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A new global dataset of bioclimatic 
indicators
Sergio Noce   1 ✉, Luca Caporaso   1,2 & Monia Santini   1

This study presents a new global gridded dataset of bioclimatic indicators at 0.5° by 0.5° resolution for 
historical and future conditions. The dataset, called CMCC-BioClimInd, provides a set of 35 bioclimatic 
indices, expressed as mean values over each time interval, derived from post-processing both climate 
reanalysis for historical period (1960–1999) and an ensemble of 11 bias corrected CMIP5 simulations 
under two greenhouse gas concentration scenarios for future climate projections along two periods 
(2040–2079 and 2060–2099). This new dataset complements the availability of spatialized bioclimatic 
information, crucial aspect in many ecological and environmental wide scale applications and for several 
disciplines, including forestry, biodiversity conservation, plant and landscape ecology. The data of 
individual indicators are publicly available for download in the commonly used Network Common Data 
Form 4 (NetCDF4) format.

Background & Summary
Climate change impacts, affecting primarily ecosystems’ functions and consequently human sectors, have become 
a crucial topic within the scientific community (https://www.ipcc.ch/working-group/wg2/) and most recently 
across the whole society and sustainable development efforts (https://sustainabledevelopment.un.org/sdg13). 
Average climate patterns, mainly represented by intra-annual (monthly to seasonal) temperature and precipita-
tion cycle, directly influence the distribution, abundance and interactions of biological species, with consolidated 
evidence of how observed and expected variations in climate conditions can undermine the ecosystems’ ecolog-
ical equilibrium1–3.

Under faster and faster environmental modifications over lands4, climate datasets and efficient processing 
chains applied on them allow answering many urgent questions of biogeographical sciences about climate change 
impacts on living organisms (e.g. animals, plants, bacteria), even through the interactions they have with the 
surrounding natural resources, like water and soil. For example, to reproduce and model, respectively, current 
and future habitats’ ranges by mean of Species Distribution Modelling (SDM), large amount of high quality and 
up-to-date environmental (especially climate) data is required, to be operated into further indicators proxy of 
typical climate settings across the domains of interest5–9.

During the long history of scientific research on the relationships between climate and Earth’s communi-
ties, numerous meteorological variables and/or derived indices have been formulated, calculated and applied to 
explain the geographic distribution of natural populations along climate gradients, characterized by intra-annual 
patterns of temperature and precipitation10. Such variables and indices are also known as bioclimatic indicators 
(hereafter BioClimInd). They mainly result from primary - observed or modelled - climate fields (e.g. minimum, 
maximum and mean temperature, precipitation amount) and contribute to delineate the bioclimatic “envelope” 
for species in terms of favourable environmental conditions11,12, also referred to as “suitability”7,9.

Considering the increasing interest for spatially-explicit assessments, the computation of BioClimInd for the 
historical period can benefit from gridded climate products building on meteorological stations’ data spatialized 
through either regression-based interpolation or climate reanalysis13. Instead, the primary data source to derive 
BioClimInd for future time horizons are the outputs of climate model simulations that, despite the substantial 
progress occurred in the last few decades, are still affected by both systematic and random errors preventing 
their direct use in climate impact studies without affecting their reliability13–15. To reduce these errors and related 
effects, different approaches can be used14: improving the physics in the models; quantifying the uncertainty by 
using a multi-model ensemble; or removing the model biases through climate data post-processing16. The first 
option requires an extensive investment in research efforts while the second one needs a huge computing power. 
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Although lacking a sound physical basis, the last option, also know as “bias-correction”, has become increasingly 
common in the climate impact community. Thanks to its high implementation simplicity and low computational 
demand along with growing spatialized databases on global and regional climate observations to be used as 
benchmark17.

