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Abstract: This paper contributes a concurrent topological structure and cross-infill angle optimization
method for material extrusion type additive manufacturing (AM). This method features in modeling
the process-induced material anisotropy through microscopic geometric modeling obtained by
scanning electron micrographs. Numerical homogenization is performed to evaluate the equivalent
effective properties of the 100-percentage cross-infilled local microstructures, and by introducing
fitting functions, the relationship between equivalent effective material properties and varying cross-
infill angles is empirically constructed. Then, optimization problems involving cross-infill angles
as design variables are formulated, including concurrent optimization formulation. Numerical and
experimental studies are conducted to illustrate the effectiveness of the proposed method. Both
the numerical and experimental results demonstrate that the structural stiffness obtained by our
proposed method has evidently improved.

Keywords: homogenization; anisotropy; topology optimization; design for additive manufacturing

1. Introduction

The past few decades have seen rapid development of additive manufacturing (AM)
technology, including stereolithography apparatus (SLA), fused deposition modeling
(FDM), powder bed fusion, etc. The layer-by-layer material deposition or solidification
process eliminates the barriers in fabricating complex structures, and meanwhile, boosts
the design activities that lead to a number of superior-performing mechanical structure
examples [1–3]. On the other hand, this novel processing method has its limitations and
challenges to design activities, such as material anisotropy [4,5], overhang free issue [6,7],
residual stress [8,9], porous structures [10,11], multiscale design [12–14], etc. Among these
topics, material anisotropy, as an inevitable AM feature, has been extensively studied for a
long time.

The AM material anisotropy, mainly caused by the layer-based manufacturing pro-
cess, is regarded as a process-induced feature [15]. Almost all AM processed materials,
including metals, alloys, plastics, composites [16] and ceramics [17], exhibit certain levels of
property anisotropy, while the widely adopted material extrusion-type AM process (such
as FDM) for plastics and composites, present even more evident anisotropy than other
AM processes [18]. Hence, the material extrusion process-related material anisotropy is
the main focus of research. So far, material extrusion process-induced anisotropy has been
widely discussed in the literature, and structural design methods addressing the anisotropic
material properties that have been accordingly developed, as summarized below.

The build direction-related material anisotropy has been focused on for years. It has
been experimentally found that processed plastics or composites commonly have lower
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moduli and tensile strength along the building direction. Optimization of the build direction
for the improvement of mechanical performance was conducted in [19,20]. However, build
direction optimization based on a fixed geometry only generates sub-optimal solutions.
Tailoring the topological structure [21] while simultaneously optimizing the build direction
is even more promising. Concurrent optimization considering density distribution and
build direction for additively manufactured functionally graded lattice structures was
investigated in [22]. In a recent study conducted by Li et al. [23], a concurrent structural
topology optimization coupled with building direction for SLA-printed parts was presented.
Additionally, the stress-constrained topology optimization for material extrusion-processed
anisotropic materials was introduced in [24].

For material extraction-type AM processes, printing path optimization has emerged
as an important topic due to its vital role in affecting the distribution of material anisotropy.
As is widely recognized, the printed filaments or fiber-reinforced composites demon-
strate stronger tensile modulus and strength along the printing path [25]. Early work
in the field was aimed at formulating the printing path optimization based on the path
orientations defined as discrete angle variables [26,27]. However, this strategy results
in complex and disorganized local path directions, which un-trivialize the extraction of
effective gap/overlap-free printing paths feasible for implementation. This issue can be
relieved by applying smoothing filters [28]. To totally eliminate the path continuity concern,
topology optimization methods with geometry-dependent contour-offset deposition path
patterns were developed [4,5,29]. Recently, Sugiyama et al. [30] optimized the curved
fiber trajectories based on preliminary stress field calculations. Liu et al. [31] presented an
optimization method for gap/overlap-free design of carbon fiber-reinforced composites,
wherein the fiber paths are represented by the equidistant iso-level set profiles. The above
approaches performed topology optimization with printing path factors and showcased
significant improvement of mechanical performance. However, the above works have fo-
cused on method development, while in-depth reasoning for layered path-induced varying
microstructures and anisotropic material properties has not yet been addressed.

