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Abstract

Nuclear protein of the testis (NUT) midline carcinoma (NMC), is a rare and highly aggressive form of undifferentiated
squamous cell carcinoma. NMC is molecularly characterized by chromosomal rearrangement of the NUT gene to another
gene, most commonly the bromodomain and extraterminal domain (BET) gene BRD4, forming the BRD4-NUT fusion
oncogene. Therefore, inhibiting BRD4-NUT oncogenic function directly by BET inhibitors represents an attractive
therapeutic approach but toxicity may limit the use of pan-BET inhibitors treating this cancer. We thus performed a drug
screening approach using a library consisting of epigenetic compounds and ‘Donated Chemical Probes’ collated by the
Structural Genomics Consortium (SGC) and identified the p300/CBP HAT inhibitor A-485, in addition to the well-known
BET inhibitor JQI, to be the most active candidate for NMC treatment. In contrast to JQ1, A-485 was selectively potent in
NMC compared to other cell lines tested. Mechanistically, A-485 inhibited p300-mediated histone acetylation, leading to
disruption of BRD4-NUT binding to hyperacetylated megadomains. Consistently, BRD4-NUT megadomain-associated
genes MYC, CCATI and TP63 were downregulated by A-485. A-485 strongly induced squamous differentiation, cell cycle
arrest and apoptosis. Combined inhibition of p300/CBP and BET showed synergistic effects. In summary, we identified the
p300/CBP HAT domain as a putative therapeutic target in highly therapy-resistant NMC.

Introduction

Nuclear protein of the testis (NUT) midline carcinoma
(NMC) is defined by chromosomal rearrangement of the
nuclear protein of the testis (NVUT) gene on chromosome
15q14 mainly arising in midline structures, such as head,
neck and mediastinum. In ~70% of NMCs, most of the
coding sequence of NUT is fused to BRD4, creating a
BRD4-NUT oncogene [1, 2]. In the BRD4-NUT fusion
protein, the BRD4 moiety contains two tandem bromodo-
mains (BD) that bind to acetyl-lysine residues on histones
and the NUT moiety contains two acidic domains (AD), one
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of which binds to the histone acetyltransferase p300/CBP
stimulating its catalytic activity [3]. Recruitment of p300/
CBP leads to regional histone hyperacetylation, which
further recruits BRD4-NUT in a feed-forward manner [4].
Eventually, massive acetylated chromatin regions termed
‘megadomains’ are created. BRD4-NUT megadomains
drive transcription of underlying genes (e.g. MYC and
TP63) that prevent differentiation and stimulate growth [4].

NMC is one of the most therapy-resistant tumors. As a
major pathogenic driver of transformation, BRD4-NUT
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represents a rationale target for NMC. In preclinical models,
BET inhibitors (BETi) that compete with acetyl-lysines on
histones for binding of BRD4 have shown anti-proliferative

efficacy accompanied with squamous differentiation [5].
Exposure of NMC cells to BETi results in the loss of
BRD4-NUT megadomain and downregulation of
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<« Fig. 1 Chemical probe screening identified a p300/CBP inhibitor

that is selectively anti-proliferative in NMC. a Chemical probe
screening in three tumor cell lines. HCC2429, NUT midline carci-
noma; Patu8988T, pancreatic ductal adenocarcinoma; QGP-1, pan-
creatic neuroendocrine tumor. Cells were incubated with each of the
chemical probes at a concentration of 10 uM for 72 h and cell viabil-
ities were measured by CellTiter Glo Cell Viability assay. The values
were normalized to dimethyl sulfoxide (DMSO)-treated samples and a
heatmap was generated based on the mean values of three independent
experiments. The heat map was colored according to normalized cell
viability as depicted in the figure capture. The p-values of positive hits
(JQI1, A-485 and BTOZ-1) were presented in the text. b Venn diagram
analysis showing NMC-selective and -unselective inhibitors. Probes
with cell viability less than 50% in at least one cell line from the
screening above were chosen as potent hits. ¢ ICs5y of A-485 on three
NMC cell lines and six cell lines of other tumor identities. Mean +
SEM from three independent experiments, *P < 0.05. d Comparison of
the growth effects A-485 (red circles) and the inactive analogue A-486
(black square) on three NMC cell lines. ICsy of A-485 is shown in the
graph. Mean + SD from three technical replicates. In (c) and (d), cells
were incubated with inhibitors at a concentration range between 10 nM
and 25 uM. Cell viability was monitored after 72 h by CellTiter Glo
Cell Viability assay. The dose response curve was used to determine
the IC50 by Prism.