Under the raising availability of climate information, several global datasets of bioclimatic indicators 
have become popular as reference point for the scientific community. Worthy of mention are undoubtedly 
WorldClim18,19, CHELSA20,21, CliMond22,23, ecoClimate24, ENVIREM25 and MERRAclim26. WorldClim, the most 
cited dataset and recently (January 2020) updated to the 2.1 version, provides 19 BioClimInd at very high spatial 
resolution (up to 30 arc-seconds, ca. 0.9 km at the equator) for recent climate (1970–2000) and also for the future 
(2021–2040, 2041–2060, 2061–2080, 2081–2100) using 9 General Circulation and Earth System Models (GCMs 
and ESMs) as part of the Coupled Model Intercomparison Project Phase 6 (CMIP6). Climate time series have 
been downscaled, bias-corrected and covering the four Shared Socio-economic Pathways (SSPs) that drive sim-
ulations in support of the 6th Assessment Report from the Intergovernmental Panel on Climate Change (IPCC 
AR6) (https://pcmdi.llnl.gov/CMIP6/). CHELSA dataset (in the last version 1.2) has the same spatial resolu-
tion and indicators as WorldClim for the climatological period 1979–2013 and future periods 2041–2060 and 
2061–2080 for a large set of future simulations under CMIP5 (Coupled Model Intercomparison Project Phase 
5); CHELSA substantially differs from WorldClim over the mountain regions especially for rainfall-based indi-
cators since the basic algorithm incorporates further orographic predictors20. Recently, still within the CHELSA 
project, a high resolution dataset was released with information on precipitation and temperatures from 2006 to 
210021. CliMond (in the latest 1.2 version), is a dataset of 40 BioClimInd for current and short to long-term future 
time frames from 2 GCMs with 10’ and 0.5° spatial resolution (ca. 9.2 and 55 km at the equator, respectively). 
While CliMond uses also radiation and pan evaporation as input variables, it is based on “old” greenhouse gas 
concentration scenarios (A1B and A2) supporting the IPCC 4th Assessment Report. ENVIREM provides both 
16 BioClimInd at multiple spatial resolutions (up to 30 arc-seconds) from three global climate models for several 
periods in the past and the code to generate them for the future. EcoClimate provides data starting from Pliocene 
up to 2080–2100 for the same 19 BioClimInd in WorldClim but at 0.5° spatial resolution and for 9 among GCMs/
ESMs from CMIP5 and PMIP3 (Paleoclimate Modelling Intercomparison Project Phase 3). MerraClim was 
recently added to these datasets and provides the 19 WorldClim indicators at three spatial resolutions (from 2.5 
to 10 arc-minutes) for three recent decades (1980s, 1990s and 2000s) starting from hourly data of 2-meter air 
temperature and specific humidity (instead of precipitation). Even when the above datasets are provided inter-
polated to very high spatial resolution (few kilometers), the represented climate physical processes remain con-
sistent to native map units (tens of thousands to millions of hectares), so that the datasets are more suitable to 
serve studies encompassing very broad domains (large regions/continents up to the entire globe) and hosting, 
in terms of biological organization, generalists species and ecosystems’ mosaics27. In case of investigations over 
sub-regional to local (e.g. mountain area) scale, some studies looking at species with more restricted habitats or 
at smaller patch ecosystems started to exploit simulations from regional climate models, like those making part 
of the Coordinated Regional Downscaling Experiment (CORDEX), their further downscaling and/or similar 
ensemble initiatives28–31. Moreover, aiming at CORDEX-based applications at global level would raise the issue 
of heterogeneity due to different combinations of global and regional models, greenhouse gas concentration sce-
narios and spatial resolutions (0.11°, 0.22° and/or 0.44°) across the CORDEX domains32. To give an example, 
only CORDEX domains of North America, Mediterranean and Europe are currently covered at 0.11° (ca. 12 km) 
resolution. Finally, CORDEX data require bias-correction as well, and only in one case (Europe domain) adjusted 
data have been made available to the community.

In this work, a global dataset of 35 BioClimInd is presented, named CMCC-BioClimInd, with a spatial res-
olution of 0.5°, both for the historical period (1960–1999) and for two future time horizons (2040–2079 and 
2060–2099) from, respectively, post-processing of climate reanalysis and an ensemble of 11 CMIP5 climate sim-
ulations33,34. Simulations were bias-corrected benefiting of the trend-preserving approach adopted within the 
InterSectoral Impact-Model Intercomparison Project (ISIMIP)35 (see Methods). The CMCC-BioClimInd data-
set contributes to widening the availability of spatial information useful to the community by (1) providing an 
ensemble of bioclimatic indicators for the historical and future time frames (e.g. Figs 1 and 2) (2) adopting models 
and/or other analysis methods for robust (i.e. taking into account uncertainty) climate change impacts’ assess-
ments, at broad scale and in a wide range of research fields such as wildlife ecology, natural resources’ conser-
vation and management, climate impacts’ mitigation. On the one hand, the exploitation of indicators instead of 
just raw climate variables enables easier inferring of relationships between the studied topic (species occurrence, 
resources availability etc.) and the climate regime to support decision for complex systems36; on the other hand, 
using the ensemble allows considering the variability across simulations due to the different models’ physics and 
the uncertain future development pathways37.

