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ABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. 

Here we show that shotgun and targeted protein sequencing can be used to identify 
potential prognostic biomarkers in formalin-fixed paraffin-embedded specimens 
from 9 patients with PDAC with “short” survival (<12 months) and 10 patients 
with “long” survival (>45 months) undergoing surgical resection. A total of 24 and 
147 proteins were significantly upregulated [fold change ≥2 or ≤0.5 and P<0.05; 
or different detection frequencies (≥5 samples)] in patients with “short” survival 
(including GLUT1) and “long” survival (including C9orf64, FAM96A, CDH1 and CDH17), 
respectively. STRING analysis of these proteins indicated a tight protein-protein 
interaction network centered on TP53. Ingenuity pathway analysis linked proteins 
representing “activated stroma factors” and “basal tumor factors” to poor prognosis 
of PDAC. It also highlighted TCF1 and CTNNB1 as possible upstream regulators. 
Further parallel reaction monitoring verified that seven proteins were upregulated in 
patients with “short” survival (MMP9, CLIC3, MMP8, PRTN3, P4HA2, THBS1 and FN1), 
while 18 proteins were upregulated in patients with “long” survival, including EPCAM, 
LGALS4, VIL1, CLCA1 and TPPP3. Thus, we verified 25 protein biomarker candidates 
for PDAC prognosis at the tissue level. Furthermore, an activated stroma status and 
protein-protein interactions with TP53 might be linked to poor prognosis of PDAC.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) has 
recently surpassed breast cancer to become the third 
leading cause of cancer-related mortality according to 
the American Cancer Society, with a 5-year survival in 
the single digits [1]. Despite improvements in surgical 
techniques and adjuvant chemoradiotherapy, the survival 

from the disease has not changed substantially over the 
past four decades. It is estimated that PDAC will surpass 
colorectal cancer to become the second leading cause of 
cancer-related mortality following lung cancer by the year 
2020 [2]. The main reason underlying the low survival 
rate of PDAC is that most patients are diagnosed at an 
advanced stage, at which curatively intended surgery, no 
longer represents an option. Currently, CA19-9 is the only 
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serum tumor marker used in the clinical management of 
PDAC. However, the sensitivity for CA19-9 is 79% with a 
specificity of 82%, limiting its use for screening purposes 
[3].

Traditionally, PDAC has been looked upon 
as a gradual process associated with the sequential 
accumulation of genetic changes during a comparably 
long period of time [4]. Novel data has though implied that 
the development of PDAC may not be a slow and gradual 
process. Using whole genome sequencing, it was reported 
that genomic instability from mitotic errors might occur 
simultaneously resulting in rapid tumor development and 
metastases in a subset of patients [5]. These findings have 
been supported by a recent publication on approximately 
60,000 patients with histopathologically verified PDAC 
where survival and metastatic spread were correlated to 
tumor size [6]. It was reported that already at a small 
tumor size up to 5 mm, as much 30% of patients had 
remote cancer growth. This implies the predominant role 
of molecular tumor biology in determining outcome for 
the individual patient. It also emphasizes the need for 
better tools for staging, for example with novel biomarkers 
in order to render the necessary prognostic and predictive 
information and support choice of therapy in a more 
precision-medicine fashion.

While large scale genomics studies have provided 
understanding of mutational processes underlying the 
development of PDAC [7, 8], and helped to define 
molecular subtypes of PDAC [9, 10], proteomics 
technology has accelerated our understanding of PDAC 
at the protein level by identifying key drivers of disease 
progression and biomarkers for diagnosis and targeted 
intervention [11, 12]. Recent proteomic studies and 
further validation studies have greatly expanded the 
pool of potential diagnostic and prognostic biomarkers 
in PDAC. For instance, at the tissue level, Turtoi et al. 
found that ASPN, LTBP2, TGFBI were overexpressed in 
PDAC [13], while Takadate and colleagues suggested that 
ECH1, GLUT1, OLFM4 and STML2 were potentially 
diagnostic biomarkers of PDAC [14]. Furthermore, Chen 
and colleagues found that PRELP, LGALS1 and RPS8 
might be significant prognostic factors for pancreatic 
cancer [15], while another study showed that PNMA1 was 
associated with prolonged overall survival and might serve 
as a prognostic biomarker for pancreatic cancer [16]. At 
the plasma level, ICAM1 and TIMP1 have been proposed 
as biomarkers for the detection of pancreatic cancer [17]. 
However, these biomarkers were mostly studied in small 
population cohorts and thus further validation is warranted 
prior to clinical use.