In the case of using commercial 3D printing pre-processing, the 3D-printing deposition
path is restricted to the selectable infill patterns, e.g., one or two contour-offsets plus the
infill patterns of lines, cross, cubic, or triangles (see Figure 1), and therefore, the specific
infill patterns and the microscopic interactions amongst the filaments are determinant of
the equivalent macroscopic material anisotropy [32]. Aloyaydi et al. [33] presented an
investigation on the effect of infill patterns on the mechanical response of 3D-printed speci-
mens, wherein the grid-infill/cross-infill pattern had shown the highest tensile strength
due to the special interlacement between layers. Similar studies were reported by [34,35].
Though widely studied (especially when including experiments), it seems that the way infill
patterns influence the mechanical properties of AM parts has not yet been fully revealed.
The in-depth reasoning for the interactions between layered filaments deserves careful
attention, and the linkage between the microstructures and macroscopic equivalent me-
chanical properties should be calibrated. The above knowledge plays a key role in realizing
concurrent optimization on the structural topology and the infill pattern parameters.
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To address the above issues, this paper presents an optimization method for material
extrusion polymer AM with cross infills, which is involved in quantifying the interactions
between filaments and then linking the microscopic configurations to the macro-equivalent
anisotropic properties. Specifically, the periodic microstructures subject to different cross-
infill angles are constructed facilitated by experimental calibrations. Numerical homog-
enization is then implemented to evaluate material effective properties, and mechanical
tests on the FDM-processed specimens with different cross-infill angles are conducted
to validate the homogenization results. Finally, two types of optimization problems are
studied for optimization of the cross-infill angles and the structural topology.

The remainder of this paper is organized as follows. Section 2 illustrates the method
details of the proposed optimization method for material extrusion polymer AM. Mean-
while, the optimization problems are formulated, and the related sensitivities are de-
rived. Section 3 demonstrated two case studies combined with experimental validation to
show the effectiveness of the proposed method. Finally, Section 4 gives the conclusions
for this study.

2. Details of the Proposed Method
2.1. Geometric Modeling and Numerical Homogenization

Layer-by-layer processing in additive manufacturing leads to the evident anisotropy
property of the printed materials and it is worthwhile to reason the material anisotropy
by fine-tuning the microstructures through differently oriented cross-infill path patterns.
To start with, several specimens are prepared by material extrusion polymer additive
manufacturing with different cross-infill angles and an infill density of 100%. The material
used is 1.75 mm PLA filaments from JGAURORA, China. The printing-process parameters
and material properties are illustrated in Figure 2a, and the printing setup is shown in
Figure 2b. Next, the printed samples were stored in liquid nitrogen at low temperature
for hours and broken with brittle fracture to obtain flat breakage surfaces, as shown in
Figure 2c. Afterwards, laser scanning microscopy (VK-X200K, Keyence, Japan) is utilized
to get the microscopic configurations of the printed cross-infill materials at 200 times
magnification. At least three fracture surfaces were developed for each cross-infill angle.
Figure 3 summarizes the scanning electron micrographs of specimens with three typical
cross-infill angles, namely 0 degrees in Figure 3a, 90 degrees in Figure 3b, and an in-
between cross-infill angle as shown in Figure 3c. It can be seen that the filaments align
well along the printing path, but voids exist between adjacent filaments due to the elliptic
cross-section shape, which results in the macroscopic anisotropy mechanical properties.
According to the microscopic images and the measured dimensional ratios, the geometric
models can be established. Next, numerical homogenization [36] is applied in order to
obtain effective elasticity properties by approximating the periodic microstructures as
homogeneous materials. It is noted that the key to numerical homogenization is to ensure
the periodicity of microstructures. Thus, we calibrate the representative unit cell size
according to the cross-infill angles in order to satisfy the periodic boundary conditions.
On the premise of generality, in this study, we define the cross-infill angle 90◦–α as the
filament in lower layer is fixed to 90 degrees, the filament in the upper layer is α, and the
90◦–α layout repeats for other layers. Figure 4 shows the definition of cross-infill angles
and the microstructure geometric models. The homogenized effective elastic matrices of
the microstructures are also provided. It is noted that a virtual base material property of
E0 = 100 and µ = 0.3 is assigned.