megadomain-associated genes [4]. Several BETi have
entered clinical trials and evidence of clinical activity was
observed [6-8]. However, the response rate in NMC to
BETi was only 20-30% and patients eventually developed
resistance [6, 7]. Another concerning issue is toxicity of
pan-BETi, leading most commonly to thrombocytopenia,
thus limiting the usage of BETi in NMC [6, 7]. Therefore,
alternative regimens or combination therapies need to be
developed. In this study, we identified a p300/CBP HAT
inhibitor that is selectively potent in NMC. Consistent with
the location of p300/CBP in a complex with BRD4-NUT,
this inhibitor disrupts BRD4-NUT megadomain and
downregulates megadomain-associated genes, leading to
squamous differentiation and growth arrest. Additionally,
p300/CBP and BET inhibitors confer synergistic anti-tumor
effects. These results implicate an alternative regimen in
NMC by targeting p300/CBP as a monotherapy or com-
bined with BETi.

Results
A-485 is selectively anti-proliferative in NMC

In order to identify potential inhibitors for NMC, we
screened two libraries of highly selective and well-
characterized inhibitors, so called chemical probes that
have been developed by the Structural Genomics Con-
sortium (SGC) chemical probe program (epigenetic library)
or have been donated by industry (donated chemical probes,
DCP). Each compound of these libraries is accompanied by
its inactive structurally highly related analogues. The
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potency, selectivity and cellular activity of all the com-
pounds have been extensively profiled and data are reg-
ularly updated in an online database and web resources
(https://www.sgc-ffm.uni-frankfurt.de/ and https:// www.
thesgc.org/chemical-probes/epigenetics). The currently
assembled 79 chemical probes cover diverse cellular targets
such as epigenetic regulators, receptors and transporters as
well as kinases [9-11] (Supplementary Fig. 1).

Next, we analyzed the NMC cell line HCC2429 and two
pancreatic tumor cell lines (Patu8988T and QGP-1) to
identify NMC-selective inhibitors and distinguish them
from compounds of general toxicity (Fig. 1a). Among the
chemical probes that showed strong anti-proliferative
activity in HCC2429 cells, we identified the BETi JQI1
(P<0.0001; Fig. 1a, b). Consistent with previous studies
[12], JQ1 also showed strong activity against non-NMC
cells (Fig. 1a, b). In contrast, two compounds, A-485 (P =
0.016) and BTZO-1 (P =0.028), only showed activities in
HCC2429 cells (Fig. la, b). A-485 was developed as a
selective catalytic p300/CBP inhibitor, which has demon-
strated inhibitory effects in several hematological malig-
nancies and androgen receptor-positive prostate cancer [13].
BTZO-1, a selective inhibitor for macrophage migration
inhibitory factor (MIF), was originally discovered as a
cardioprotective agent [14]. However, the role of MIF in
NMC remains to be established and this strategy was not
pursued further in this study.

Considering the important roles of p300/CBP in NMC,
we focused on A-485 for further characterization. To
validate our findings, we determined the half maximal
inhibitory concentration (ICsy) values of A-485 across
three NMC cell lines (HCC2429, 00-143 and Ty-82) and
six non-NMC cell lines (Patu8988T, Patu8988S, U20S,
HepG2, M21 and COLO320DM). We found a sig-
nificantly higher activity in all NMC cell lines compared to
non-NMC cells (Fig. 1c). Supporting an on-target action of
A-485, the inactive analogue A-486 yielded no activity in
NMC cells (Fig. 1d).