Formalin-fixed paraffin-embedded (FFPE) tissues 
are used routinely in hospitals for histopathological 
diagnosis and staging of diseases like cancer. FFPE 
samples with associated clinical and histological 
characterization represent a valuable source of biomarker 
investigation. The application of mass spectrometry 

technology to FFPE samples has been shown to be 
technically feasible and highly robust for biomarker 
discovery and validation [18]. Specifically, deep mining of 
proteomes from individual samples, including membrane 
proteins and low-abundance proteins, broadens the 
possibility to discover potential biomarkers. Using 
proteome bioinformatic tools, the many functional 
partnerships and interactions that occur between proteins 
are revealed and put into context for molecular systems 
biology. In our study, we selected tissue samples from 
PDAC patients with divergent survival, aiming to identify 
prognostic biomarker panels correlating with outcome. 

RESULTS

Quality control and overview of proteome 
profiles

To evaluate the technical reproducibility of sample 
handling including reduction, alkylation, precipitation 
and fractionation and instrument performance, we 
performed three independent sample preparations using 
an identical protein stock extracted from one sample. The 
intensities of proteins in the three experiments showed 
good correlations (r2 = 0.973, 0.920 and 0.931). Besides, 
sample preparations with and without fractionation were 
applied to an identical sample to compare the consistency 
of protein intensities from these two methods. In result, 
the protein intensities were in good correlation between 
the two methods (r2 = 0.9373). Moreover, the fractionation 
step achieved a remarkable enlargement of protein 
number being identified, which enabled a deep mining 
of proteome in pancreatic tissue in this study (Figure 
1). Among 57 replicates from 19 samples, coefficient of 
variations (CV) of Log 2 transformed intensities of spiked-
in chick lysozyme before and after normalization was 
34.0% and 6.6%, respectively. Around 3,000,000 peptide-
spectrum matches (PSMs) and 58,505 peptides with high 
confidence were identified, which were mapped to 4942 
proteins (minimum 2 peptides per protein). Among them, 
3103 proteins were identified in more than half (≥ 5) of the 
samples in at least one group. Gene Ontology analysis was 
conducted based on the 3103 proteins. Cellular component 
analysis showed that there were 640 plasma membrane 
proteins, 108 cell surface proteins and 163 extracellular 
matrix proteins, which were considered as potential 
proteins for potential serum detection and also candidate 
therapeutic targets. Notably, PANTHER pathway analysis 
indicates that Integrin signaling pathway is significantly 
enriched (3.23 fold, P = 6.58E-19).

Candidate prognostic proteins for PDAC

A total of 304 proteins were differentially expressed 
between the “long” survival (LS) and “short” survival 
(SS) groups (P < 0.05), including 33 proteins and 271 
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proteins statistically upregulated in “short” survival group 
and “long” survival group, respectively. Among them, 
171 proteins were significantly differentially expressed 
between the two groups which meet the criteria: 1) SS/
LS fold change ≥ 2 or ≤ 0.5 and P < 0.05; or 2) different 
detection frequencies (≥ 5 samples), namely, 83 proteins 
that were more frequently detected (≥ 5) in one group than 
the other one. Of these 171 proteins, 24 and 147 proteins 
were upregulated in “short” survival group and “long” 
survival group, respectively (see Figure 2). 