Methods
Input data.  The CMCC-BioClimInd were elaborated, for the historical period, starting from the daily time 
series of temperature and precipitation available from the Water and Global Change (WATCH) forcing data-
set (WFD) (http://www.eu-watch.org/data_availability). The WFD is a twentieth century meteorological dataset 
based on the European Centre for Medium-range Weather Forecasts (ECMWF) Re-Analysis (ERA-40)38 inter-
polated to a 0.5° by 0.5° grid, with successive elevation-based correction of surface meteorological variables plus 
monthly bias-correction from the Climatic Research Unit (CRU) gridded observational dataset39,40. In this data-
set, the years from 1960 to 1999 were considered as reference period.

For the future time frame, daily time series of precipitation and temperature are available, thanks to the 
coordinated climate model simulation experiments in the frame of CMIP533,34. These simulations are forced 
by multiple Representative Concentration Pathways (RCPs) formulated to support the IPCC AR541,42. It is 
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known, as stated above, how raw climate model simulations are however affected by biases that, to serve impact 
studies, need to be reduced14. To achieve this, the ISIMIP Fast-Track (FT) initiative (https://www.isimip.org/
about/#simulation-rounds) provides bias-corrected daily time series of temperature and precipitation globally 
downscaled (through bilinear interpolation) at 0.5° grid resolution for five Earth System Models (ESMs) par-
ticipating in CMIP5: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M. 
Bias-correction is based on a trend-preserving method35 (https://github.com/ISIMIP/BC), developed to adjust 
the probability distribution over the reference period 1960–1999, while preserving the long-term trend in the 
data.

For the purpose of this work, this method was applied also to the ESM developed and used by the Foundation 
Euro-Mediterranean Center on Climate Change (CMCC-CESM43), and whose raw data are available on the 
CMIP5 data archive (https://esgf-node.llnl.gov/search/cmip5/). For the five different ESMs already bias-corrected 
within the ISIMIP FT initiative, the RCP4.544 and the RCP8.545 were selected, while projections under the RCP8.5 
are available from CMCC-CESM runs.

Fig. 1  Example of BIO34 - Potential Evapotranspiration (PET, mm/y) according to Hargreaves formulation for 
historical time interval 1960–1999 (left). Ensemble anomaly of the 11 CMIP5 simulations for the future period 
compared to the historical one expressed in percentage (center) and the variation among simulation expressed 
in Relative Standard Deviation (RSD) (right) for the two time horizons 2040–2079 (top) and 2060–2099 
(bottom).

Fig. 2  Example of BIO24 - Yearly positive precipitation (mm/y) for historical time interval 1960–1999 (left). 
Ensemble anomaly of the 11 CMIP5 simulations for the future period compared to the historical one expressed 
in percentage (center) and the variation among simulation expressed in Relative Standard Deviation (RSD) 
(right) for the two time horizons 2040–2079 (top) and 2060–2099 (bottom).
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Bioclimatic indicators.  Here, a description of BioClimInd (numbered from 1 to 35 with the prefix “Bio” and 
with a short name) is provided building on the definitions, in some case slightly revised, of the U.S. Geological 
Survey (USGS)46, the one in the ANUCLIM User Guide (https://fennerschool.anu.edu.au/files/anuclim61.pdf), 
and those in47 and/or48,49. Based on the indicator considered, source variables can be the bias-corrected mean 
temperature (TG), maximum temperature (TX), minimum temperature (TN) or precipitation (Pr), directly from 
daily series as described in the Section “Input data”. Before computing any indicator, bias-corrected daily series 
of maximum, minimum and mean temperature were converted from degrees Kelvin to Celsius by subtracting 
273.15 and indicated as Tx, Tn and Tg, respectively, while precipitation was converted from kg/m2/sec to mm/
day by multiplying by 86400 (seconds in a day) and the new variable is then indicated with P. The BioClimInd 
short name, input variables and definition sources are reported in Table 1, formulas are described in detail in 
Supplementary Table 1. In the extended description below, the long-term or climatological period (or simply 
“period”) refers to the 40-year time frames used for the analysis, i.e. 1960–1999 for the historical period (to match 
the reference period for the bias-correction) and 2040–2079 and 2060–2099 for the future periods, in order to 
enable comparison between future and historical time frames with the same length. When calendar months are 
mentioned, it means that a month is considered at climatological level (i.e. its 40-year average). The approach for 
the definition of wettest/driest/coldest/warmest months or quarters identifies these periods year by year allowing 
to consider inter-annual variability of intra-annual cycles, as also interestingly investigated for different “clima-
tological” windows by50.

