increased β-carotene (169-fold), ascor-
bate (6-fold), and folate (2-fold) in corn
(Naqvi et al., 2009); expression of Rosea1
and Delila or flavonoid-related R2R3-MYB
increased flavonoid content in tomato
pericarp (Butelli et al., 2008); RNAi
suppression of the DE-ETIOLATED1
(DET1) gene (a photomorphogene-
sis regulatory gene) caused several-fold
increase in carotenoid, tocopherol, phenyl-
propanoids and flavonoids (Enfissi et al.,
2010); metabolic engineering of diverse
genes that encode enzymes for sec-
ondary metabolites all increased content
of polyphenolic flavonoids in tomato fruit
(Muir et al., 2001; Niggeweg et al., 2004;
Giliberto et al., 2005; Schijlen et al., 2006),
α-tocopherol (vitamin E) in potato tubers
(Crowell et al., 2008), and some produced
novel flavonoids in tomato fruit (Schijlen
et al., 2006).

It is apparent that modern biotechnol-
ogy in conjunction with Metabolomics is
enabling tissue specific redesign of pri-
mary and secondary metabolic pathways
so as to accumulate high levels of phytonu-
trients in different plant systems. Thus,
transgenic crops are an addition to the
genetic resource to further define genetic,
biochemical, and physiological regulation
of cellular metabolism pathways, including
enhancing functional metabolites in pro-
duce and provide novel “specialty crops”
to the public. In return, public awareness
of benefits of consumer-driven products
such as in human health will further add
to new markets for specialty, highly nutri-
tious crops.

FUTURE PERSPECTIVE
Agricultural biologists have their work
cut out for translating large database
of fundamental nature from laboratory,
growth chamber and greenhouses studies
to the field for securing and producing
(nutritious) food and making agriculture
sustainable. All kinds of transgenic lines
have been developed, including transgenic
lines that have promise of withstanding

environmental extremes (abiotic and
biotic) and others that have a high dose
of phytonutrients. How they fare in the
field is the need of the day, effectiveness
of this translation will require diligence
and a thorough knowledge of the inves-
tigated trait in each crop (Ronald, 2011;
Nelissen et al., 2014). Moreover, there
appears to be a probability that ecological
surprises could be more prevalent because
of global climate change and interact-
ing environment extremes (Lindenmayer
et al., 2010). Also, the point to note is
that nutrient levels in crops are influenced
by genotype/cultivar, growth condition
and developmental stage of the crop
(Shukla and Mattoo, 2010; Lee and Scagel,
2014), therefore unambiguous analy-
sis of edible crops grown under similar
conditions in the field is needed to deter-
mine the robustness of a trait (Neelam
et al., 2008; Mattoo and Teasdale, 2010).
Convergence of agriculture with health
and wealth is a distinct possibility (Dube
et al., 2012), and would also be bene-
fited by developing necessary toolkits
to establish bon a fide natural products
chemistry and translate it into alternative
medicine.

Thus, with the available genetic toolk-
its together with advanced technologies,
chemical genetics, and progression with
alternative agricultural practices, future
action plan is more or less laid out and
roadmap defined for scientists and farm-
ers to work together to meet the chal-
lenges the humankind faces in this new
century. It is evident that there is a need
to prioritize translational research as an
important component of bench scientists’
goals of research. Certainly, there is hope
in the horizon for developing new types
of crop plants that can yield more and
be nutritious with less inputs, are resilient
to harsher environment, and are disease
tolerant.
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