The 171 differentially expressed proteins from 19 
tissue samples were submitted to two-way unsupervised 
hierarchical clustering and visualized in the heat map 
(Figure 3A). The clustering of 19 tissue samples was 
in good agreement with the clinical classification. The 
principal component analysis further confirmed that 
patients with “long” survival and “short” survival were 

well stratified by group of differentially expressed proteins 
(Figure 3B). The set of differentially expressed proteins 
exhibited striking trend in terms of subcellular localization. 
David analysis showed significant overrepresentation 
of mitochondrial proteins (34 proteins, P-value 0.017), 
and specifically mitochondrial large ribosomal subunit  
(6 proteins, P-value 0.002) and mitochondrial respiratory 
chain complex I (5 proteins, P-value 0.033). PANTHER 
pathways analysis of differentially expressed proteins 
revealed overrepresentation of Wnt signaling pathway 
(CDH1, CSNK2A2, GNA11, CTBP2, CDH17, 
SMARCE1, p-value 0.02), followed by Alzheimer 
disease-presenilin pathway (MMP8, MMP9, MLLT4, 
CDH1, P-value 0.04).

In order to better assess proteins upregulated in 
“short” and “long” survival groups, these two sets (24 and 
147 proteins, respectively), were separately submitted to 

Figure 1: Venn diagram of protein numbers being identified in one identical sample by methods with and without 
fractionation.

Figure 2: Volcano plot. Comparison of protein expression in short survival tumors (SS) vs long survival ones (LS). Vertical axis: t-test 
p-value, horizontal axis: SS/LS fold change. Colouring by proteins characteristic for PDAC subtype factors according to Moffitt et al. Left: 
Tumor-related factors: Green: Basal tumor, Orange: Classic tumor. Right: Stroma related-factors. Blue: Normal stroma, Red: Activated 
stroma. (see text).
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Panther functional analysis. Among proteins upregulated 
in the “long” survival group, remarkably overrepresented 
were mitochondrial proteins (P-value 3e-5), which 
translated into overrepresentation of oxidoreductase 
activity (P-value 1.8e-3). Among proteins upregulated in 
the “short” survival group, overrepresented were secretory 
vesicle proteins (P-value 5e-6) and extracellular proteins 
(P-value 4e-4). This was related to overrepresentation 
of activities such as peptidase activity (P-value 2.5e-
2), collagen binding (P-value 4.8e-4), heparin binding 
(P-value 7e-6) and lipid binding (P-value 3e-2).

STRING database [19] was employed to investigate 
the functional and physical protein interactions among 
the 171 differentially expressed proteins (Figure 4). Since 
TP53 and KRAS were essential in the pathogenesis of 
pancreatic cancer, these two proteins were manually 
added to identify potentially related pathways. With high 
confidence (minimum required interaction score 0.700), 
a total of 86 protein-protein interactions were observed 
and they were significantly enriched based on the given 
protein nodes (P-value < 0.001), indicating that these 
differentially expressed proteins are at least partially 
biologically connected. Seven proteins clustered in a 
tight interaction network centered on TP53, including 
CDH1, THBS1, MMP9, EPCAM, WDR5, CSNK2A2, 
PADI4. Of this protein cluster, CDH1 also closely 

interacts with CDH17, PIK3R1, NDRG2, CTBP2, MMP9 
and EPCAM while THBS1 is centered by FN1, DPP4 
and MMP9. Besides, intensive interactions were also 
observed in the other three clusters of proteins, which 
were related to respiratory electron transport (COX5B, 
UQCRB, NDUFS5, NDUFA4, NDUFAB1, NDUFB6 and 
NDUFB8), mitochondrial translation (MRPL37, MRPL2, 
MRPL3, MRPL16, MRPL19 and MRPL23) and mRNA 
Splicing (PRPF4, POLR2C, MAGOH, PLRG1, CWC15 
and PHF5A).