In order to carry out cross-infill angle optimization, it is necessary to parameterize
the material properties, i.e., to build the mathematical relationship between the elastic
properties of the cross-infill materials and cross-infill angles. A polynomial interpolation
function is employed to describe the relationship between the homogenized effective elastic
matrix D and the sine value of α, as:

Dij = a1 + a2(sin α) + a3(sin α)2 + a4(sin α)3 + a5(sin α)4, (1)
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where Dij is the constants of the homogenized effective elastic matrix. ai (i = 1~5) denotes
the fitting coefficients obtained by the least squares-based regression analysis from the
above 5 samples (from Figure 4). The fitting coefficients for the elastic constants are given
in Table 1.
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Table 1. The fitting coefficients for the elastic constants.

a1 a2 a3 a4 a5

D11 105.90 24.99 −50.49 56.80 −20.37
D12 34.66 0.94 21.40 −55.04 37.76
D13 38.16 11.05 −32.69 52.00 −31.25
D16 0.00 −4.39 12.60 −28.05 19.84
D22 87.89 −15.89 101.10 −20.14 12.57
D23 34.54 −2.09 17.08 −35.63 21.12
D26 0.00 −1.43 3.13 −5.33 3.63
D33 104.80 10.32 −71.51 134.10 −88.53
D36 0.00 −6.07 8.95 −12.05 9.17
D44 29.35 −1.02 17.06 −38.45 25.28
D45 0.00 −0.87 1.93 −3.41 2.35
D55 29.36 −2.69 14.13 −27.04 15.89
D66 31.96 6.45 −22.31 40.53 −25.81

2.2. Experimental Validation

The last subsection constructs the geometric models for the periodic microstructures
of the cross-infill materials and the equivalent elastic properties are obtained via the
homogenization method. To verify the effectiveness of the established models, numerical
and experimental tests were carried out on the MBB beam.

Figure 5 depicts the boundary conditions of the MBB beam. The beam is supported at
two foot corners, and a distributed force is applied to the middle of the beam. With the
assigned homogenized elastic properties (from Figure 4), the deformation nephograms
of the MBB beam are simulated in ANSYS through static structure analysis, as shown in
Figure 6. Specially, the total magnitude of the distributed forces is set as 10.
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Figure 6. The deformation nephograms of the MBB beam with the assigned effective elastic prop-
erties of cross-infill materials. The cross-infill angles are (a) 90◦–0◦, (b) 90◦–14.48◦, (c) 90◦–30◦,
(d) 90◦–48.59◦, and (e) 90◦–90◦, respectively.

The details of the experimental test are as follows. Figure 7a demonstrates the AM
direction of the experiment samples. Figure 7b shows the fabricated experiment specimens
from the top view. The overall structure size of each specimen is 60 mm × 16 mm × 12 mm.
Each type of experimental specimen was printed twice for mechanical tests to prevent
contingency of the experiments. The experiments were performed with a universal me-
chanical testing machine with a loading speed of 2 mm/min. The testing setup is shown
in Figure 7c.
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Figure 8a shows the force-displacement curves for all the tests. Then, we evaluate
the linear segments of the experimental curves to extract the load-displacement ratios,
and the results are compared with the ratios of the applied force to displacement from the
numerical simulations (in Figure 6). Figure 8b summarizes the comparison results, wherein
satisfactory consistency can be reached. It is noteworthy that the base material properties
in the numerical simulations are virtual, while altering the applied Young’s modulus
only scales the y-axis coordinates while not affecting the layout of the inclination ratio
bars. Therefore, not applying the true fundamental material properties when performing
representative unit homogenization and structural finite element analysis does not harm
the truthfulness of the comparison, and consistency between the numerical predictions and
the experimental tests can be reached.
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2.3. Formulation and Sensitivity Analysis of the Optimization Problem

Based on the proposed fitting model that maps the cross-infill angle to the material
effective properties, two types of structural optimization problems are considered and
formulated, namely, the angle optimization considering cross-infill and the concurrent
optimization considering cross-infill angles and structural topology.

