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Abstract: The identification of genetic markers is valuable for improving the egg-laying performance
in goose production. The single-nucleotide polymorphism (SNP) rs1714766362 in an intron of the
goose KIAA1462 gene was found to be relevant to laying performance in our previous study. However,
its function remains unclear. In this study, the full-length coding sequence of KIAA1462 gene was
firstly characterized in Yangzhou geese. Q-PCR (Quantitative Real Time Polymerase Chain Reaction)
results showed that KIAA1462 was highly expressed in the liver, ovary, and mature F1 follicles.
For SNP rs1714766362, geese with the AA genotype showed better laying performance than the
TT ones and exhibited a higher KIAA1462 expression level in the ovary. Gain- and loss-of function
experiments in granulosa cells revealed that KIAA1462 affected the expression of the apoptosis
marker gene caspase-3. Considering that rs1714766362 locates in an intron area, we compared the
KIAA1462 promoter regions of AA and TT individuals and identified the SNP c.-413C>G (Genbank
ss2137504176), which was completely linked to SNP rs1714766362. According to the transcription
factor prediction results, the glucocorticoid receptor (GR) would bind to the SNP site containing the
C but not the G allele. In this study, we proved this hypothesis by an electrophoretic mobility shift
assay (EMSA). In summary, we identified a novel mutation in the promoter of KIAA1462 gene which
can modulate GR binding affinity and affect the laying performance of geese.
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1. Introduction

Goose possesses many properties, including rapid growth, disease resistance, high liver lipid
storage capacity, and are easily fed with coarse fodder. The Yangzhou goose is one of Chinese
indigenous goose breeds, mainly distributed in Jiangsu province of China. In recent years, it has
attracted increasing attention because of its high yield of breast meat and low caloric content. However,
the goose industry is largely hindered by goose poor laying performance, which is characterized by
seasonal egg laying, strong incubation tendency, and low egg-laying rate. It takes approximately
18 days for large white follicles to develop into mature F1 follicle [1], and, on average, oviposition
intervals last 46.8 h (36–55 h). Avian egg laying is coordinated by hormones secreted by the pituitary
gland and ovarian follicles [2] and by receptors on the surface of the follicular cells [1]. Follicle
development involves several processes, including proliferation, differentiation, and apoptosis of
follicular cells. Studies have provided insights into the endocrine regulatory mechanisms of follicular
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maturation and ovulation and have identified a large number of hormones which perform various
functions in goose egg laying.

In our previous study, a laying-related SNP rs1714766362 was found in an intron of the goose
KIAA1462 gene. KIAA1462 product was also designated JCAD (Junctional protein associated with
coronary artery disease), which is a novel molecular component of VE-cadherin-based endothelial
cell–cell junctions [3], and was identified by restriction site-associated DNA (RAD) sequencing [4].
However, the molecular mechanism of the SNP effect on egg laying remains unexplained. KIAA1462
gene does not have obvious domain structures with a predictable function. In vitro and in vivo
studies suggest that KIAA1462 plays an essential role in pathological angiogenesis, and the SNPs
in the human KIAA1462 gene have been shown to be associated with coronary artery disease [5].
A genetic variant in KIAA1462 gene was also found to play a role in meiosis, therefore leading to a
better understanding of pregnancy loss [6]. Besides, KIAA1462 gene is mutated in ovarian cancer and
may play a pathogenic role in ovarian serous borderline tumors [7]. These observations highlight the
potential role of KIAA1462 in human reproduction. Nevertheless, there is no report about KIAA1462 in
any pathways influencing goose laying performance.

Laying performance is affected by various factors, such as food, condition, and hormones.
Corticosterone, and in particular glucocorticoids, are one kind of hormones influencing birds laying
performance by affecting appetite. Several studies previously performed in chicks can help understand
the process of egg laying in geese. For instance, some studies showed that hens fed corticosterone or
infused with corticosterone showed ovary regression and reduced weight gain and egg production [8,9].
Glucocorticoids downregulated the expression of appetite-related genes in the hypothalamus of HFD
(High-Fat Diet) -fed chicks by an AMPK (Adenosine 5‘-Monophosphate (AMP)-Activated Protein
Kinase) –neuropeptide Y signaling pathway and a TOR (Target of Rapamycin) pathway [10,11].

On the basis of our previous RAD (Restriction-Site Associated DNA) sequencing results, that
identified a laying-related SNP rs1714766362 in an intron of the goose KIAA1462 gene, and the role of
KIAA1462 gene mutations in reproduction, we raised the hypothesis that this SNP might influence
goose laying performance. The present study aims to explain the functional mechanism of this
mutation using Yangzhou geese. To do this, the cDNA sequence of KIAA1462 gene was firstly cloned,
the gene expression profiles were analyzed in different tissues, and the differential expression of
KIAA1462 gene in different genotypes of SNP rs1714766362 in Yangzhou geese’s ovarian was detected.
The role of KIAA1462 gene in regulating granulosa cell apoptosis was investigated by gain- and
loss-of-function experiments. We further identified a novel rs1714766362-linked mutation, namely,
c.-413C>G, functionally altering glucocorticoid receptor (GR) binding affinity and transcriptional
activity. We hope that this study will help identify genes or molecular markers effective for the
improvement of the laying performance of geese.

2. Results

2.1. SNP (Single Nucleotide Polymorphisms) Genotyping and Association Analysis

By allele-specific PCR (AS-PCR), the rs1714766362 SNP was genotyped in a total of 256 geese.
Three different genotypes, namely, TT, TA, and AA, were identified (Figure S1). The frequency of the A
allele (0.81) was significantly higher than that of the T allele (0.19). The frequency of the AA genotype
individuals was higher than that of the TA and TT genotype individuals (0.66 compared with 0.29 and
0.05, respectively). The association analysis between different genotype individuals and the level of
egg production was analyzed by one-way analysis of variance, using SPSS 16.0 software (SPSS, Inc.,
Chicago, IL, USA). The results showed that geese with the AA genotype laid a significantly larger
number of eggs (79.60 ± 11.08) than those with the TT genotype (73.00 ± 9.61) (p < 0.05). Furthermore,
the eggs number of individuals with the AA genotype was larger than that of individuals with the TA
(77.61 ± 11.11) genotype, although the difference was not significant (Table 1). This indicates that the
rs1714766362 SNP of KIAA1462 is related to the laying performance in Yangzhou geese.
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Table 1. The association analysis between different genotypes of SNP rs1714766362 and total number
of eggs within a 34-week egg-laying period in Yangzhou geese.

Genotype Number of Geese Number of Eggs Lower Mean Upper Mean p Value

AA 170 79.60 ± 11.08 a 77.94 81.47
0.04TA 73 77.61 ± 11.11 a,b 74.79 80.28

TT 13 73.00 ± 9.61 b 69.62 76.23

Total 256 78.73 ± 11.61 77.43 80.11

The egg number is presented as mean± SD. Multiple comparisons were performed using the Duncan multiple-range
test; a,b means with different superscripts in the same column are significantly different (p < 0.05).

2.2. Sequence Characterization and Phylogenetic Relationships among Species of Yangzhou Geese
KIAA1462 Gene

The full-length coding sequence of goose KIAA1462 (4029 bp length including the stop codon
TGA) was assembled from three PCR-amplified overlapped cDNA fragments (1305, 1498, and 1664 bp,
respectively) using the Seqman program of the DNASTAR software (DNASTAR Inc., Madison, WI,
USA). According to the prediction result, this cDNA encodes a protein of 1342 amino acids with a
theoretical molecular mass of 147.0519 KDa, and its isoelectric point is 8.62. The homology analysis of
goose KIAA1462 gene coding sequence (CDS) compared with the KIAA1462 gene of other species is
shown in Table 2. To provide convenient and intuitive results, we used the amino acid sequences of
the species mentioned in the table to construct a phylogenetic tree by the neighbor-joining method
(Figure S2). The phylogenetic tree suggests that the species could be clustered into two groups.
We found that KIAA1462 protein is conserved among birds and that the KIAA1462 protein of Yangzhou
geese is most closely related to the duck corresponding protein among the bird species examined
(Figure S2).