A complementary Ingenuity Pathway Analysis (IPA), 
using curated, literature-derived relationships, showed a 
picture similar to the STRING analysis (Figure 5). Top 
canonical pathways, which were significantly enriched 
among proteins differing between the “short” survival 
group and “long” survival group, included Oxidative 
Phosphorylation and Mitochondrial Dysfunction. For 
example, the differentially expressed proteins amounted 
to 7 out of 22 Oxidative Phosphorylation pathway proteins 
(P-value 0.002). Similarly to the non-curated networks 
generated by STRING, also Ingenuity analysis yielded 
tightly connected relationship subnetworks, built around 
protein hubs, which are known PDAC actors, even if these 
hub proteins were not themselves differentially expressed. 
These subnetworks are constructed automatically as 
dense subsets of global network of literature-derived 

Figure 3: (A) Heat map of differentially expressed proteins in pancreatic cancer with long survival (LS) and short survival (SS). The heat 
map visualized two-way unsupervised hierarchical clustering of 171 differentially expressed proteins in pancreatic cancer patients with 
short survival (SS) compared to those with long survival (LS) (P < 0.01, SS/LS fold Change ≥ 2). (B) Global principal component analysis 
of protein profiles in 19 samples. Dots representing pancreatic cancer (PC) patient samples with long survival (blue) and short survival (red) 
were well clustered, which was in good agreement with the clinical classification.
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relationships between proteins and genes. First such 
subnetwork was centered on Akt kinase and mitochondrial 
complex 1 proteins. The second subnetwork was centered 
on NFkB and TCF transcription factors. The hubs of the 
third subnetwork were the ERK kinases, collagens and 
matrix metalloproteases (MMPs). The fourth subnetwork 
was focused on HNF4A and mitochondrial ribosomal 
proteins. 

Additionally, an IPA analysis of possible upstream 
regulators of the differentially expressed proteins yielded 
a mechanistic network regulated by HNF1A (TCF1) and 
CTNNB1, a well-known cancer regulatory hub important 
for the Wnt signaling pathway. The HNF1A mechanistic 
network was significant, with p-value 4.2E-05, and 
included 8 proteins from the differentially expressed 
list: ALDH3A2, CEACAM1, CRAT, EPCAM, GPX2, 
HSD17B2, MUC6 and PCCA, see Figure 6. 

Verification of candidate prognostic proteins by 
targeted MS/MS

To evaluate the potential candidate proteins, 171 
differentially expressed proteins from the discovery phase 
were selected for targeted proteomics study. Unfortunately, 
98 proteins of them failed in the PRM approach. Finally, 
73 proteins were successfully detected and scheduled 
in one assay panel. The proteins were detectable in all 
samples. Thirty-six proteins were differentially expressed 
between the two groups, including 7 proteins and 29 
proteins statistically upregulated in “short” survival group 
and “long” survival group, respectively (P < 0.05). Of 
them, seven proteins were significantly upregulated (SS/
LS fold change > 1.5) in patients with “short” survival 
(MMP9, CLIC3, MMP8, PRTN3, P4HA2, THBS1, FN1), 
while 18 proteins were significantly upregulated (SS/

Figure 4: Protein-protein interactions among prognostic candidate proteins. Protein-protein interactions of the 171 
dysregulated proteins extracted from the STRING database. TP53, KRAS were manually added to identify potentially related pathways. 
Notably, seven proteins were centered on TP53, including CDH1, THBS1, MMP9, EPCAM, WDR5, CSNK2A2, PADI4. 
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LS fold change <0.5) in patients with “long” survival 
(TMED4, GPD1L, SOD3, NPNT, ABHD14B, ACADSB, 
DHRS1, EPCAM, WDR82, HDHD2, TPPP3, CHGA, 
LGALS4, TTC38, COQ9, CES2, VIL1, CLCA1) (Figure 7 
and Table 1). After the expression values of each protein 
were divided into two groups: lower expression (9 cases) 
and higher expression (10 cases), Kaplan-Meier analysis 
showed that four proteins were significantly negatively 
correlated to the survival months (TPPP3, WDR82, 
LGALS4 and EPCAM, P values were < 0.001, 0.008, 
0.020 and 0.010, respectively) (Figure 8).