2.3.1. Angle Optimization Considering Cross-Infill

In the first optimization problem, we consider a minimum compliance optimization
problem for 3D structures with a cross-infill path pattern. As shown in Figure 9, a 3D
structure is divided into N regions along the AM direction, and the cross-infill angle 90◦-αi
in each region is the design variable to be optimized. The mathematical formulation of the
topology optimization problem is stated as below:

find : ξ = [α1, α2, . . . , αN ]
T .

min : C = UTKU =
n
∑

e=1
UT

e KeUe.

s.t. : F = KU ,
0◦ ≤ αi ≤ 90◦, i = 1, 2, . . . , N.

(2)

where ξ is the design variable vector that collects the design variable in each region;
C denotes the structural compliance; K and U are the global stiffness matrix and nodal
displacement; n is the total number of elements; Ke and Ue are the elemental stiffness matrix
and nodal displacement vector, respectively; and F is the global force vector.
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According to the adjoint method, the derivatives of the objective function with respect
to the design variable αi is calculated as:

∂C
∂αi

= −UT ∂K
∂αi

U. (3)

Considering that αi only has effects on the stiffness matrix K in the i-th region,
Equation (3) could be simplified as:

∂C
∂αi

= − ∑
e∈Ri

UT
e

∂Ke

∂αi
Ue = − ∑

e∈Ri

UT
e

(∫
Ωe

BT ∂D
∂αi

BdΩe

)
Ue, (4)

where Ri is the set of elements for which the element belongs to the i-th region, B is
the strain–displacement matrix, and Ωe is the elemental domain. The effective elastic
matrix D and the derivative ∂D

∂αi
are obtained by assembling the interpolation functions of

Equation (1).
Based on the sensitivity information, this optimization problem can be solved by

means of the method of moving asymptotes (MMA) [37].

2.3.2. Concurrent Optimization for Cross-Infill Angles and Structural Topology

In the second optimization problem, a concurrent 3D optimization problem consider-
ing cross-infill angles and structural topology is studied. Thus, the design variable vector χ
that collects the density value xe of each element and the cross-infill angle α of the overall
structure is written as:

χ = [x1, x2, . . . , xn, α]T . (5)

When the element density is assumed to be xe, the elemental stiffness matrix Ke
can be interpolated using the modified Solid Isotropic Material with Penalization (SIMP)
model [38] and calculated as:

Ke =
(
Emin + (xe)

p(1− Emin
)
)K0, (6)

where K0 is the stiffness matrix of a full solid element, Emin is a very small value to prevent
the stiffness matrix from becoming singular, and p is the penalization factor to promote
convergence to a 0–1 solution—in this study we use p = 3.
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Further, the topology optimization problem is formulated as:

find : χ = [x1, x2, . . . , xn, α]T .

min : C = UTKU =
n
∑

e=1
UT

e KeUe.

s.t. : F = KU,

V
V0

= 1
n

n
∑

e=1
xe ≤ f ,0 ≤ xe ≤ 1, e = 1, 2, . . . , n.

0◦ ≤ α ≤ 90◦.

(7)

where χ is the design variable vector that collects the density value xe of each element
and the cross-infill angle α of the overall structure; V and V0 are the structure volume and
design domain volume; and f is the prescribed volume fraction limit.

Similarly, when the gradient-based algorithm is used to solve the optimization prob-
lem, the sensitivity information of the objective and constraint functions with respect to the
design variables is necessary.

The derivatives of the objective function C with respect to the element density value
xe are calculated as:

∂C
∂xe

= −UT
e

∂Ke

∂xe
Ue. (8)

Combining with (6), Equation (8) is expressed as:

∂C
∂xe

= −p(xe)
p−1(1− Emin) UT

e K0Ue = −p(xe)
p−1(1− Emin) UT

e

(∫
Ωe

BTDBdΩe

)
Ue. (9)

The derivatives of the objective function C with respect to the cross-infill angle α is
calculated as:

∂C
∂α

= −UT ∂K
∂α

U = −
n

∑
e=1

UT
e

∂Ke

∂α
Ue. (10)

Combining with (6), Equation (10) is expressed as:

∂C
∂α

= −
n

∑
e=1

(
Emin + (xe)

p(1− Emin
)
)UT

e

(∫
Ωe

BT ∂D
∂α

BdΩe

)
Ue. (11)

The sensitivity of the structural volume V with respect to the element density value xe
and cross-infill angle α can be calculated as:

∂V
∂xe

= 1, (12)

∂V
∂α

= 0. (13)

3. Case Studies
3.1. Example 1

In the first numerical example, a 3D bracket is studied. The dimension and boundary
conditions of the bracket are shown in Figure 10a. The holes marked in blue are fixed,
and a distributing force F = 20 is applied vertically to the top area marked in red. The
AM direction and region divisions are illustrated in Figure 10b. The optimization is to
design the cross-infill angle in each region for minimum structural compliance. Then, the
design domain is voxelated and divided into 52 × 38 × 62 grids as shown in Figure 10c.
The optimization begins with an initial guess of the three regions all being filled with
90◦–90◦ cross-infill paths. The optimization process terminates when the optimization loop
is larger than 20.
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Figure 10. Illustration of the first example. (a) The dimension and boundary conditions of the bracket;
(b) the AM direction and region divisions; (c) voxelization of the bracket.

The convergence history of the optimization process is depicted in Figure 11a. The
compliance curve eventually converges to 90◦–90◦, 90◦–37◦, and 90◦–49◦ distribution in the
three divided resigns, respectively. The optimization results demonstrated a 5% reduction
in structural compliance compared to the initial guess. Meanwhile, to evaluate the effect
of different initial guesses on the optimization result, the optimization is also performed
with an initial guess of the three regions being filled with 90◦–0◦ cross-infill paths. The
convergence history is shown in Figure 11b. It is found that the same optimization results
are found from the new initial guess. Meanwhile, the deformation nephograms of the
structures are shown in Figure 12, wherein the structure is filled with uniform cross-infill
angles of (a) 90◦–90◦, (b) 90◦–0◦, and (c) optimized cross-infill angles, respectively.
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3.2. Example 2

In the second numerical example, the concurrent optimization for a cantilever case
considering cross-infill angle and structural topology is studied. The dimension and
boundary conditions of the cantilever are shown in Figure 13a. The left holes of the
structure are fixed and a distribution load F = 10 is applied to the top-right hole area.
Figure 13b illustrates the AM direction and the voxelization by 116 × 66 × 6 grids. The
total volume constraint is f = 0.5. The optimization begins with an initial guess of the
structure being filled with a 90◦–90◦ cross-infill, and the density value of each element is
assigned to f . In order to prevent the occurrence of checkerboard pattern and ensure the
size control for additive manufacturing, the well-known density filter [39] is adopted with
a radius of four times the element size. The maximum iteration number is 100.

Micromachines 2022, 13, x  11 of 15 
 

 

 

Figure 11. The convergence histories of the optimization processes from cross-infill initial guesses 

of (a) 90°–90° and (b) 90°–0°. 

 

Figure 12. The deformation nephograms of the structures with different cross-infills: (a) 90°–90°, (b) 

90°–0°, and (c) optimized cross-infill angles. 

3.2. Example 2 

In the second numerical example, the concurrent optimization for a cantilever case 

considering cross-infill angle and structural topology is studied. The dimension and 

boundary conditions of the cantilever are shown in Figure 13a. The left holes of the 

structure are fixed and a distribution load F = 10 is applied to the top-right hole area. 

Figure 13b illustrates the AM direction and the voxelization by 116 × 66 × 6 grids. The total 

volume constraint is 𝑓 = 0.5 . The optimization begins with an initial guess of the 

structure being filled with a 90°–90° cross-infill, and the density value of each element is 

assigned to 𝑓. In order to prevent the occurrence of checkerboard pattern and ensure the 

size control for additive manufacturing, the well-known density filter [39] is adopted with 

a radius of four times the element size. The maximum iteration number is 100. 

 

Figure 13. Illustration of the second example. (a) The dimension and boundary conditions of the 

cantilever; (b) the AM direction and voxelization. 

The convergence history of the optimization process is shown in Figure 14a. The 

compliance iteration curve eventually converges to 7.71, and the optimized angle 𝛼 = 

47.4° or 51.44° is obtained. The topology optimization performed with the initial guess of 

Figure 13. Illustration of the second example. (a) The dimension and boundary conditions of the
cantilever; (b) the AM direction and voxelization.