Table 2. Homology analysis of goose KIAA1462 gene coding sequence (CDS) compared to other species.

Species Nucleotide
Accession Number

Amino Acid
Accession Number Nucleotide Amino Acid

Platyrhynchos (Mallard) XM_005027879.2 XP_005027936 88.73% 86.91%
Gallus gallus (chicken) XM_418578.5 XP_418578.4 87.67% 85.80%

Meleagris gallopavo (turkey) XM_003206999.2 XP_003207047.2 86.68% 84.01%
Columba livia (Rock pigeon) XM_005504208.1 XP_005504265.1 83.74% 80.19%
Canis lupus familiaris (Dog) XM_535151.5 XP_535151.2 52.60% 40.56%

Homo sapiens (Human) NM_020848.2 NP_065899.1 55.01% 40.68%
Ovis aries (Sheep) XM_004014272.3 XP_004014321.1 51.04% 35.64%
Bos taurus (Cattle) NM_001082474.1 NP_001075943.1 50.68% 36.66%

Sus scrofa (Pig) XM_003130706.5 XP_003130754.3 52.06% 36.67%

Information of KIAA1462 genes and proteins was downloaded from Genbank. Homology analysis was performed
by using the BLAST program on this web.

2.3. KIAA1462 mRNA Expression Profile in Yangzhou Geese Tissues

The expression levels of KIAA1462 mRNA in 11 tissues (kidney, ovary, small intestine, liver,
abdominal fat, muscular stomach, breast muscle, heart, hypothalamus, pituitary gland, and granulosa
cells) were evaluated by qPCR. The results showed that KIAA1462 was ubiquitously expressed in the
11 tested tissues (Figure 1a). The higher expression levels were detected in the liver and ovary compared
to the other tissues (Figure 1a). In addition, the level of KIAA1462 mRNA was determined in granulosa
cells isolated from developing follicles. KIAA1462 gene was expressed in all developing stages and
showed the lowest mRNA level in the small white follicles. The mRNA expression level varied slightly
during the maturation process from large white follicle to F2 follicle, with a transient increase in F5
follicle. The highest level of KIAA1462 mRNA was present in mature F1 follicle (Figure 1b).
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Two-tailed student’s t-tests were performed to compare gene expression in the two genotypes. The 
error bars represent the standard error of the mean. * p < 0.05. 

2.5. The mRNA Level of Caspase-3 Is Negative Regulated by KIAA1462 

In order to estimate the effect of KIAA1462 on egg laying, we employed gain- and loss-of-
function experiments to study KIAA1462 influence on the apoptosis of follicle granulosa cells. 
Caspase-3 activation is critical for apoptosis [12]; therefore, it was reasonable to determine the 
expression of apoptosis-related caspase-3 in the target tissues to study the effects of certain hormones 

Figure 1. KIAA1462 mRNA expression profile in Yangzhou geese tissues. (a) qPCR was performed to
evaluate the expression levels of KIAA1462 mRNA in 11 tissues (b). SYF: small yellow follicle; LWF:
large white follicle; SWF: small white follicle. F1–6: follicle developmental stages.

2.4. KIAA1462 mRNA Level Differs in Individuals with Different Genotypes

The expression level of KIAA1462 in the ovary was compared in individuals presenting the two
genotypes (TA and AA) for SNP rs1714766362. The relative expression results indicated that geese
with the AA genotype had a higher mRNA expression level of KIAA1462 in the ovary than the TA
genotype individuals (p < 0.05) (Figure 2). The TT genotype individuals were difficult to identified,
so we could not obtain a sufficient amount of ovary tissue to analyze the KIAA1462 expression level.
In our previous study, the AA genotype individuals showed better egg-laying performance than the
TA and TT individuals [4]. In this paper, a significant difference in egg production was also observed
between AA and TT individuals (Table 1). The best egg-laying performance and highest mRNA levels
observed in AA genotype individuals indicated that the mRNA expression level of KIAA1462 was
positive correlated with egg-laying performance in Yangzhou geese.
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2.5. The mRNA Level of Caspase-3 Is Negative Regulated by KIAA1462

In order to estimate the effect of KIAA1462 on egg laying, we employed gain- and loss-of-function
experiments to study KIAA1462 influence on the apoptosis of follicle granulosa cells. Caspase-3
activation is critical for apoptosis [12]; therefore, it was reasonable to determine the expression of
apoptosis-related caspase-3 in the target tissues to study the effects of certain hormones or supplements
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affecting egg laying [13,14]. The caspase-3 mRNA level determined by qPCR was thus used to evaluate
the effect of the varying KIAA1462 expression on apoptosis.

For the gain-of-function experiment, a vector inducing the overexpression of KIAA1462 was
transfected into the granulosa cells of follicles. Twenty-four hours later, KIAA1462 mRNA level
was distinguishably higher in the transfected cells than in the two control groups (Figure 3a), while
caspase-3 mRNA levels were significantly decreased compared with the control groups (Figure 3b).
For the loss-of-function experiment, knockdown of KIAA1462 was achieved by using three sets of
siRNAs. The results showed that siRNA1200 and siRNA1847 could significantly reduce the amount
of KIAA1462 mRNA (Figure 3c). Compared with the control groups, caspase-3 mRNA level was
significantly increased in the KIAA1462 knockdown groups treated with siRNA1847, siRNA1200
(p < 0.01), and siRNA2180 (p < 0.05) (Figure 3d).
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Figure 3. The mRNA level of caspase-3 is affected by KIAA1462 in granulosa cells of Yangzhou goose.
(a) KIAA1462 mRNA levels were quantified by qPCR 24 h after transfection with the pEGFP-KIAA1462
expression construct, EGFP plasmid (Control (EGFP)), and in untransfected cells (Blank control),
respectively. (b) caspase-3 mRNA levels were quantified 24 h after transfection with the expression
construct pEGFP-KIAA1462, EGFP plasmid (Control (EGFP)), and in untransfected cells. (c) KIAA1462
mRNA levels were quantified 24 h after transfection with siRNA1847, siRNA1200, siRNA2180, control
siRNA, and in untransfected cells (Blank control). (d) caspase-3 mRNA levels were quantified 24 h
after transfection with ssiRNA1847, siRNA1200, siRNA2180, control siRNA, and in untransfected
cells; * denotes significant differences (p < 0.05), ** denotes highly significantly differences (p < 0.01),
*** denotes p < 0.001, two-tailed student’s t-test.
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2.6. Direct Sequencing of the 5′ Flanking Region of KIAA1462

The above results revealed that SNP rs1714766362 was correlated to differential KIAA1462
expression levels and laying performance. According to a location analysis, SNP rs1714766362
located in intron 2 of the KIAA1462 gene, which does not play a role in translation and contributes
to the structure of the encoded protein. It is possible that functional mutation functions in linkage
disequilibrium. Mutations in introns may affect splice or branch sites or may linkage with other
mutations which situated in regulatory regions of a gene that affect the amount of produced transcripts
or translation. Therefore, we tried to screen the regulatory region of KIAA1462 gene in the attempt to
find a linked functional mutation and explain the mRNA changes observed in the different genotypes of
SNP rs1714766362. We sequenced and compared the 3 kb promoter region of KIAA1462 in individuals
with the AA genotype and the TT genotype for SNP rs1714766362 based on the goose genomic DNA
sequence and the goose mRNA sequence (NCBI accession nos. NW_013185782.1, XM_013191711.1).
The result suggested that there was a novel mutation, namely, c.-413C>G, located in the regulatory
region 413 bp upstream of the start codon, which was completely linked with SNP rs1714766362 in the
KIAA1462 gene. The SNP c.-413C>G was deposited in Genbank dbSNP (ss2137504176). The c.-413
C allele corresponds to the A allele of SNP rs1714766362, and the c.-413 G links corresponds to the T
allele (Figure S3). This complete linkage was further verified in 100 individuals.