DISCUSSION

PDAC is considered one of the most aggressive 
and lethal forms of human cancer. However, there 
exists a small proportion of patients that actually reach 
a comparably “long” survival after surgical resection and 
adjuvant chemotherapy, even when they have “advanced 
stage” disease (size) or other markers of poor prognosis 

[20–22]. There have been very few studies relating global 
protein expression to survival in PDAC [14, 23]. The 
characterization of protein profiles at the tissue level 
might help to understand better the molecular basis of 
PDAC progression and identify potential biomarkers for 
diagnosis and prognosis of the disease. In this study, we 
have established a comprehensive method for proteome 
deep mining based on formalin-fixed paraffin-embedded 
PDAC tissues, which led to discovery of around 5000 
proteins, making it possible to detect low abundance 
proteins and hydrophobic membrane proteins. A total of 
171 proteins were dysregulated in patients with “short” 
survival compared to those with “long” survival. A 
further validation panel, targeting 73 of the differentially 
expressed proteins confirmed that 7 and 18 proteins, were 
upregulated in the “short” survival and the “long” survival 
patients, respectively. 

In this study, several aspects accounting for the 
aggressiveness of PDAC have been highlighted. Among 
well-known hallmarks of cancer metabolism, shift from 

Figure 5: Protein-protein relationships among prognostic candidate proteins extracted by the Ingenuity IPA analysis. 
Top four subnetworks shown. Red: proteins upregulated in short survival patients. Blue: proteins upregulated in long survival patients.
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oxidative phosphorylation towards glycolysis is well-
known [24], and specific glucose metabolic phenotype 
was proposed for pancreatic cancer [25]. Strikingly, 
in the current study, this metabolic shift was seen as 
generally lower expression of mitochondrial proteins 
in “short” survivors. Most notably, this affected a set of 
mitochondrial respiratory chain complex I proteins (likely 
resulting in lowered oxidative phosphorylation) and a set 
of mitochondrial ribosomal proteins (likely resulting in 
lowered mitochondrial translation rates).

Another cancer metabolism hallmark is the 
deregulation of glucose intake [24]. Glucose transporter 
1 (GLUT1), also known as facilitated glucose transporter 
member 1 (SLC2A1), is a pivotal rate-limiting element 
in the transport of glucose in malignant cells. GLUT1 
has also been implicated in the pathogenesis of PDAC. 
Nagarajan et al. found that by stimulating GLUT1-
mediated glucose transport, paraoxonase 2 favored the 

tumor growth and metastasis of PDAC [26]. It has also 
been reported that HMGB2 predicts poor prognosis 
in PDAC by facilitating HIF1-α-mediated glycolysis 
through the expression of GLUT1 [27]. NDRG1, a tumor 
suppressor, was also shown to inhibit cancer metabolism in 
PDAC partly through the regulation of GLUT1 gene [28]. 
High levels of GLUT1 have been previously correlated 
to poor outcome in PDAC [29, 30]. Accordingly, in our 
results, GLUT1 was significantly upregulated in “short” 
survivors. Recently, GLUT1 was shown to be a promising 
target in pancreatic cancer stem cells in mice [31].  

Several differentially expressed proteins (CDH1, 
THBS1, MMP9, EPCAM, WDR5, CSNK2A2 and PADI4) 
have a close interplay with TP53, which is frequently 
mutated and progressively involved in pancreatic cancer 
[32–35]. THBS1, MMP9 and PADI4 were upregulated 
in patients with “short” survival, while the other four 
proteins were upregulated in patients with “long” survival. 