A-485 impairs hyperacetylated chromatin domains
and downregulates BRD4-NUT megadomain-
associated genes

Because of the critical roles of p300/CBP in creating
hyperacetylated chromatin domains associated with BRD4-
NUT in NMC [3, 4], we explored the consequences of
p300/CBP inhibition by A-485. First, we performed
immunofluorescence analysis in HCC2429 cells. In DMSO-
treated cells, BRD4-NUT and BRD4 expressed from wild-
type allele (BRD4 wt) were co-localized with acetylated
H3K27 (H3K27ac) in the distinct chromatin foci (Fig. 2a).
A-485 treatment dispersed the hyperacetylated chromatin
foci (Fig. 2a). Similar effects were observed in NMC cell
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lines TC-797 and PER-403 (Supplementary Fig. 2A). We  expression of oncogenes (e.g. MYC, CCATI and TP63) in
further observed that BRD4-NUT and BRD4 wt protein ~ NMC [4]. CCATI is an enhancer RNA upstream of MYC
levels were decreased by A-485 (Supplementary Fig. 2B). locus [15], and CCATI and MYC share one BRD4-NUT

Previous studies demonstrated that BRD4-NUT mega-  megadomain [4]. We assumed that p300/CBP inhibition
domains overlap at oncogenic loci and induce abnormal  could impair BRD4-NUT binding at these oncogenic loci
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<« Fig. 2 A-485 impairs hyperacetylated chromatin domains and

downregulates BRD4-NUT megadomain-associated genes. a
Immunofluoresence detection of H3K27ac, BRD4-NUT and BRD4 wt
proteins in HCC2429 cells incubated with 1 uM A-485 or DMSO for
3 days. Scale bar = 10 um. b Chromatin immunoprecipitation (ChIP)
analysis of H3K27ac and BRD4-NUT at the MYC promoter and TP63
enhancer regions in HCC2429 cells incubated with 1 uM A-485 or
DMSO for 3 days. Chromatin was precipitated with normal rabbit IgG
(IgG as control), H3K27ac and NUT antibodies. Precipitated chro-
matin was analyzed using qPCR and presented as fold enrichment to
IgG control. Mean + SEM from four independent experiments, **P <
0.01, *P<0.05. ¢ Quantitative RT-PCR analysis of MYC, CCATI and
TP63 genes and (d) immunoblot analysis of H3K27ac and MYC
proteins in HCC2429 cells incubated with A-485 at indicated con-
centrations for 48 h. Mean+ SEM from three independent experi-
ments, ***P <0.001, **P <0.01, *P <0.05; n.s., not significant.

due to the diminished acetylated histone. To confirm this,
we performed chromatin immunoprecipitation. Indeed, we
observed diminished H3K27ac and BRD4-NUT levels at
the MYC promoter and TP63 enhancer regions in A-485-
treated HCC2429 cells (Fig. 2b). Consistently, MYC,
CCATI and TP63 mRNA levels were significantly repres-
sed by A-485 at a very early time point (6 h, Fig. 2c),
suggesting a direct effect of A-485 on the expression of
these genes. Similar effects were observed in TC-797 and
PER-403 cells (Supplementary Fig. 3A). MYC protein
levels were also reduced in A-485-treated HCC2429 cells
(Fig. 2d).

To further elucidate the specific role of A-485 on p300/
CBP, we performed p300/CBP loss-of-function experiment.
The siRNAs showed moderate repression of p300 and CBP
mRNA levels respectively (Supplementary Fig. 3B). Since
A-485 targets the HAT domain of both p300 and CBP, we
combined p300 and CBP siRNAs for the knockdown
experiment to maximally phenocopy A-485. In agreement
with A-485, double knockdown of p300/CBP also down-
regulated MYC, CCATI and TP63 mRNA levels supporting
target-specific effects of A-485 (Supplementary Fig. 3C).
These results indicate that p300/CBP inhibition by A-485
efficiently impairs BRD4-NUT oncogenic functions
in NMC.