2.7. The c.-413C>G Mutation Causes Allele-Specific Binding of GR

To investigate whether this novel mutation modulates the binding affinity of the flanking sequence
to transcription factors, we conducted an electrophoretic mobility shift assay (EMSA) using nuclear
extracts of Yangzhou goose granulosa cells. The results demonstrated that the sequence containing the
C allele exhibited stronger binding affinity to a nuclear protein(s) than the G allele (Figure 4).

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 15 

 

structure of the encoded protein. It is possible that functional mutation functions in linkage 
disequilibrium. Mutations in introns may affect splice or branch sites or may linkage with other 
mutations which situated in regulatory regions of a gene that affect the amount of produced 
transcripts or translation. Therefore, we tried to screen the regulatory region of KIAA1462 gene in the 
attempt to find a linked functional mutation and explain the mRNA changes observed in the different 
genotypes of SNP rs1714766362. We sequenced and compared the 3 kb promoter region of KIAA1462 
in individuals with the AA genotype and the TT genotype for SNP rs1714766362 based on the goose 
genomic DNA sequence and the goose mRNA sequence (NCBI accession nos. NW_013185782.1, 
XM_013191711.1). The result suggested that there was a novel mutation, namely, c.-413C>G, located 
in the regulatory region 413 bp upstream of the start codon, which was completely linked with SNP 
rs1714766362 in the KIAA1462 gene. The SNP c.-413C>G was deposited in Genbank dbSNP 
(ss2137504176). The c.-413 C allele corresponds to the A allele of SNP rs1714766362, and the c.-413 G 
links corresponds to the T allele (Figure S3). This complete linkage was further verified in 100 
individuals. 

2.7. The c.-413C>G Mutation Causes Allele-Specific Binding of GR 

To investigate whether this novel mutation modulates the binding affinity of the flanking 
sequence to transcription factors, we conducted an electrophoretic mobility shift assay (EMSA) using 
nuclear extracts of Yangzhou goose granulosa cells. The results demonstrated that the sequence 
containing the C allele exhibited stronger binding affinity to a nuclear protein(s) than the G allele 
(Figure 4). 

The transcription factor prediction tool MatInspector 
(http://www.genomatix.de/products/MatInspector/index.html) [15] was then used to search for the 
potential transcription factors binding to the target binding site. A putative binding affinity of the 
flanking sequence to glucocorticoid receptor (GR) was predicted for the C allele but not for the G 
allele. We further performed a competitor assay of EMSA using non-labeled GR-consensus 
oligonucleotides. It was confirmed that GR-consensus oligonucleotides could effectively inhibit the 
binding of nuclear protein(s) to the labeled C allele (Figure 5). The results suggested that the C allele 
allows GR binding, while the G allele prevents this binding. 

 

Figure 4. SNP (c.-413C>G) affects the binding affinity of nuclear proteins. Electrophoretic mobility 
shift assay (EMSA) was performed using a 31 bp labeled probe or unlabeled probe of the SNP (c.-
413C>G) alleles. The unlabeled probe C was used as a competitor. The black arrow indicates the 
shifted band specific to the C allele of SNP (c.-413C>G). 

Figure 4. SNP (c.-413C>G) affects the binding affinity of nuclear proteins. Electrophoretic mobility shift
assay (EMSA) was performed using a 31 bp labeled probe or unlabeled probe of the SNP (c.-413C>G)
alleles. The unlabeled probe C was used as a competitor. The black arrow indicates the shifted band
specific to the C allele of SNP (c.-413C>G).

The transcription factor prediction tool MatInspector (http://www.genomatix.de/products/
MatInspector/index.html) [15] was then used to search for the potential transcription factors binding
to the target binding site. A putative binding affinity of the flanking sequence to glucocorticoid receptor
(GR) was predicted for the C allele but not for the G allele. We further performed a competitor assay
of EMSA using non-labeled GR-consensus oligonucleotides. It was confirmed that GR-consensus
oligonucleotides could effectively inhibit the binding of nuclear protein(s) to the labeled C allele
(Figure 5). The results suggested that the C allele allows GR binding, while the G allele prevents
this binding.

http://www.genomatix.de/products/MatInspector/index.html
http://www.genomatix.de/products/MatInspector/index.html
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(c.-413C>G). EMSA was performed using the labeled C or G alleles of SNP (c.-413C>G) and nuclear
extract from Yangzhou geese granulosa cells. Unlabeled consensus oligonucleotides of C or G and
transcription factor GR were used as competitors. DNA/protein indicates the shifted band.

2.8. GR mRNA Expression Profile in Yangzhou Geese Tissues

In order to analyze the potential role of GR in Yangzhou Geese laying performance, the expression
levels of GR mRNA in 10 tissues (liver, ovary, heart, breast muscle, hypothalamus, pituitary gland,
granulosa cells, abdominal fat, small intestine, and muscular stomach) were evaluated by qPCR.
The results showed that GR was ubiquitously expressed in the 10 tested tissues (Figure 6). The highest
expression levels were detected in ovary, pituitary gland, abdominal fat, and muscular stomach
(Figure 6).
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2.9. Glucocorticoid Promotes the Transcription Activity of the C But Not of the G Allele

A reporter gene driven by the KIAA1462 promoter with the C or G alleles was constructed to
further investigate the effect of glucocorticoid and allele shift on KIAA1462 gene expression. A 630 bp
DNA fragment including c.-413C or c.-413G was subcloned into the multiple cloning sites of the
PGL3 promoter vector. The relative luciferase activity of the C allele plasmid was significantly higher
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than that of the G allele (Figure 7) (p < 0.05). Furthermore, when the cells were treated with 2.5 µM
dexamethasone (glucocorticoid analogue), the luciferase activity of the C allele vector was significantly
increased 4.4 folds (p < 0.05), while no significant change for the G allele vector was observed (p > 0.05).
When treated with 100 nM RU486, a GR antagonist, the luciferase activity of the C allele vector was
remarkably reduced 3.2 folds (p < 0.01), whereas the G allele vector was not affected notably (p > 0.05).
These results indicated that the c.-413C but not the c.-413G allele was highly activated promoting the
transcription of the KIAA1462 gene in response to glucocorticoid.
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experiments (* p < 0.05, ** p < 0.01, *** p < 0.001).

3. Discussion

The laying performance is an important economical trait in goose production. As for other poultry
production, it is difficult to improve such a low-heritability trait by using direct phenotypic selection.
Therefore, molecular markers or functional genes involved in the egg-laying process are vital for
improving the efficiency of the laying performance. Our previous study identified a laying-related
SNP in an intron of the goose KIAA1462 gene [4]. The genetic variants of the KIAA1462 gene are
thought to be involved in human reproduction [6,7]. Nevertheless, there is no report about the
potential contribution of KIAA1462 gene to goose laying performance. In this study, we investigated
whether KIAA1462 gene and its genetic mutations affect goose reproduction and discovered a mutation
involved in this process.

We firstly obtained the Yangzhou geese KIAA1462 cDNA sequence by PCR sequencing. A 4029 bp
cDNA sequence encoding a protein of 1342 amino acids consistent with the Chinese white goose
corresponding protein (XM_013191711.1) was obtained from goose ovary tissue, and was found to
share a high identity with the corresponding proteins of the Mallard duck (XM_005027879.2) and
the chicken (XM_418578.5), i.e., 88.73% and 87.67%, respectively. According to the results showed
in Figures 1 and 6, KIAA1642 is expressed in many tissues, but its interaction proteins and active
pathways in granulosa cells are quite different from those in the other tissues. Thus, the relative high
expression level in granulosa cells allows KIAA1642 to execute its function effectively and specifically.