Figure 6: TCF1 and CTNNB1 are hubs of a mechanistic upstream regulatory network (IPA). Red symbols: proteins 
upregulated in short survival patients. Blue symbols: proteins upregulated in long survival patients. Orange edges: relationships predicted 
as activating. Blue edges: relationships predicted as inhibitory. Yellow edges: relationships inconsistent with downstream protein state.
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The predictive potential of THBS1 and MMP9 for the 
prognosis of pancreatic cancer has been reported in a few 
previous studies [14, 36, 37]. It has been suggested that 
TP53 inhibits angiogenesis by the regulation of THBS1 
synthesis [38], while MMP9 degrades the extracellular 

matrix component and facilitates the invasion of 
tumors. PADI4 acts as a transcriptional corepressor 
for TP53 [39]. A study revealed that the TP53-PADI4 
pathway participated in the response to DNA damage, 
nuclear fragmentation and TP53-mediated cell death 

Table 1: List of candidate prognostic biomarkers for pancreatic cancer

Entry Gene
DDA PRM

DescriptionLS 
Freq.

SS 
Freq. P value SS/LS Fold 

change Pep. no. P value SS/LS Fold 
change

P14780 MMP9 10 9 0.026 3.62 2 0.045 4.44 Matrix metalloproteinase-9

O95833 CLIC3 1 6 0.039 3.25 2 0.010 3.42 Chloride intracellular channel 
protein 3

P22894 MMP8 1 6 0.029 4.28 1 0.046 3.06 Neutrophil collagenase

P24158 PRTN3 7 9 0.022 3.85 2 0.031 2.98 Myeloblastin

O15460-2 P4HA2 6 9 0.025 2.88 2 0.029 2.66 Isoform IIa of Prolyl 
4-hydroxylase subunit alpha-2

P07996 THBS1 10 9 0.015 2.46 2 0.028 2.01 Thrombospondin-1

P02751 FN1 10 9 0.029 2.07 2 0.034 1.92 Fibronectin

A8K7I4 CLCA1 5 0 0.015 0.08 1 0.029 0.05 Calcium-activated chloride 
channel regulator 1

P09327 VIL1 10 5 0.004 0.11 2 0.008 0.12 Villin-1

O00748 CES2 5 0 0.008 0.15 2 0.029 0.16 Cocaine esterase

O75208 COQ9 8 2 0.004 0.27 2 0.004 0.19 Ubiquinone biosynthesis 
protein COQ9, mitochondrial

Q5R3I4 TTC38 10 5 0.017 0.21 1 0.035 0.20 Tetratricopeptide repeat 
protein 38

P56470 LGALS4 10 8 0.003 0.19 2 0.005 0.23 Galectin-4

P10645 CHGA 7 2 0.038 0.23 2 0.025 0.27 Chromogranin-A

Q9BW30 TPPP3 9 1 0.001 0.10 1 0.000 0.28 Tubulin polymerization-
promoting protein family 
member 3

Q9H0R4 HDHD2 10 5 0.005 0.22 2 0.026 0.30 Isoform 2 of Haloacid 
dehalogenase-like hydrolase 
domain-containing protein 2

Q6UXN9 WDR82 7 2 0.039 0.22 1 0.023 0.31 WD repeat-containing protein 
82

P16422 EPCAM 8 2 0.012 0.20 1 0.021 0.33 Epithelial cell adhesion 
molecule

Q96LJ7 DHRS1 7 1 0.007 0.24 1 0.017 0.37 Dehydrogenase/reductase 
SDR family member 1

P45954 ACADSB 9 3 0.017 0.15 2 0.026 0.38 Short/branched chain specific 
acyl-CoA dehydrogenase, 
mitochondrial

Q96IU4 ABHD14B 10 9 0.007 0.31 2 0.013 0.46 Alpha/beta hydrolase domain-
containing protein 14B

Q6UXI9-6 NPNT 10 3 0.008 0.25 1 0.016 0.46 Isoform 6 of Nephronectin

P08294 SOD3 10 9 0.015 0.48 2 0.003 0.47 Extracellular superoxide 
dismutase [Cu-Zn]

Q8N335 GPD1L 9 4 0.030 0.16 2 0.010 0.47 Glycerol-3-phosphate 
dehydrogenase 1-like protein

Q7Z7H5 TMED4 10 4 0.002 0.13 2 0.040 0.48 Transmembrane emp24 
domain-containing protein 4