A-485 induces squamous differentiation, cell cycle
arrest and apoptosis

We reasoned that if competitive inhibition of BRD4-NUT
in NMC is sufficient to induce squamous differentiation
[5], A-485 might also provoke differentiation by disrupt-
ing BRD4-NUT megadomains. Indeed, A-485-treated
HCC2429 cells showed a differentiation phenotype, fea-
tured by flattening of cells and accumulation of pan-keratin
in the cytoplasm (Fig. 3a, b). Expression analysis by
quantitative RT-PCR showed induction of three canonical
squamous tissue genes (KRT10, KRTI14 and TGM]I) in a
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dose-dependent manner (Fig. 3c). C-fos, belonging to the
Activation Protein-1 (AP-1) family, is an immediate-early
inducible transcription factor required for normal epithelial
cell differentiation [16]. Here, we also observed the
induction of c-fos by A-485 (Fig. 3c). Furthermore, A-485
induced the protein levels of Involucrin, a well-known
differentiation marker (Fig. 3d). Differentiation phenotype
was also observed in TC-797 and PER-403 cells treated
with A-485 indicated by morphological changes (Supple-
mentary Fig. 4A). Although TC-797 and PER-403 have
different cells of origin and varying degrees of capacity to
differentiate, their marker profiles are in most consistent
with that of HCC2429 cells (Supplementary Fig. 4B, C).
Consistently, p300/CBP double knockdown in HCC2429
cells also induced c-fos expression (Supplementary Fig.
4D), although the induction of squamous tissue genes
(KRT10, KRT14 and TGM1) was not obvious probably due
to the moderate downregulation of p300/CBP by siRNAs
(Supplementary Fig. 3B). By performing chromatin
immunoprecipitation analysis at the c-fos promoter region,
we also observed diminished H3K27ac and BRD4-NUT
enrichment upon A-485 treatment (Supplementary Fig. 5).
It would be interesting to further dissect the mechanism of
de-repression of differentiation gene by A-485.

In NMC cells, differentiation was shown to be accom-
panied by cell cycle arrest [5]. Indeed, A-485 induced Gl
arrest in HCC2429 cells at early time point (24 h, Fig. 3e).
Moreover, elevated levels of cleaved caspase-3 at later time
points (48 and 72 h) indicated apoptosis induction by A-485
(Fig. 31).

P300/CBP and BET inhibition have synergistic
effects in NMC

Because P300/CBP and BRD4-NUT co-localize in hyper-
acetylated chromatin foci in NMC, we assessed if combi-
nation of p300/CBP and BET inhibitors would lead to
synergistic anti-proliferative effects. We tested 9 different
concentrations of A-485 ranging from 3.91 nM to 1 uM in
combination with 5 different concentrations of JQ1 ranging
from 6.25 to 100 nM for HCC2429 cells. After 72 h incu-
bation, cell viability assays were performed and the syner-
gistic effects were evaluated using SynergyFinder [17].
Combined treatment of A-485 and JQl showed strong
synergy (ZIP synergy score 13.514, Fig. 4a). We also tested
combined treatment in a non-NMC cell line Patu8988S and
still observed an albeit smaller synergistic effect (ZIP
synergy score 7.531, Supplementary Fig. 6), arguing that
combined inhibition of p300/CBP and BET may be syner-
gistic beyond NMC cells.