It has been confirmed that KIAA1462 is mainly colocalized with ZO-1, a tight junction-associated
plaque protein and an excellent marker for epithelial cell–cell junctions in immunofluorescence
microscopy [4]. Tight junctions (TJ) not only participate in regulating the transport of essential
materials and the maintenance of epithelial cell polarity [16], but also play an important role in cell
proliferation and differentiation, tumor cell metastasis, and gene transcription [17]. KIAA1462 was
identified as a novel cell–cell junction-associated protein [3], which implies that KIAA1462 may play
an important role in cell–cell junctions. Cells transmit metabolite and second messengers, such as
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cAMP and Ca2+, through cell–cell junctions, which can participate in asymmetric cell divisions and
affect cell proliferation and apoptosis [18]. In this study, we demonstrated that geese with the AA
genotype exhibited higher egg production performance and higher transcription levels of KIAA142
than geese with the TT genotype. The egg laying-related SNP was located in the KIAA1642 gene,
indicating the potential role of KIAA1642 in laying performance. In order to confirm its function
and study the underlying mechanism, we performed gain- and loss-of-function experiments and
found that KIAA1462 could negative regulate the expression of caspase-3 gene in vitro, which is a key
factor contributing to granulosa cells apoptosis [12,19,20]. Proliferation and apoptosis of granulosa
cells have been proved to be involved in follicle development and oviposition during the egg-laying
period [13,14,21,22]. In this study, the higher KIAA1462 mRNA level in ovarian and F1 follicles
compared with other tissues also allows its functional role in follicular development. Therefore,
the differences in laying performance among the three genotypic Yangzhou geese could be caused by
the differential granulosa cell apoptosis resulting from KIAA1462 polymorphism.

Moreover, the influence of SNP in regulating KIAA1642 gene expression level was estimated.
Because of the fact that SNP rs1714766362 is located in an intron of the KIAA1462 gene, which means
that it seldom participates in translation and contributes to the structure of the encoded protein,
it was necessary to perform more experiments to explain its function in KIAA1462 gene. Therefore,
we postulated that there might be another functional mutation tightly linked with SNP rs1714766362,
which could modulate the gene transcription. By comparing the promoter regions of KIAA1462 gene
between the AA and the TT individuals, we found a novel mutation, namely, c.-413C>G, in the
transcription regulatory region, which was completely linked with SNP rs1714766362. The promoter
with the C allele had higher transcription activity than that with the G allele. Online prediction and
a subsequent EMSA experiment showed that the transcription factor GR could bind to the C allele
but not to the G allele. This was further confirmed by the observation that glucocorticoid significantly
activated, while RU486 suppressed, the transcription activity of a C allele vector but had no effect on a
G allele vector.

GR is a glucocorticoid receptor which mediates the biological effect of glucocorticoids. Previous
studies have provided insights into its role in the anti-inflammatory response, immune suppression,
and metabolic regulation [23–25]. The GC/GR/GRE complex interacts with other nucleoproteins
to mediate the transcription of target genes [26,27]. To our knowledge, this is the first report
demonstrating that KIAA1462 transcription is directly influenced by GC/GR signal. Moreover, it is
interesting that this GC/GR signal can be affected by the c.-413C>G mutation in the promoter
region, resulting in differential KIAA1462 expression levels. Studies showed that hens fed
corticosterone or infused with corticosterone had ovary regression and reduced weight gain and
egg production [8,9]. In addition, glucocorticoids downregulated the expression of appetite-related
genes in the hypothalamus of HFD-fed chicks by an AMPK–neuropeptide Y signaling pathway and a
TOR pathway [10,11].

In conclusion, we identified a novel functional SNP affecting goose KIAA1462 gene expression.
The modulated KIAA1462 expression influenced apoptosis of granulosa cells and therefore affected
eggs yield. Our findings identify a novel candidate gene and a molecular marker that can be useful to
remarkably improve goose laying performance.

4. Materials and Methods

4.1. Ethics Statement

Animal experiments were reviewed and approved by Nanjing Agricultural University Animal
Care and Use Committee and performed in accordance with the Regulations for the Administration of
Affairs Concerning Experimental Animals (China, Decree No. 2 of the State Science and Technology
Commission, 14 November 1988). All efforts were made to minimize any discomfort during goose
slaughtering process.



Int. J. Mol. Sci. 2018, 19, 1531 10 of 16

4.2. Animals and Samples Preparation

Two hundred and fifty-six white Yangzhou geese, provided by the breeding farm of Jiangsu
Lihua Animal Husbandry Co., Ltd. (Changzhou, Jiangsu, China), were used in this study. During the
experiments, geese were fed ad libitum with rice grain supplemented with green grass or water plants
whenever possible. The feed was offered during daytime when the geese were released to an open
area outside the house. The geese were exposed to natural lighting and temperature throughout this
study. Individual laying records, during the entire egg-laying period (34 weeks), were obtained from
Jiangsu Lihua Animal Husbandry Co., Ltd. Blood samples of all 256 geese were collected for DNA
extraction. Sixteen laying geese with AA or TA genotypes (n = 8 for each genotype) were slaughtered
in the peak laying period (100 days after geese began to lay eggs) to collect the tissues, including
kidney, ovary, small intestine, liver, abdominal fat, muscular stomach, breast muscle, hypothalamus,
pituitary gland, and heart. The tissues were immediately frozen and stored in liquid nitrogen until
total RNA was extracted. The follicles of different developmental stages (F1–F5, small yellow follicle,
large white follicle, small white follicle) from each ovary and granulosa cells from hierarchical follicles
were separated as previously described [28].

4.3. Genotyping and Association Analysis

SNP rs1714766362 was genotyped for 256 Yangzhou geese by Allele-Specific PCR (AS-PCR).
Two allele-specific primers and a universal primer were designed according to a protocol described
previously [29,30] (Table 3). The PCR reactions were performed in 20 µL, including 10 µL r-taq,
1 µL forward primer, 1 µL reverse primer, 1 µL DNA template, and 7 µL dd H2O. The PCR reaction
procedure was as follows: 94 ◦C for 5 min, 32 cycles of amplification (94 ◦C for 30 s, 58 ◦C for 30 s,
and 72 ◦C for 15 s), and a final extension at 72 ◦C for 7 min. The 67 bp PCR products were subjected
to electrophoresis using 3% agarose gel, and the target bands were excised under UV light. Ten PCR
products were extracted and sequenced (GENEWIZ, Suzhou, China) to confirm their identity.

Table 3. Primers used in this study.

Name Sequences (5′→3′) Function Size (bp) Tm (◦C)

S1 GCTGACAGCTCATTTGATA AS-PCR
67 58S2 GCTGACAGCTCATTTGATT AS-PCR

AS CAGGATCACGTCCTCAAC AS-PCR

P1-F ATGTTCAGTGTCGAGGACCTCC Partial cDNA sequences 1305 58P1-R AACAGAACGCAGGTAGTCA

P2-F GACCGCCTGCGAATAGTGT Partial cDNA sequences 1424 56P2-R CGTTTCCAACCTCCCACC

P3-F CTGAAGCCCGTAAGTCG Partial cDNA sequences 1300 56P3-R CTATTTGAGCGTCATTACGTGGG

P4-F CGAATTCCATGTTCAGTGTCGAGGACCTCC KIAA1462 expression vector 4029 62P4-R CCCCGGGGCTATTTGAGCGTCATTACGTGGG

P5-F AGCATGAGGTGCGTGGAGATG q-PCR 200 60P5-R CTCCAAACCCGAGTCTTGAACG

caspase-3-F CTGGTATTGAGGCAGACAGTGG q-PCR 158 50caspase-3-R CAGCACCCTACACAGAGACTGAA

GAPDH-F GCTGATGCTCCCATGTTCGTGAT q-PCR 86 60GAPDH-R GTGGTGCAAGAGGCATTGCTGAC

GR-F CTCTGGGTGTCATTACGGTGTT q-PCR 230 62GR-R CATTAGCTTGCTGGATTCCTTT

KIAA1462-siRNA-1200
GCCUGCGAAUAGUGUUGAATT KIAA1462 knockdown experiments
UUCAACACUAUUCGCAGGCTT

KIAA1462-siRNA-1847
CCCAGAGCCCUGAUAAGAATT KIAA1462 knockdown experiments
UUCUUAUCAGGGCUCUGGGTT

KIAA1462-siRNA-2180
CCAAACUGCUGUCUCCAAATT KIAA1462 knockdown experiments
UUUGGAGACAGCAGUUUGGTT

P6-F TGGTTGATGTCCTGCGGG Partial promoter sequences 2440 59P6-R CCACCCTTACAATAAAGCACA
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Table 3. Cont.