Abbreviations: DDA:data-dependent acquisition; PRM:parallel reaction monitoring; LS: long survival; SS: short survival; Pep. No: number of peptides for 
proteins in the PRM panel. Freq.: number (frequency) of cases in which the protein was detected.
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Figure 7: Boxplot of intensities of prognostic proteins from PRM phase in PDAC patients with “short” survival (SS) 
compared to “long” survival (LS) (all P < 0.05). Seven proteins (THBS1, P4HA2, MMP9, MMP8, FN1, CLIC3, PRTN3) were 
significantly upregulated (SS/LS fold change > 1.5) in patients with SS while CLCA1 were significantly upregulated (SS/LS fold change 
< 0.5) in patients with LS.
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[40]. Inhibition of TP53 was also implicated in the 
downregulation of CDH1 and cell invasion in invasive 
carcinoma [41]. Notably, CDH1 has functional protein 
associations with differentially expressed proteins in 
our study including CDH17, PIK3R1, NDRG2, CTBP2, 
MMP9 and EPCAM according to the STRING database. 
Kaplan-Meier analysis showed that the expression of 
EPCAM was inversely correlated to the survival (months) 
of pancreatic cancer. It has been found that the TP53 
protein negatively regulates EPCAM expression by 
binding to a response element within the EPCAM gene 
[42]. Higher expression of EPCAM is associated with an 
improved outcome in pancreatic cancer by suppressing 
cell activity [43, 44]. 

A histological hallmark of PDAC is that tumor 
cells are surrounded by as much as 90% stroma 
consisting of proliferating myofibroblast-like cells 
(pancreatic stellate cells), immune cells and inflammatory 
cells and extracellular matrix components such as 
collagen, fibrinogen, hyaluronan, and fibrin [45]. The 
microenvironment of pancreatic adenocarcinoma has a 
complex role in tumor growth and therapeutic response. 
While the existence of a dense stroma is thought to 

promote tumor progression and metastasis [46, 47], this 
concept has been challenged by recent experimental 
evidence showing that some elements of the stroma 
may actually restrain the tumor arguing for stromal re-
shaping rather than pure depletion [48–50]. A number 
of clinical trials targeting the tumor-stroma interactions 
in PDAC are ongoing, however, the results seem to be 
inconclusive. Therefore, a further understanding of the 
tumor microenvironment is needed. A recent large-scale 
genomics analysis of PDAC by Moffitt et al. employed so-
called virtual microdissection to elucidate tumor subtypes 
and to account for cellular heterogeneity in tumor samples, 
typically containing a large amount of stroma alongside 
the tumor itself [10]. They linked poor prognosis to sets 
of proteins named “activated stroma factors” as well as 
“basal tumor factors”. Strikingly, our data parallels closely 
to their results. As seen in Figure 2, proteins classified by 
Moffitt as “activated stroma factors” and “basal tumor 
factors” were upregulated in short survival patients while 
proteins classified as “normal stroma factors” and “classic 
tumor factors” were upregulated in long survival patients. 
The proteins characteristic for these tumor features 
made up as much as approximately 20% of differentially 

Figure 8: Kaplan-Meier analysis of protein expression. According to the expression of each protein, patients were divided into 
two groups: lower expression (9 cases, Blue line, marked by 1) and higher expression (10 cases, green line, marked by 2), Kaplan-Meier 
analysis showed that four proteins were significantly correlated to the survival months (TPPP3, WDR82, LGALS4 and EPCAM, P values 
were < 0.001, 0.008, 0.020 and 0.010, respectively).
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expressed proteins. Our results are in accordance with 
the findings of Moffitt et al. and support the idea that an 
activated stroma state may be linked to poor prognosis 
[10]. 