Code Name Unit References Derived from

Bio1 Annual mean temperature °C Tg

Bio2 Mean diurnal range °C Tx,Tn

Bio3 Isothermality % Tx,Tn

Bio4 Temperature seasonality °C Tg

Bio5 Max temperature of warmest month °C Tx

Bio6 Min temperature of coldest month °C Tn

Bio7 Temperature annual range °C Tx,Tn

Bio8 Mean temperature of wettest quarter °C Tg,P

Bio9 Mean temperature of driest quarter °C Tg,P

Bio10 Mean temperature of warmest quarter °C Tg

Bio11 Mean temperature of coldest quarter °C Tg

Bio12 Annual precipitation mm P

Bio13 Precipitation of wettest month mm P

Bio14 Precipitation of driest month mm P

Bio15 Precipitation seasonality % P

Bio16 Precipitation of wettest quarter mm P

Bio17 Precipitation of driest quarter mm P

Bio18 Precipitation of warmest quarter mm Tg,P

Bio19 Precipitation of coldest quarter mm Tg,P

Bio20 Ellenberg quotient °C/mm 52 Tg,P

Bio21 Yearly positive temperature °C 47 Tg

Bio22 Sum of annual temperature °C Tg

Bio23 Ombrotermic index mm/°C 47 Tg,P

Bio24 Yearly positive precipitation mm 47 Tg,P

Bio25 Modified Kira coldness index °C 48,49 Tg

Bio26 Modified Kira warmth index °C 48,49 Tg

Bio27 Simplified continentality index °C 53 Tg

Bio28 Mean temperature of warmest month °C Tg

Bio29 Mean temperature of coldest month °C Tg

Bio30 Mean temperature of driest month °C Tg,P

Bio31 Mean temperature of wettest month °C Tg,P

Bio32 Modified Thermicity index °C 47 Tg,Tx,Tn

Bio33 Ombrothermic index of summer and the 
previous month mm/°C 47 Tg,P

Bio34 Potential Evapotranspiration Hargreaves mm 54 Tg

Bio35 Potential Evapotranspiration Thornthwaite mm 55 Tg

Table 1.  Code, full names, units, main references and input variables (Daily mean Tg, maximum Tx and 
minimum Tn temperature, daily precipitation amount P) for the BioClimInd. Formulas are reported in 
Supplementary Table 1.
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- Bio1 Annual mean temperature
This indicator, expressed in °C, indicates the total amount of energy inputs for the ecosystems in a year. The 

annual average of daily mean temperature (Tg) is first computed for each year in the considered long-term period, 
and then it is further averaged among all years in the period.

- Bio2 Mean diurnal range
The daily fluctuations of temperatures have a strong influence on ecosystems51. This indicator is expressed in 

°C and is calculated by averaging, within the considered period, the daily differences between the maximum (Tx) 
and minimum (Tn) temperature.

- Bio3 Isothermality
This indicator quantifies how large the day-to-night temperatures oscillate relatively to the annual oscillations 

among extreme (warmest and coldest) months. Isothermality is the ratio, expressed in %, of Bio2/Bio7 (see below 
for Bio7).

- Bio4 Temperature seasonality
This indicator, expressed in °C, measures the temperature change throughout the year. Based on the formula-

tion developed by Hijmans in WorldClim18, the average of daily mean temperature (Tg) is calculated for each cal-
endar month in the selected period, and then the Standard Deviation is computed among the 12 monthly values 
obtained. The larger the value of the Standard Deviation, the greater the variability of temperature within the year.

- Bio5 Maximum temperature of warmest month
For this indicator, expressed in °C, first the monthly mean of daily maximum temperature (Tx) is calculated, 

then for each year in the period the warmest month, i.e. the one with the highest mean of daily Tx, is selected and 
the climatological mean of these values is finally computed. Note that the warmest month could be different from 
year to year.

- Bio6 Minimum temperature of coldest month
For this indicator, expressed in °C, first the monthly mean of daily minimum temperature (Tn) is calculated, 

then for each year in the period the coldest month, i.e. the one with the lowest mean of daily Tn, is selected and 
the climatological mean of these values is finally computed. Note that the coldest month could be different from 
year to year.

- Bio7 Temperature annual range
Similar to Bio2, also the temperature fluctuations between the warmest vs. coldest month within a year play 

a crucial role on ecosystems. This indicator measures the range of temperature between extreme (warmest and 
coldest) months. Practically, Bio7 is the difference between Bio5 and Bio6, expressed in °C, and is also used to 
calculate Bio3.

- Bio8 Mean temperature of wettest quarter
To calculate this indicator, expressed in °C, first the wettest quarter (i.e. that with the highest precipitation 

amount calculated by summing daily P) of each year in the whole period is identified (considering a quarter 
belonging to the year of its central month), and then the mean temperature among all wettest quarters is calcu-
lated by averaging daily Tg. Note that the wettest quarter could be different from year to year.