Name Sequences (5′→3′) Function Size (bp) Tm (◦C)

P7-S1 TCCCAGAATACAGAGCACTCC AS-PCR
265 58P7-S2 TCCCAGAATACAGAGCACTCG AS-PCR

P7-AS CCACCCTTACAATAAAGCACATC AS-PCR

P8-F GGGGTACCCCGGGAATCATTGAGACACGACA Dual luciferase reporter vector 630 64P8-R CCCTCGAGGGGCTGCTGAAGTGAAGGGTTT

F: Forward primers; R: Reverse primers.

4.4. RNA Isolation and First-Strand cDNA Synthesis

Total RNA was isolated from different tissues using a Trizol reagent (Invitrogen, Carlsbad,
CA, USA), according to the standard protocol, and subsequently treated with DNase I (Invitrogen).
The quality of the RNA samples was evaluated by electrophoresis on 1% agarose gels. ProtoScript®

First Strand cDNA Synthesis kit (NEB, Beijing, China) was used to synthesize cDNA. The reverse
transcription system contained 1 µg of total RNA, 2 µL of d(T)23 VN (50 µM), 10 µL of M-Mulv reaction
mix, 2 µL of M-Mulv enzyme mix, and nuclease-free water to 20 µL. Firstly, total RNA was mixed with
d(T)23 VN primer and nuclease-free H2O and then was denatured for 5 min at 70 ◦C. This mixture was
spun briefly and taken to 0 ◦C. The M-Mulv reaction mix and M-Mulv enzyme mix were added to
the above mixture and incubated at 42 ◦C for 1 h; subsequently enzyme inactivation was performed
at 80 ◦C for 5 min. After that, we diluted the reaction products to 100 µL with 80 µL H2O for PCR
reaction and stored the samples at −20 ◦C.

4.5. Cloning of KIAA1462 Gene Coding Sequence in Yangzhou Geese

In order to clone the full-length coding region of Yangzhou geese KIAA1462 gene, we designed
three pairs of primers (Table 3, P1, P2, P3) based on the most conserved regions of the orthologous
sequence in Anas platyrhynchos (XM_005027879.2). The three output sequences were overlapped to
obtain the contig for KIAA1462 coding region. PCR amplification was conducted in a final volume of
50 µL, containing 2 µL first-strand cDNA, 2.5 µL each primer (10 nM), 10 µL 5× reaction buffer, 0.5 µL
High-Fidelity DNA Polymerase (NEB, Beijing, China), 1 µL10 mM dNTP, and 31.5 µL nuclease-free
water. The PCR reactions were performed as follows: 98 ◦C for 30 s, 32 cycles of amplification (98 ◦C for
10 s, 56 ◦C for 30 s and 72 ◦C for 2 min), and a final extension at 72 ◦C for 2 min. The PCR products were
subjected to electrophoresis on 2% agarose gel, and the target bands were excised under UV light and
purified using the E.Z.N.A. Gel Extraction Kit (Omega Bio-Tek, Doraville, GA, USA), as recommended
by the supplier. The purified products were cloned into the Peasy-T3 vector (TransGen Biotech, Beijing,
China) and then transfected into the Trans-T1 phage-resistant chemically competent cells (TransGen
Biotech, Beijing, China). PCR was used to identify the positive clones. The clones of different cDNA
fragments were sequenced by a company (GENEWIZ, Suzhou, China).

4.6. Construction of pEGFP-KIAA1462-N1 Expression Vector

The primer pair P4 that include EcoR I and Sma I restriction sites (underlined residues) (Table 3)
was used to amplify the full-length coding sequence of KIAA1462 gene. The inserts were released by
restriction enzyme digestion and covalently linked in-frame at the corresponding restriction sites in the
multiple cloning site (MCS) of the commercial pEGFP-N1, encoding a red-shifted variant of wild-type
GFP (BD Biosciences Clontech, Franklin Lakes, NJ, USA). All constructs were verified by sequencing
to ensure in-frame integrity at the pEGFP-KIAA1462 junction. The ligation-Free Cloning Kit (ABM,
Richmond, BC, Canada) was used to complete the ligation between the target DNA fragment and the
linearized vector, following the manufacturer’s instruction.

4.7. Quantitative Real-Time PCR Analysis

Quantitative real-time PCR (qPCR) was used to determine the expression of KIAA1462 (amplified
with primer P5, Table 3) in various tissues of geese including kidney, ovary, small intestine, liver,
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abdominal fat, muscular stomach, breast muscle, heart, hypothalamus, pituitary gland, as well as
granulosa cells from different developmental stages of follicles (F1–F5, small yellow follicle, large
white follicle, small white follicle). The expression of KIAA1462 and caspase-3 gene in granulosa
cells were also detected by qPCR in overexpression or knockdown experiments. SYBR® Green
Master Mix (Vazyme, Nanjing, China) was used in a StepOne Plus Real-Time PCR system (Applied
Biosystems, Foster City, CA, USA). The PCR reaction (20 µL) consisted of 1 µL cDNA, 0.4 µL of
each primer (10 µmol), 0.4 µL ROX Reference Dye, 10 µL SYBR Green Master Mix, and 7.8 µL
nuclease-free water. Amplification conditions were as followed: pre-denaturation at 95 ◦C for 5 min,
40 cycles of amplification (95 ◦C for 10 s and 60 ◦C for 30 s). A melt curve analysis was performed
from 60 ◦C to 95 ◦C by reading plate every 0.1 ◦C. Each sample was analyzed three times. Gene
expression levels were calculated by the 2−∆∆Ct method using GAPDH as an internal control [31–34].

4.8. Granulosa Cell Culture and KIAA1462 Gene Overexpression

The in vitro experiments were conducted according to a protocol described previously [2]. Briefly,
the harvested granulosa sheets from pre-ovulatory follicles (F5–F1) were dispersed with type II
collagenase (Sigma-Aldrich Co., LLC, St. Louis, MO, USA) at 37 ◦C for 10–15 min. Then, the cells were
washed with Hanks’ balanced salt solution (Gibco, Life Technologies, Carlsbad, CA, USA) and filtered
by a 75 µm cell strainer.

The filtered liquor was centrifuged at 924× g for 5 min. After that, the granulosa cells were
resuspended in Dulbecco’s modified Eagle’s medium/nutrient mixture (DMEM/F12) containing
3% fetal bovine serum (ScienCell Research Laboratories, Carlsbad, CA, USA). The freshly isolated
granulosa cells were diluted with media to a concentration of 5 × 105 cells/mL, cell viability was
assessed by the trypan blue dye exclusion test (Invitrogen, Life Technologies, Carlsbad, CA, USA),
and the cells were incubated at 37 ◦C in 5% CO2 in a humidified incubator. After 24 h, the granulosa
cells were seed in 12-well plates. When grown to 60–70% confluency, the cells were transfected
by 5 µL Lipofectamine 2000 (Invitrogen Life Technologies Inc., Carlsbad, CA, USA) with 2 µg
pEGFP-KIAA1462-N1. After transfection, the cells were kept in the incubator for additional 24 h
and then were lysed with 500 µL Trizol (Invitrogen, Carlsbad, CA, USA) for total RNA extraction.

4.9. siRNA Preparation and Transfection

Three small interfering RNAs were designed with the common sequence of KIAA1462 CDS
(Coding Sequence) (Table 3, siRNA1847, siRNA1200, siRNA2180). The siRNAs were synthesized
by Shanghai GenePharma Co., Ltd. (Shanghai, China). When granulosa cells reached 60–70%
confluency in 12-well plates, 200 pmol siRNA was transfected by 5 µL Lipofectamine 2000, following
the manufacturer’s instructions. After transfection, the cells were kept in the incubator for additional
24 h and then were lysed with 500 µL Trizol for total RNA extraction.