To further explore this synergistic effect, transcriptomic
profiling was performed in HCC2429 cells incubated with
A-485 and JQ1 alone or combined at concentrations of 1/3
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(Fig. 4b, c), but combined treatment differentially regulated
more genes (518 genes, Fig. 4b, c¢). To obtain insight into
the gene expression patterns, we performed gene set
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Fig. 3 A-485 induces squamous differentiation, cell cycle arrest
and apoptosis. a Hemacolor staining of HCC2429 cells incubated
with 0.5 or 1 uM A-485 for 5 days. b Immunofluoresence detection of
cytokeratin in HCC2429 cells incubated with 0.5 uM A-485 or JQ1 for
5 days. Scale bar = 20 um. ¢ Quantitative RT-PCR analysis of squa-
mous tissue genes (KRT10, KRT14 and TGM1) and c-fos in HCC2429
cells incubated with 0.5 or 1 uM A-485 or 0.5uM JQI1 for 5 days.
Mean + SEM from three independent experiments, ***P <0.001,
**P<0.01, *P<0.05. d Immunoblot analysis of Involucrin in
HCC2429 cells incubated with 0.5 or 1 uM A-485 or 0.5 uM JQI for
5 days. e Flow cytometry analysis of HCC2429 cells incubated with
0.5 or 1 uyM A-485 for 24, 48 and 72h. Mean+SEM from three
independent experiments, ***P<0.001, **P<0.01, *P<0.05.
f Immunoblot analysis of cleaved caspase-3 in HCC2429 cells incu-
bated with 0.5 or 1 uM A-485 for 24, 48 and 72 h.

enrichment analysis (GSEA). In combination-treated sam-
ples, the pS3 pathway and apoptosis were among the most
significantly enriched pathways (Fig. 4d), which probably
contribute to the observed synergistic effects. Furthermore,
gene sets for MYC targets and Wnt/f catenin signaling that
support tumor cell growth and inhibit differentiation were
significantly downregulated (Fig. 4d). Validating the above
findings, immunoblot analysis showed enhanced cleaved
caspase-3 by combined treatment (Fig. 4e), indicating
induced apoptosis. Consistently, combined treatment, but
not single treatment with sub-optimal concentrations,
strongly inhibited colony formation (Fig. 4f and Supple-
mentary Fig. 7A). Moreover, at concentrations below the
IC5, values for the single agents, only combined treatment
induced squamous differentiation (Fig. 4g and Supple-
mentary Fig. 7B).

Discussion

We identified the p300/CBP HAT inhibitor A-485 to be
highly potent in NMC but not in tested cell lines derived
from other tumor entities. Our chemical probe library also
included two p300/CBP bromodomain inhibitors (I-
CBP112 and SGC-CBP30) [18, 19]. However, both p300/
CBP bromodomain inhibitors showed no or only margin-
ally inhibitory effects on NMC cells raising the question if
the bromodomain of p300/CBP is dispensable for its
oncogenic function in NMC. In general, the bromodomain
is required for p300/CBP to serve as acetyl-lysine binding
module tethering the HAT activity to defined chromatin
sites to achieve highly specific histone acetylation and
transcriptional activation [20, 21]. In NMC, BRD4-NUT
binds to acetylated chromatin through its bromodomains
and provides a platform for the recruitment of p300/CBP
and the stimulation of its HAT activity [3]. Moreover, the
bromodomain of p300/CBP is not required for the direct
interaction between p300/CBP and BRD4-NUT [3].
Therefore, we reasoned that the bromodomain might be
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dispensable for chromatin binding of p300/CBP in NMC.
However, whether the bromodomain affects p300/CBP
HAT activities in NMC is unknown. Further work will be
required to compare the effects of the p300/CBP HAT and
bromodomain inhibition to develop the most potent p300/
CBP inhibitors.