- Bio9 Mean temperature of driest quarter
To calculate this indicator, expressed in °C, first the driest quarter (i.e. that with the lowest precipitation 

amount calculated by summing daily P) of each year in the whole period is identified (considering a quarter 
belonging to the year of its central month), and then the mean temperature among all driest quarters is calculated 
by averaging daily Tg. Note that the driest quarter could be different from year to year.

- Bio10 Mean temperature of warmest quarter
To calculate this indicator, expressed in °C, first the warmest quarter (i.e. that with the highest average of daily 

mean temperature Tg) of each year in the whole period is identified (considering a quarter belonging to the year 
of its central month), and then the mean temperature among all warmest quarters is calculated by averaging daily 
Tg. Note that the warmest quarter could be different from year to year.

- Bio11 Mean temperature of coldest quarter
To calculate this indicator, expressed in °C, first the coldest quarter (i.e. that with the lowest average of daily 

mean temperature Tg) of each year in the whole period is identified (considering a quarter belonging to the year 
of its central month), and then the mean temperature among all coldest quarters is calculated by averaging daily 
Tg. Note that the coldest quarter could be different from year to year.

- Bio12 Annual precipitation
This is a widely used indicator, representing the total amount of water inputs to the ecosystems and to their 

water cycle. This indicator is expressed in millimeter (mm) per year and it is derived by averaging, along the 
whole period, the annual sum of daily precipitation amounts P.

- Bio13 Precipitation of wettest month
For this indicator, expressed in mm, first the monthly sum of daily precipitation P is calculated, then for each 

year in the period the wettest month, i.e. the one with the highest precipitation amount, is identified and then the 
precipitation amount among all wettest months is averaged. Note that the wettest month could be different from 
year to year.

- Bio14 Precipitation of driest month
For this indicator, expressed in mm, first the monthly sum of daily precipitation P is calculated, then for each 

year in the period the driest month, i.e. the one with the lowest precipitation amount, is identified and then the 
precipitation amount among all driest months is averaged. Note that the driest month could be different from 
year to year.

- Bio15 Precipitation seasonality
Species distribution can be heavily influenced by precipitation variability during the year46. The precipitation 

seasonality, expressed in %, is the ratio between the standard deviation and the mean of 12 values representing 

https://doi.org/10.1038/s41597-020-00726-5
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the monthly average precipitation as calculated at calendar month level within the considered period. To avoid 
division by 0, the denominator is increased by 1.

- Bio16 Precipitation of wettest quarter
To calculate this indicator, expressed in mm, first the wettest quarter (i.e. that with the highest precipitation 

amount calculated by summing daily P) of each year in the whole period is identified (considering a quarter 
belonging to the year of its central month) (see Bio8), and then the precipitation amount is averaged among all 
wettest quarters. Note that the wettest quarter could be different from year to year.

- Bio17 Precipitation of driest quarter
To calculate this indicator, expressed in mm, first the driest quarter (i.e. that with the lowest precipitation 

amount calculated by summing daily P) of each year in the whole period is identified (considering a quarter 
belonging to the year of its central month) (see Bio9), and then the precipitation amount is averaged among all 
driest quarters. Note that the driest quarter could be different from year to year.

- Bio18 Precipitation of warmest quarter
To calculate this indicator, expressed in mm, first the warmest quarter (i.e. that with the highest average of 

daily mean temperature Tg) of each year in the whole period is identified (considering a quarter belonging to the 
year of its central month) (see Bio10), and then the precipitation amount is averaged among all warmest quarters. 
Note that the warmest quarter could be different from year to year.

- Bio19 Precipitation of coldest quarter
To calculate this indicator, expressed in mm, first the coldest quarter (i.e. that with the lowest average of daily 

mean temperature Tg) of each year in the whole period is identified (considering a quarter belonging to the year 
of its central month) (see Bio11), and then the precipitation amount is averaged among all coldest quarters. Note 
that the coldest quarter could be different from year to year.

- Bio20 Ellenberg quotient
This indicator is firstly described by Ellenberg in 196352 and it relates the temperature of the warmest month 

of the year to the annual precipitation. It is calculated in °C/mm as the ratio Bio28/Bio12 multiplied by 1000. This 
is a simple measure of humidity in respect to continentality.

- Bio21 Yearly positive temperature
Following the Rivas-Martinez bioclimatic approach47, this indicator, expressed in °C, consists in the sum of 

the monthly average temperature for those months whose long-term average of daily temperature Tg is higher 
than 0 °C.

- Bio22 Sum of annual temperature
This indicator is similar to Bio21 from which it differs because it is the sum of the monthly average temper-

ature for all months expressed in °C. In large portion of the globe this data results smaller than Bio21. It is also 
approximately equivalent to Bio1 multiplied by 12, but has been included in this dataset for a direct comparison 
with Bio21, Bio25 and Bio26.