4.10. Mutation Detection in KIAA1462 Promoter Region

Direct sequencing of the 3 kb promoter region of KIAA1462 gene was conducted for individuals
with the AA genotype and the TT genotype for SNP rs1714766362. The sequencing results were
compared by DNAMAN 8.0 (Lynnon Corporation, Montreal, QC, Canada).

4.11. Electrophoretic Mobility Shift Assay (EMSA)

Goose granulosa cells were grown in 15 cm culture plates until they reached 95% confluency.
The plates were then sealed with parafilm and immersed in a water bath at 42.5 ◦C for 1.5 h. Nuclear
extracts from these cells were prepared according to a standard protocol [35]. The sequences of the
three probes are listed in Table S1. EMSA experiments were carried out using the Chemiluminescent
EMSA Kit (Beyotime Biotechnology, Shanghai, China), as recommended by the supplier. In brief,
2 µL EMSA/Gel-shift binding buffer was mixed with 5 µg nuclear extract at room temperature for
10 min, then 1 µL biotin-labeled probe was added, and hybridization was carried out for 20 min at
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ambient temperature. The mixtures were then loaded into a 6.5% Polyacrylamide gel, separated by
electrophoresis at 4◦C, and transferred onto a nylon membrane [36]. As competitors, non-labeled
oligo nucleotides were incubated with nuclear extracts before adding the labeled probe. All EMSA
experiments were repeated twice for confirmation of the results.

4.12. Dual Luciferase Reporter Assay

The 630 bp fragments including the C or G alleles of SNP (c.-413C>G) were cloned into
PGL3-promoter vector (Promega, Madison, WI, USA). Two plasmids were co-transfected with
Dexamethasone (2.5 µM) [37,38] and RU486 (Inhibitor of GR, 100 nM) [39,40] into 293 T cells by
Lipofectamine 2000 (Invitrogen Life Technologies Inc., Carlsbad, CA, USA). The cells were kept in
the incubator for 24 h, and the relative luciferase activity was measured by Dual Luciferase Assay
System [41,42].

4.13. Bioinformatics Analysis

Sequence chromatograms were examined and edited by Chromas Version 2.23 (http://
technelysium.com.au/). The sequence comparisons were conducted by DNAMAN 8.0 (http://www.
lynnon.com/). Related sequences were identified with ensembl (http://www.ensembl.org/index.
html), Genbank (http://www.ncbi.nlm.nih.gov/genbank), and BLAST (http://www.ncbi.nlm.nih.
gov/BLAST/). The identification of ORFs (Open Reading Frame) was performed by using the
ORF Finder tool of NCBI (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). Protein Sequences were
translated using DNAStar 5.02 (DNASTAR Inc.). Phylogenetic tree construction was performed by
MEGA 5.0 (http://www.megasoftware.net/). The molecular weight and isoelectric point of the protein
were analyzed using the ExPASy ProtParam tool (http://www.expasy.org/tools/protparam.html).
The transcription factor was predicted by using the transcription factor prediction tool MatInspector
(http://www.genomatix.de/products/MatInspector/index.html).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/5/
1531/s1.

Author Contributions: J.C., W.W. and M.X. conceived and designed the experiments; M.X. performed the
experiments; M.X. and W.W. analyzed the data; Z.J., D.H. and Q.W. contributed reagents and materials; Z.L. and
S.Y. contributed analysis tools; M.X. wrote the paper; J.C., H.L. and W.W. revised the paper.

Acknowledgments: This work was funded by the Creation Project of Major New Varieties of Agriculture in
Jiangsu (PZCZ201738). This work was also supported by Jiangsu Agriculture Science and Technology Innovation
Fund (JASTIF, CX(14)2071). We thank Jiangsu Lihua Animal Husbandry Co., Ltd. for providing animal samples
for this study.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

AMPK Adenosine 5′-monophosphate (AMP)-activated protein kinase
AS-PCR Allele-Specific PCR
CDS Coding Sequence
DMEM Dulbecco’s modified Eagle’s medium
EMSA Electrophoretic Mobility Shift Assay
GR Glucocorticoid Receptor
HFD High-Fat Diet
JCAD Junctional Protein Associated with Coronary Artery Disease
ORF Open Reading Frame
Q-PCR Quantitative Real Time Polymerase Chain Reaction
RAD sequencing Restriction Site-Associated Sequencing
SNP Single-Nucleotide Polymorphism
TOR Target of Rapamycin

http://technelysium.com.au/
http://technelysium.com.au/
http://www.lynnon.com/
http://www.lynnon.com/
http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
http://www.ncbi.nlm.nih.gov/genbank
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://www.megasoftware.net/
http://www.expasy.org/tools/protparam.html
http://www.genomatix.de/products/MatInspector/index.html
http://www.mdpi.com/1422-0067/19/5/1531/s1
http://www.mdpi.com/1422-0067/19/5/1531/s1


Int. J. Mol. Sci. 2018, 19, 1531 14 of 16

References

1. Qin, Q.; Sun, A.; Guo, R.; Lei, M.; Ying, S.; Shi, Z. The characteristics of oviposition and hormonal and gene
regulation of ovarian follicle development in Magang geese. Reprod. Biol. Endocrinol. 2013, 11, 65. [CrossRef]
[PubMed]

2. Hu, S.; Liu, H.; Pan, Z.; Xia, L.; Dong, X.; Li, L.; Xu, F.; He, H.; Wang, J. Molecular cloning, expression
profile and transcriptional modulation of two splice variants of very low density lipoprotein receptor during
ovarian follicle development in geese (Anser cygnoide). Anim. Reprod. Sci. 2014, 149, 281–296. [CrossRef]
[PubMed]

3. Akashi, M.; Higashi, T.; Masuda, S.; Komori, T.; Furuse, M. A coronary artery disease-associated gene product,
JCAD/KIAA1462, is a novel component of endothelial cell-cell junctions. Biochem. Biophys. Res. Commun.
2011, 413, 224–229. [CrossRef] [PubMed]

4. Yu, S.; Chu, W.; Zhang, L.; Han, H.; Zhao, R.; Wu, W.; Zhu, J.; Dodson, M.V.; Wei, W.; Liu, H.; et al.
Identification of laying-related SNP markers in geese using RAD sequencing. PLoS ONE 2015, 10, e0131572.
[CrossRef] [PubMed]

5. Murdock, D.G.; Bradford, Y.; Schnetz-Boutaud, N.; Mayo, P.; Allen, M.J.; D’Aoust, L.N.; Liang, X.;
Mitchell, S.L.; Zuchner, S.; Small, G.W.; Gilbert, J.R.; et al. KIAA1462, a coronary artery disease associated
gene, is a candidate gene for late onset Alzheimer disease in APOE carriers. PLoS ONE 2013, 8, e82194.
[CrossRef] [PubMed]

6. Chowdhury, R.; Bois, P.R.; Feingold, E.; Sherman, S.L.; Cheung, V.G. Genetic analysis of variation in human
meiotic recombination. PLoS Genet. 2009, 5, e1000648. [CrossRef] [PubMed]

7. Boyd, J.; Luo, B.; Peri, S.; Wirchansky, B.; Hughes, L.; Forsythe, C.; Wu, H. Whole exome sequence analysis of
serous borderline tumors of the ovary. Gynecol. Oncol. 2013, 130, 560–564. [CrossRef] [PubMed]

8. El-lethey, H.; Jungi, T.W.; Huber-Eicher, B. Effects of feeding corticosterone and housing conditions on feather
pecking in laying hens (Gallus gallus domesticus). Physiol. Behav. 2001, 73, 243–251. [CrossRef]

9. Williams, J.B.; Etches, R.J.; Rzasa, J. Induction of a pause in laying by corticosterone infusion or dietary
alterations: Effects on the reproductive system, food consumption and body weight. Br. Poult. Sci. 1985,
26, 25–34. [CrossRef] [PubMed]

10. Liu, L.; Wang, X.; Jiao, H.; Zhao, J.; Lin, H. Glucocorticoids inhibited hypothalamic target of rapamycin in
high fat diet-fed chicks. Poult. Sci. 2015, 94, 2221–2227. [CrossRef] [PubMed]