The convergence history of the optimization process is shown in Figure 14a. The
compliance iteration curve eventually converges to 7.71, and the optimized angle α = 47.4◦

or 51.44◦ is obtained. The topology optimization performed with the initial guess of a
90◦–0◦ cross-infill angle combination was also studied, providing the same optimization
result as shown in Figure 14b.
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The optimized cantilever is shown in Figure 15a. For the purpose of comparison, the
optimization results obtained by the SIMP method are illustrated in Figure 15b without
consideration of any infill patterns (using an isotropic material model). To obtain compara-
ble structural compliance values, the SIMP-based design was assigned the cross-infill path
pattern with crossing angles of 90◦–0◦ and 90◦–90◦, resulting in structural compliances of
8.10 and 7.97, respectively.



Micromachines 2022, 13, 852 12 of 15

Micromachines 2022, 13, x  12 of 15 
 

 

a 90°–0° cross-infill angle combination was also studied, providing the same optimization 

result as shown in Figure 14b. 

The optimized cantilever is shown in Figure 15a. For the purpose of comparison, the 

optimization results obtained by the SIMP method are illustrated in Figure 15b without 

consideration of any infill patterns (using an isotropic material model). To obtain 

comparable structural compliance values, the SIMP-based design was assigned the cross-

infill path pattern with crossing angles of 90°–0° and 90°–90°, resulting in structural 

compliances of 8.10 and 7.97, respectively. 

 

Figure 14. The convergence histories of the optimization processes from cross-infill initial guesses 

of (a) 90°-90° and (b) 90°-0°. 

 

Figure 15. Comparison of the optimized cantilevers by using (a) our method and (b) the SIMP 

method. 

To further validate the effectiveness of the proposed method, additive manufacturing 

and mechanical tests were performed on the above three numerical results. Figure 16a 

shows the 3D printed experimental specimens. The structures in Case A were obtained by 

using our method and fabricated with the optimized cross-infill angles of 90°–47°. The 

structures in Case B and Case C were obtained using the SIMP method, and fabricated 

with 90°–0° and 90°–90° cross-infill angles. The overall structure size of each specimen is 

90 mm × 48 mm × 5.5 mm. The creation of each type of experimental specimen was 

repeated twice to prevent experimental contingency. 

The experiments were performed with the WDM-100 electronic universal testing 

machine with a loading speed of 2 mm/min. The setup of the bending experiments for the 

cantilever beams is shown in Figure 16b. The load-displacement curves are illustrated in 

Figure 15. Comparison of the optimized cantilevers by using (a) our method and (b) the SIMP method.

To further validate the effectiveness of the proposed method, additive manufacturing
and mechanical tests were performed on the above three numerical results. Figure 16a
shows the 3D printed experimental specimens. The structures in Case A were obtained
by using our method and fabricated with the optimized cross-infill angles of 90◦–47◦. The
structures in Case B and Case C were obtained using the SIMP method, and fabricated
with 90◦–0◦ and 90◦–90◦ cross-infill angles. The overall structure size of each specimen
is 90 mm × 48 mm × 5.5 mm. The creation of each type of experimental specimen was
repeated twice to prevent experimental contingency.
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Figure 16. 3D printing and mechanical test results: (a) the 3D printed experimental specimens, and
(b) the mechanical test setup.

The experiments were performed with the WDM-100 electronic universal testing
machine with a loading speed of 2 mm/min. The setup of the bending experiments for the
cantilever beams is shown in Figure 16b. The load-displacement curves are illustrated in
Figure 17. It is found that the cantilever optimized by our method is stiffer than the others,
which confirmed the numerical predictions.
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4. Conclusions

This paper evaluates the microstructures of cross-infilled 3D printing parts through
scanning electron micrographs and builds the linkage between the material effective prop-
erties and the microstructures through numerical homogenization and regression analysis.
Hence, the reasoning on process-induced material anisotropy is performed and the gained
knowledge plays avital role in supporting structural optimization with cross-infill an-
gle variables. Numerical results and mechanical tests illustrate the effectiveness of our
proposed method in gaining improved structural stiffness.

On the other hand, the assumptions about the isotropy and tension-compression
homogeneity of the AM raw materials are not sufficiently rigorous. Enhancing the accuracy
of the constitutive modeling will be focused on in our forthcoming work.
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