- Bio23 Ombrothermic index
This indicator, calculated in mm/°C, is ten times the ratio between the average precipitation amount (in mm) 

for months with positive average of daily Tg (Bio24) and the sum of average temperature for the same months 
(Bio21)47.

- Bio24 Yearly positive precipitation
Still following47 this indicator, expressed in mm, represents the sum of the long-term average of total precipita-

tion (cumulated of daily P) for those months whose long-term average of daily temperature Tg is higher than 0 °C.
- Bio25 Modified Kira coldness index
Described by Kira48,49, and partially modified, this indicator describes the amount of energy inputs in the 

coldest portion of the year. It consists of the sum of the monthly average temperature for those months whose 
long-term average of daily temperature Tg is lower than 5 °C.

- Bio26 Modified Kira warmth index
Described by Kira48,49, and partially modified, this indicator describes the amount of energy inputs in the 

warmest portion of the year. It consists of the sum of the monthly average temperature for those months whose 
long-term average of daily temperature Tg is higher than 5 °C.

- Bio27 Simplified continentality index
Similar to Bio7, but based on Tg instead of Tx and Tn, this is an another measure of temperature extremes. It 

is the difference, in °C, between the average Tg of warmest (Bio28) and of the coldest (Bio29) months from the 
years of the considered period. Partially modified from Driscoll index53

- Bio28 Mean temperature of warmest month
For this indicator, expressed in °C, first the warmest months as in Bio5 are extracted for each year in the 

considered period, and then the average among daily mean temperature (Tg) is calculated among these months.
- Bio29 Mean temperature of coldest month
For this indicator, expressed in °C, first the coldest months as in Bio6 are extracted for each year in the consid-

ered period, and then the average among daily mean temperature (Tg) is calculated among these months.
- Bio30 Mean temperature of driest month
For this indicator, expressed in °C, first the driest months as in Bio14 are extracted for each year in the consid-

ered period, and then the average among daily mean temperature (Tg) is calculated among these months.
- Bio31 Mean temperature of wettest month
For this indicator, expressed in °C, first the wettest months as in Bio13 are extracted for each year in the 

considered period, and then the average among daily mean temperature (Tg) is calculated among these months.
- Bio32 Modified Thermicity index
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Revised from what was described by Rivas-Martinez47, this indicator, expressed in tents of °C, is the sum of 
annual mean temperature (Bio1), the average of maximum temperatures of warmest month (Bio5) and the aver-
age of minimum temperatures of coldest month (Bio6).

- Bio33 Ombrothermic index of summer and the previous month
Modified from Rivas-Martinez47, this indicator, expressed in mm/°C, is suited for the Northern Hemisphere, 

dividing the sum of P and the average of Tg for the late spring/summer period (May, June, July and August)
- Bio34 Potential Evapotranspiration Hargreaves

RCP4.5 RCP8.5

Data Source/Period 1960–99 2040–79 2060–99 2040–79 2060–99

Observations ✓

CMCC-CESM ✓ ✓

GFDL-ESM2M ✓ ✓ ✓ ✓

HadGEM2-ES ✓ ✓ ✓ ✓

IPSL-CM5A-LR ✓ ✓ ✓ ✓

MIROC-ESM-CHEM ✓ ✓ ✓ ✓

NorESM1-M ✓ ✓ ✓ ✓

Table 2.  Coverage of simulations across ESMs source of data and RCPs.

Data Source Source short name RCP File naming

WFD HIST — BIO1_HIST_1960_99.nc

CMCC-CESM CMCC 8.5 BIO1_CMCC_85_2060_99.nc

GFDL-ESM2M GFDL 8.5 BIO1_GFDL_85_2060_99.nc

HadGEM2-ES HADGEM 8.5 BIO1_HADGEM_85_2060_99.nc

IPSL-CM5A-LR IPSL 4.5 BIO1_IPSL_45_2060_99.nc

MIROC-ESM-CHEM MIROC 4.5 BIO1_MIROC_45_2060_99.nc

NorESM1-M NORESM 4.5 BIO1_NORESM_45_2060_99.nc

Table 3.  Examples of NetCDF naming (fourth column) based on bioclimatic indicator code (first four of 
five digits, BIO1 in the example case), data source (second column as abbreviation of the first one reporting the 
data source name), RCP (45 for RCP 4.5 and 85 for RCP 8.5, or empty in case of the historical period under 
WFD data), start year of the period (four digits) and end year of the period (the last two digits of the year).