11. Liu, L.; Song, Z.; Jiao, H.; Lin, H. Glucocorticoids increase NPY gene expression via hypothalamic AMPK
signaling in broiler chicks. Endocrinology 2014, 155, 2190–2198. [CrossRef] [PubMed]

12. Choudhary, G.S.; Al-Harbi, S.; Almasan, A. Caspase-3 activation is a critical determinant of genotoxic
stress-induced apoptosis. Methods Mol. Biol. 2015, 1219, 1–9. [PubMed]

13. Hrabia, A.; Leśniak-Walentyn, A.; Sechman, A.; Gertler, A. Chicken oviduct-the target tissue for growth
hormone action: Effect on cell proliferation and apoptosis and on the gene expression of some oviduct-specific
proteins. Cell Tissue Res. 2014, 357, 363–372. [CrossRef] [PubMed]

14. Chen, F.; Jiang, Z.; Jiang, S.; Li, L.; Lin, X.; Gou, Z.; Fan, Q. Dietary vitamin A supplementation improved
reproductive performance by regulating ovarian expression of hormone receptors, caspase-3 and Fas in
broiler breeders. Poult. Sci. 2016, 95, 30–40. [CrossRef] [PubMed]

15. Werner, T. Computer-assisted analysis of transcription control regions. Matinspector and other programs.
Methods Mol. Biol. 2000, 132, 337–349. [PubMed]

16. Balkovetz, D.F. Opening Pandora’s box in the tight junction. J. Am. Soc. Nephrol. 2007, 18, 1624–1625.
[CrossRef] [PubMed]

17. Georgiadis, A.; Tschernutter, M.; Bainbridge, J.W.; Balaggan, K.S.; Mowat, F.; West, E.L.; Munro, P.M.;
Thrasher, A.J.; Matter, K.; Balda, M.S.; et al. The tight junction associated signalling proteins ZO-1 and
ZONAB regulate retinal pigment epithelium homeostasis in mice. PLoS ONE 2010, 5, e15730. [CrossRef]
[PubMed]

18. Flores, I.; Jones, D.R.; Merida, I. Changes in the balance between mitogenic and antimitogenic lipid second
messengers during proliferation, cell arrest, and apoptosis in T-lymphocytes. FASEB J. 2000, 14, 1873–1875.
[CrossRef] [PubMed]

http://dx.doi.org/10.1186/1477-7827-11-65
http://www.ncbi.nlm.nih.gov/pubmed/23855623
http://dx.doi.org/10.1016/j.anireprosci.2014.06.024
http://www.ncbi.nlm.nih.gov/pubmed/25018046
http://dx.doi.org/10.1016/j.bbrc.2011.08.073
http://www.ncbi.nlm.nih.gov/pubmed/21884682
http://dx.doi.org/10.1371/journal.pone.0131572
http://www.ncbi.nlm.nih.gov/pubmed/26181055
http://dx.doi.org/10.1371/journal.pone.0082194
http://www.ncbi.nlm.nih.gov/pubmed/24349219
http://dx.doi.org/10.1371/journal.pgen.1000648
http://www.ncbi.nlm.nih.gov/pubmed/19763160
http://dx.doi.org/10.1016/j.ygyno.2013.06.007
http://www.ncbi.nlm.nih.gov/pubmed/23774303
http://dx.doi.org/10.1016/S0031-9384(01)00475-9
http://dx.doi.org/10.1080/00071668508416783
http://www.ncbi.nlm.nih.gov/pubmed/3971194
http://dx.doi.org/10.3382/ps/pev168
http://www.ncbi.nlm.nih.gov/pubmed/26188033
http://dx.doi.org/10.1210/en.2013-1632
http://www.ncbi.nlm.nih.gov/pubmed/24693963
http://www.ncbi.nlm.nih.gov/pubmed/25308257
http://dx.doi.org/10.1007/s00441-014-1860-6
http://www.ncbi.nlm.nih.gov/pubmed/24744268
http://dx.doi.org/10.3382/ps/pev305
http://www.ncbi.nlm.nih.gov/pubmed/26574029
http://www.ncbi.nlm.nih.gov/pubmed/10547845
http://dx.doi.org/10.1681/ASN.2007040403
http://www.ncbi.nlm.nih.gov/pubmed/17513323
http://dx.doi.org/10.1371/journal.pone.0015730
http://www.ncbi.nlm.nih.gov/pubmed/21209887
http://dx.doi.org/10.1096/fj.99-1066fje
http://www.ncbi.nlm.nih.gov/pubmed/11023971


Int. J. Mol. Sci. 2018, 19, 1531 15 of 16

19. Suzuki, A.; Tsutomi, Y.; Akahane, K.; Araki, T.; Miura, M. Resistance to Fas-mediated apoptosis: Activation of
caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 1998, 17, 931–939.
[CrossRef] [PubMed]

20. Yakovlev, A.G.; Ota, K.; Wang, G.; Movsesyan, V.; Bao, W.L.; Yoshihara, K.; Faden, A.I. Differential expression
of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain
development and after traumatic brain injury. J. Neurosci. 2001, 21, 7439–7446. [CrossRef] [PubMed]

21. Johnson, A.L.; Woods, D.C. Dynamics of avian ovarian follicle development: Cellular mechanisms of
granulosa cell differentiation. Gen. Comp. Endocrinol. 2009, 163, 12–17. [CrossRef] [PubMed]

22. Johnson, P.A. Follicle selection in the avian ovary. Reprod. Domest. Anim. 2012, 47, 283–287. [CrossRef]
[PubMed]

23. Barnes, P.J. Anti-inflammatory actions of glucocorticoids: Molecular mechanisms. Clin. Sci. 1998, 94, 557–572.
[CrossRef] [PubMed]

24. Tsurufuji, S.; Sugio, K.; Takemasa, F. The role of glucocorticoid receptor and gene expression in the
anti-inflammatory action of dexamethasone. Nature 1979, 280, 408–410. [CrossRef] [PubMed]

25. Turner, J.D.; Schote, A.B.; Macedo, J.A.; Pelascini, L.P.; Muller, C.P. Tissue specific glucocorticoid receptor
expression, a role for alternative first exon usage? Biochem. Pharmacol. 2006, 72, 1529–1537. [CrossRef]
[PubMed]

26. Itani, O.A.; Liu, K.Z.; Cornish, K.L.; Campbell, J.R.; Thomas, C.P. Glucocorticoids stimulate human sgk1
gene expression by activation of a GRE in its 5′-flanking region. Am. J. Physiol. Endocrinol. Metab. 2002,
283, E971–E979. [CrossRef] [PubMed]

27. McKay, L.I.; Cidlowski, J.A. Molecular control of immune/inflammatory responses: Interactions between
nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr. Rev. 1999, 20, 435–459. [PubMed]

28. Gilbert, A.B.; Evans, A.J.; Perry, M.M.; Davidson, M.H. A method for separating the granulosa cells,
the basal lamina and the theca of the preovulatory ovarian follicle of the domestic fowl (Gallus domesticus).
J. Reprod. Fertil. 1977, 50, 179–181. [CrossRef] [PubMed]

29. Bustos, A.D.; Rubio, P.; Jouve, N. Molecular characterisation of the inactive allele of the gene Glu-A1 and
the development of a set of AS-PCR markers for HMW glutenins of wheat. Theor. Appl. Genet. 2000,
100, 1085–1094. [CrossRef]

30. Pauciullo, A.; Gallo, D.; Colimoro, L. Genotyping at the CSN1S1 locus by PCR-RFLP and AS-PCR in a
Neapolitan goat population—Small Ruminant Research. Small Rumin. Res. 2008, 74, 84–90.