NMC, one of the most lethal solid tumors, responds
poorly to chemo- and radiotherapy. Since the discovery of
BET proteins in the tumorigenesis of NMC, current efforts
focus on targeting the causative oncoprotein BET. The
main targets of the pan-BETi developed so far include
BRD2, BRD3 and BRD4, which are ubiquitously
expressed in tissues. Given the importance of BET pro-
teins in the basal transcription machinery, BETi inevitably
affect normal cell functions. Thrombocytopenia, fatigue,
gastrointestinal symptoms, and hyperbilirubinemia are
among the dose-limiting side effects reported in patients
treated with BETi [7]. Pan-BETi was also reported to have
activity for bromodomain testis-specific protein (BRDT),
causing testicular atrophy and reversible infertility [22].
Compared to the activity of BETi across broad tumor
types, p300/CBP inhibitors selectively target lineage-
specific tumors [13]. Moreover, transcriptional profiling
of human T cells and one prostate cancer cell line after
treatment of p300/CBP inhibitors revealed significantly
fewer altered genes than observed with BETi [19, 23].
Thus, p300/CBP inhibition is an alternative therapeutic
strategy that potentially leads to fewer adverse events than
the broadly acting BETi.

In clinical trials of BEiT, only a small fraction of NMC
patients responded and eventually relapsed during treat-
ment [6, 7]. Thus, the development of BETi faces the
challenges of how to enhance the sensitivity of patients
and how to overcome resistance. Others [18, 23] and our
study discovered that combination of p300/CBP and BETi
results in a highly synergistic inhibitory effect in several
tumor types. Furthermore, BETi-resistant cells continue to
respond to the p300/CBP inhibitor [23]. We propose that
combination therapy using both p300/CBP and BET
inhibitors may be necessary to sensitize patient and over-
come BETi resistance. Our efforts in exploring the mole-
cular mechanisms of this synergistic effect in NMC
discovered that combined p300/CBP and BET inhibitors
significantly downregulate Wnt/p catenin signaling.
Interestingly, one study in human and mouse leukemia
cells demonstrated that increased Wnt/p catenin signaling
contributes to the resistance to BETi and negative reg-
ulation of this pathway restores the sensitivity [24].
Recently, a dual inhibitor of both p300/CBP and BET
showed promising anti-tumor effect in prostate cancer
[25, 26]. Thus, combined p300/CBP and BET inhibition
may be a rational and conceivable targeting approach in
NMC and other tumor types.
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Fig. 4 P300/CBP and BET inhibition have synergistic effects in
NMC. a Combination response to A-485 and JQ1 for HCC2429 cells.
CellTiterGlo cell viability assay was performed to measure cell
viabilities of all the indicated dose combinations for 72 h. Synergy
effects were evaluated using SynergyFinder (https://synergyfinder.
fimm.fi). The ZIP synergy score is averaged over all the dose com-
bination cells. b,c¢ Hierarchical clustering (b) and Venn diagram ana-
lysis (c) of the differentially expressed genes in HCC2429 cells treated
with 50 nM JQ1 and 250 nM A-485 alone or combined for 8 h. Each
treatment was done in triplicate. d Representative GSEA plots show-
ing significantly enriched up- and downregulated pathways (combi-
nation-treatment versus DMSO). e Immunoblot analysis of cleaved
caspase-3 in HCC2429 cells incubated with 50 nM JQI and 250 nM
A-485 alone or combined for 72h. f Colony formation assay for
HCC2429 cells incubated with 50 nM JQ1 and 250 nM A-485 alone or
combined for 72h. g Quantitative RT-PCR analysis of squamous
tissue genes (KRT10, KRT14 and TGM1) and c-fos in HCC2429 cells
incubated with 50 nM JQI1 and 250 nM A-485 alone or combined for
5 days. Mean + SEM from three independent experiments, ***P <
0.001, **P<0.01, *P<0.05; n.s., not significant.

Materials and Methods
Cell culture

NMC cell lines HCC2429 [27], Ty-82 [28], 00-143 [29],
TC-797 [30], PER-403 [31] and the pancreatic tumor cell
line QGP-1 [32] have been described. HCC2429, Ty-82 and
00-143 were kindly provided from Lead Discovery Center
GmbH (Dortmund, Germany). The pancreatic tumor cell line
Patu8988T was from the American Type Culture Collection.
All cell lines were free of mycoplasma contamination and
authenticated using short tandem repeat (STR) profiling.

Data availability

Microarray data are available through ArrayExpress under
the accession code E-MTAB-8955.
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