Fig. 3  Workflow of the comparison between CMCC-BioClimInd 1.0 and WorldClim 2.0 for the historical 
period. The WorlClim dataset resampled to 0.5° by 0.5° grid (left); then overlapping of grid points from the two 
datasets, extraction of comparison table and creation of plots (right).
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This indicator calculates the potential evapotranspiration (PET, mm) through the formula of Hargreaves and 
Samani54, that requires as input the time series of monthly mean of Tg and of daily temperature range (this calcu-
lated from daily input of Tx and Tn). First the PET is cumulated for each year in the considered period and then 
averaged among years.

- Bio35 Potential Evapotranspiration Thornthwaite
This indicator calculates the potential evapotranspiration (PET, mm) through the formula of Thornthwaite55, 

that requires as input the time series of monthly mean of Tg. First the PET is cumulated for each year in the con-
sidered period and then averaged among years.

Fig. 4  Comparison of 19 common indicators between WorldClim2.0 (x-axis) and CMCC-BioClimInd (y-axis).
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Data Records
The complete CMCC-BioClimInd dataset56 is available through PANGAEA (https://doi.org/10.1594/
PANGAEA.904278). It consists in 805 files in NetCDF4 format with a 0.5° by 0.5° grid resolution and global 
coverage (except Antarctica). Files represent 35 bioclimatic indicators calculated for a 40-years historical interval 
(1960–1999) under climate reanalysis and for two future 40-years time intervals (2040–2079 and 2060–2099) 
under 6 ESMs’ projections and 2 RCPs (except RCP4.5 for CMCC-CESM) (Table 2). The size of the array for each 
map is 720 (longitudes) x 360 (latitudes) grid points for a total of 259200 points, whose 67415 differ from NULL 
as representing land areas. The individual file names follow this structure: “BIOx institute-model rcp yyyy zz.nc”

where x identifies the code of the bioclimatic indicator, institute-model (see Table 3, first column) identifies 
the source of data (short name for historical observation or for the producing Center and/or ESMs), rcp is the 
Representative Concentration Pathway (RCP 4.5 or RCP 8.5), yyyy is the starting year of time interval and zz the 
last two digits of the ending year of the time interval.

Technical Validation
Comparison of CMCC-BioClimInd 1.0 and WorldClim 2.0 datasets for the historical period.  To 
check the quality of our dataset the first 19 BioClimInd were compared with the same indicators from WorldClim 
for the historical period, ensuring independence of datasets as relying on different climate data sources (reanal-
ysis-based for CMCC-BioClimInd, interpolation from station data for WorldClim). The WorldClim Bioclimatic 

Fig. 5  Maps of differences calculated as CMCC-BioClimInd minus WorldClim2.0. Absolute difference ( °C) for 
Bio1 (left) and percentage difference for Bio12 (right).

Datasets descriptive statistics Difference from WorldClim 2.0 (Paired Samples T-Test)

BioClimInd WorldClim 2.0

Mean St.Dev

99% Confidence 
Interval of the 
Difference

t(df = 64514) p-valueMean St.Dev Mean St.Dev Lower Upper

Bio1 8.126 15.097 8.350 14.839 −0.223 1.463 −0.238 −0.209 −38.782 <0.0001

Bio2 11.077 2.862 10.855 3.234 0.222 1.466 0.006 0.207 38.492 <0.0001

Bio3 37.675 19.560 38.995 21.426 −1.312 4.062 −1.361 −1.279 −82.531 <0.0001

Bio4 835,284 534.812 848.365 528.491 −13.080 110.913 −14.205 −11.955 −29.955 <0.0001

Bio5 26.222 10.350 24.987 10.493 1.235 2.223 1.212 1.257 141.086 <0.0001

Bio6 −9.506 21.000 −8.984 19.869 −0.522 3.167 −0.554 −0.491 −41.878 <0.0001

Bio7 35.728 14.274 33.971 13.830 1.757 4.115 1.715 1.799 108.452 <0.0001

Bio8 13.074 12.106 15.189 11.266 −2.115 4.571 −2.161 −2.068 −117.507 <0.0001

Bio9 3.937 19.139 2.933 20.174 1.003 4.200 0.961 1.046 60.698 <0.0001

Bio10 18.627 9.784 18.707 9.899 −0.801 1.454 −0.095 −0.653 −13.987 <0.0001

Bio11 −2.832 20.955 −1.944 20.006 −0.886 2.653 −0.914 −0.860 −84.965 <0.0001

Bio12 682.890 709.593 711.460 687.841 −28.560 204.944 −30.639 −26.482 −35.396 <0.0001

Bio13 153.302 138.876 117.571 112.562 35.731 48.866 35.235 36.226 185.722 <0.0001