31. Alsiddig, M.A.; Yu, S.G.; Pan, Z.X.; Widaa, H.; Badri, T.M.; Chen, J.; Liu, H.L. Association of single nucleotide
polymorphism in melatonin receptor 1A gene with egg production traits in Yangzhou geese. Anim. Genet.
2017, 48, 245–249. [CrossRef] [PubMed]

32. Kang, B.; Guo, J.R.; Yang, H.M.; Zhou, R.J.; Liu, J.X.; Li, S.Z.; Dong, C.Y. Differential expression profiling of
ovarian genes in prelaying and laying geese. Poult. Sci. 2009, 88, 1975–1983. [CrossRef] [PubMed]

33. Nascimento, C.S.; Barbosa, L.T.; Brito, C.; Fernandes, R.P.; Mann, R.S.; Pinto, A.P.; Oliveira, H.C.;
Dodson, M.V.; Guimaraes, S.E.; Duarte, M.S. Identification of suitable reference genes for real time
quantitative polymerase chain reaction assays on pectoralis major muscle in chicken (Gallus gallus). PLoS ONE
2015, 10, e0127935. [CrossRef] [PubMed]

34. Schybli, M.; Sigrist, B.; Hess, M.; van Leerdam, B.; Hoop, R.K.; Vogtlin, A. Development of a new real-time
polymerase chain reaction assay to detect Duck adenovirus A DNA and application to samples from Swiss
poultry flocks. J. Vet. Diagn. Investig. 2014, 26, 189–194. [CrossRef] [PubMed]

35. Andrews, N.C.; Faller, D.V. A rapid micropreparation technique for extraction of DNA-binding proteins
from limiting numbers of mammalian cells. Nucleic Acids Res. 1991, 19, 2499. [CrossRef] [PubMed]

36. Lo, P.H.; Urabe, Y.; Kumar, V.; Tanikawa, C.; Koike, K.; Kato, N.; Miki, D.; Chayama, K.; Kubo, M.;
Nakamura, Y.; et al. Identification of a functional variant in the MICA promoter which regulates MICA
expression and increases HCV-related hepatocellular carcinoma risk. PLoS ONE 2013, 8, e61279. [CrossRef]
[PubMed]

37. Attarzadeh-Yazdi, G.; Shipston, M.J.; Antoni, F.A. Dex-ras1 and serum- and glucocorticoid-inducible protein
kinase 1: Regulation of expression by dexamethasone in HEK293 cells. Neurochem. Res. 2008, 33, 609–613.
[CrossRef] [PubMed]

http://dx.doi.org/10.1038/sj.onc.1202021
http://www.ncbi.nlm.nih.gov/pubmed/9747872
http://dx.doi.org/10.1523/JNEUROSCI.21-19-07439.2001
http://www.ncbi.nlm.nih.gov/pubmed/11567033
http://dx.doi.org/10.1016/j.ygcen.2008.11.012
http://www.ncbi.nlm.nih.gov/pubmed/19059411
http://dx.doi.org/10.1111/j.1439-0531.2012.02087.x
http://www.ncbi.nlm.nih.gov/pubmed/22827382
http://dx.doi.org/10.1042/cs0940557
http://www.ncbi.nlm.nih.gov/pubmed/9854452
http://dx.doi.org/10.1038/280408a0
http://www.ncbi.nlm.nih.gov/pubmed/460415
http://dx.doi.org/10.1016/j.bcp.2006.07.005
http://www.ncbi.nlm.nih.gov/pubmed/16930562
http://dx.doi.org/10.1152/ajpendo.00021.2002
http://www.ncbi.nlm.nih.gov/pubmed/12376324
http://www.ncbi.nlm.nih.gov/pubmed/10453354
http://dx.doi.org/10.1530/jrf.0.0500179
http://www.ncbi.nlm.nih.gov/pubmed/864645
http://dx.doi.org/10.1007/s001220051390
http://dx.doi.org/10.1111/age.12517
http://www.ncbi.nlm.nih.gov/pubmed/27885693
http://dx.doi.org/10.3382/ps.2008-00519
http://www.ncbi.nlm.nih.gov/pubmed/19687284
http://dx.doi.org/10.1371/journal.pone.0127935
http://www.ncbi.nlm.nih.gov/pubmed/26020643
http://dx.doi.org/10.1177/1040638714523426
http://www.ncbi.nlm.nih.gov/pubmed/24590667
http://dx.doi.org/10.1093/nar/19.9.2499
http://www.ncbi.nlm.nih.gov/pubmed/2041787
http://dx.doi.org/10.1371/journal.pone.0061279
http://www.ncbi.nlm.nih.gov/pubmed/23593449
http://dx.doi.org/10.1007/s11064-007-9516-5
http://www.ncbi.nlm.nih.gov/pubmed/17985234


Int. J. Mol. Sci. 2018, 19, 1531 16 of 16

38. Guney, S.; Schuler, A.; Ott, A.; Hoschele, S.; Zugel, S.; Baloglu, E.; Bartsch, P.; Mairbaurl, H. Dexamethasone
prevents transport inhibition by hypoxia in rat lung and alveolar epithelial cells by stimulating activity and
expression of Na+-K+-ATPase and epithelial Na+ channels. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007,
293, L1332–L1338. [CrossRef] [PubMed]

39. Hori, T.; Jin, L.; Fujii, A.; Furihata, T.; Nagahara, Y.; Chiba, K.; Hosokawa, M. Dexamethasone-mediated
transcriptional regulation of rat carboxylesterase 2 gene. Xenobiotica 2012, 42, 614–623. [CrossRef] [PubMed]

40. Stevens, A.; Garside, H.; Ray, D. RU486, the glucocorticoid receptor (GR) antagonist, recruits NCoR, but not
SRC-1: Explaining type II antagonism. Endocr. Abstr. 2002, 3, 40.

41. Harger, J.W.; Dinman, J.D. An in vivo dual-luciferase assay system for studying translational recoding in the
yeast Saccharomyces cerevisiae. RNA 2003, 9, 1019–1024. [CrossRef] [PubMed]

42. Noguchi, T.; Ikeda, M.; Ohmiya, Y.; Nakajima, Y. A dual-color luciferase assay system reveals circadian
resetting of cultured fibroblasts by co-cultured adrenal glands. PLoS ONE 2012, 7, e37093. [CrossRef]
[PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1152/ajplung.00338.2006
http://www.ncbi.nlm.nih.gov/pubmed/17873005
http://dx.doi.org/10.3109/00498254.2011.648670
http://www.ncbi.nlm.nih.gov/pubmed/22235919
http://dx.doi.org/10.1261/rna.5930803
http://www.ncbi.nlm.nih.gov/pubmed/12869712
http://dx.doi.org/10.1371/journal.pone.0037093
http://www.ncbi.nlm.nih.gov/pubmed/22615906
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	SNP (Single Nucleotide Polymorphisms) Genotyping and Association Analysis 
	Sequence Characterization and Phylogenetic Relationships among Species of Yangzhou Geese KIAA1462 Gene 
	KIAA1462 mRNA Expression Profile in Yangzhou Geese Tissues 
	KIAA1462 mRNA Level Differs in Individuals with Different Genotypes 
	The mRNA Level of Caspase-3 Is Negative Regulated by KIAA1462 
	Direct Sequencing of the 5' Flanking Region of KIAA1462 
	The c.-413C>G Mutation Causes Allele-Specific Binding of GR 
	GR mRNA Expression Profile in Yangzhou Geese Tissues 
	Glucocorticoid Promotes the Transcription Activity of the C But Not of the G Allele 

	Discussion 
	Materials and Methods 
	Ethics Statement 
	Animals and Samples Preparation 
	Genotyping and Association Analysis 
	RNA Isolation and First-Strand cDNA Synthesis 
	Cloning of KIAA1462 Gene Coding Sequence in Yangzhou Geese 
	Construction of pEGFP-KIAA1462-N1 Expression Vector 
	Quantitative Real-Time PCR Analysis 
	Granulosa Cell Culture and KIAA1462 Gene Overexpression 
	siRNA Preparation and Transfection 
	Mutation Detection in KIAA1462 Promoter Region 
	Electrophoretic Mobility Shift Assay (EMSA) 
	Dual Luciferase Reporter Assay 
	Bioinformatics Analysis 

	References