Bio14 8.139 18.342 20.837 31.739 −12.697 17.058 −12.870 −12.524 −189.066 <0.0001

Bio15* 55.381 32.141 61.408 32.726 −55.870 29.929 −6.027 15.748 −97.204 <0.0001

Bio16 338.706 332.544 311.413 299.049 27.293 99.232 26.287 28.299 69.860 <0.0001

Bio17 49.865 85.097 73.531 105.357 −23.665 38.987 −24.061 −23.270 −154.179 <0.0001

Bio18 175.365 176.338 212.796 191.427 −37.432 89.900 −38.342 −36.521 −105.875 <0.0001

Bio19 191.427 158.270 132.108 211.287 −28.617 130.071 −29.936 −27.298 −55.883 <0.0001

Table 4.  Summary of descriptive statistics and results of Paired Samples T-Test to study the differences between 
CMCC-BioClimInd and WorldClim 2.0. *BioClimInd Bio15 * 10.
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variables were downloaded from http://www.worldclim.org/ version 2 at a 10’ resolution, then resampled to a 0.5° 
resolution in ESRI ArcGIS Desktop 10.1 using the bilinear resampling technique (Fig. 3). Subsequently, for each 
indicators only the 64515 valid (different from no data) grid cells from both CMCC-BioClimInd and WorldClim 
datasets were considered in the comparison. It is necessary to remark that historical CMCC-BioClimInd refer to 
1960–1999 period whereas WorldClim to 1970–2000.

Although the two datasets overlap in time for 30 out of 40 years (1970–1999), Fig. 4 shows a good corre-
lation between them. For 11 BioClimInd the R2 is above 0.9, for 7 between 0.75 and 0.9, only the comparison 
of Bio19 between the two datasets has shown a lower level of correlation. In particular, for the basic indica-
tors Annual Mean Temperature (Bio1) and Annual precipitation (Bio12) the level of correlation is excellent (i.e. 
R2 = 0.991 - 0.917).

In Fig. 5 are reported maps of spatial differences for Bio1 and Bio12; main divergences in annual temperature 
can be found in the North-Eastern portion of Siberia, Arabian peninsula, western Africa where BioClimInd 
results colder, in contrast with a large portion of Greenland and Himalayan mountains where BioClimInd results 
sensibly hotter. However, in most part of the globe, temperature differences are within ±2.5°C. For precipita-
tion, the differences, in terms of lower BioCLimInd values are recognized in almost all desert areas (i.e. example 
Sahara, Arabian peninsula, Karakum, Gobi, Kalahari etc.) although it is important to underline that even with 
high percentage values the differences in absolute terms (mm) are minimal but appear high as compared to 
low reference values; WorlClim results sensibly drier in many areas of central Africa, Southern America and 
Himalayan mountains.

It is worth noticing that the above mentioned differences are mainly located in areas where the variables 
estimate is less accurate due to the paucity of ground observations57 and some artifacts may arise from the inter-
polation function used when creating the spatial gridded dataset. Therefore, one of the possible explanations for 
the differences between WorldClim and CMCC-BioClimInd, could be the different weight given to observations 
with respect to climate model data when creating the datasets. In Table 4 the main descriptive statistics for the 19 
common indicators and the results of the Paired Samples T-Test are reported.

Further remarks.  After the above necessary comparison, the authors want to emphasize that the entire data-
set presented in this work is based on elaborations of climate reanalysis for the historical period, whose validation 
effort are available in literature40,58,59. Hence, it can be assumed that outputs are at least as robust as the datasets 
from which they originate and therefore do not need further validation. For future projections, the dataset uses 
bias-corrected outputs of climate models and it is recommended to exploit this dataset under an ensemble per-
spective37. In conclusion it should be emphasized that combining several parameters for the creation of indices 
(see Table 1) inevitably increases the level of uncertainty16 due to error propagation.

Usage Notes
When using CMCC-BioclimInd dataset or part of it, please cite this manuscript. Besides data sources for the 
dataset presented in this manuscript, data from further climate simulations can be integrated, e.g. considering 
also RCPs 2.6 and 6.0 and/or additional models as available from other ISIMIP rounds. Data are in NetCDF4 
format, but other common interoperable formats (i.e. ESRI grid, GEOTIFF) can be provided, by contacting the 
authors, for a sub-selection of the dataset, whose size will be defined based on the specific requests from inter-
ested users and on the processing time needed. For any questions, suggestions or request of collaboration regard-
ing CMCC-BioClimInd please contact the corresponding author. Data are freely available under the Creative 
Commons License: CC BY

Code availability
All the BioClimInd calculations were conducted exploiting NetCDF data manipulation and analysis tools, namely 
CDO (Climate Data Operators) and NCO (NetCDF Operators) combined through DOS Batch (.bat) commands 
and scripts available through Github at https://github.com/CMCC-Foundation/BioClimInd.
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