In our study, many potentially prognostic proteins 
are related to the microenvironment of pancreatic 
cancer. Reactome pathway analysis revealed that 9 of 
the differentially expressed proteins were involved in 
extracellular matrix organization, including THBS1, 
PLOD1, LAMC2, P4HA2, MMP9, MMP8, FN1, CDH1 
and CEACAM1. Four proteins participating in collagen 
formation, PLOD1, LAMC2, P4HA2 and MMP9, were 
all upregulated in patients with “short” survival compared 
to those with “long” survival. In comparison, out of five 
proteins participating in degradation of the extracellular 
matrix, four (LAMC2, FN1, MMP8 and MMP9) were 
upregulated and one (CDH1) was downregulated in 
the poor outcome group. This to some extent again 
suggests that the microenvironment in “short” survival 
patients was more activated, both in the formation and 
degradation of the extracellular matrix, which is believed 
to provide support to the surrounding tissues and serve 
as a physical barrier to drug delivery in PDAC [51]. Our 
study also revealed several collagen associated proteins 
as potential prognostic biomarkers, including P4HA2, 
THBS1 and FN1. P4HA2 participates in the biosynthesis 
of collagens by catalyzing the post-translational formation 
of 4-hydroxyproline in -Xaa-Pro-Gly- sequences in 
collagens. Studies have shown that the expression of 
P4HA2 were upregulated in the oral cavity in squamous 
cell carcinoma, papillary thyroid cancer, and breast cancer 
[52]. Furthermore, silencing P4HA2 or treatment with 
the P4HA inhibitor suppresses breast cancer progression 
by reducing tumor growth and a metastasis, which is 
accompanied by reduced collagen deposition, indicating 
its potential role as therapeutic target. FN1 has been 
suggested as a prognostic biomarker for pancreatic cancer 
in a proteomics study [14]. FN1 binds to its receptors such 
as integrins, inducing distinct signals to promote tumor 
angiogenesis and migration of PDAC cells [53]. A related 
molecule, regulator of integrin recycling, the CLIC3 
intracellular chloride channel which drives invasiveness of 
pancreatic cancer is also upregulated in “short” survivors 
in the current study [54].

Two upstream regulators identified in our prognostic 
study, TCF1 and CTNNB1, emphasized the potential role 
of Wnt signaling pathway whose improper activation 
is responsible for establishment of cancer stem cells 
[55]. It has been recently reported that the disruption of 
nuclear complexes of CTNNB1 and HNF1A suppressed 
pancreatic tumor growth [56]. Wnt signaling has been 
widely implicated in cancer, especially colorectal cancer, 
in which mutation of key regulatory factors of the Wnt 
pathway (mainly APC and CTNNB1), was found in ninety 
percent of tumors, resulting in activation of the Wnt 
pathway [57–58]. However, the impact of Wnt signaling 

in PDAC is less clear. Although mutations of key Wnt 
pathway components are uncommon in PDAC, DNA 
methylation and expression status of multiple genes are 
involved in the regulation of Wnt pathway [59]. Nuclear 
localization of β-catenin is also regularly found in PDAC 
[60]. Inhibition of Wnt signaling using either a Wnt 
antagonist or a therapeutic monoclonal antibody in mice 
has been found to delay PDAC formation [61].

We have also noticed that some proteins mainly 
derived from polymorphonuclear neutrophils (PMNs), 
including MMP8, MMP9, MPO and PRTN3, were 
significantly upregulated in “short” survival patients. 
PMNs have received attention in the context of 
inflammation-driven tumorigenesis [62]. More neutrophils 
were found to be infiltrated in tumor cells in PDAC 
patients with poor survival [63, 64]. It is suggested that 
neutrophil-derived matrix-degrading proteases such as 
MMP8 and MMP9, might modulate the composition of 
the extracellular matrix and facilitate metastasis [65]. 
However, the expression of MMP8 and MMP9 can also be 
detected in tumor cells in patients with PDAC [66]. MMPs 
are also part of the apoptotic process: they cleave CDH5, 
PECAM1 and CDH1 during apoptosis of endothelial or 
epithelial cells [67]. PRTN3, also known as Myeloblastin 
and c-ANCA, is implicated in degradation of elastin, 
fibronectin, laminin, vitronectin, and collagen types 
I, III, and IV in in-vitro studies. Furthermore, PRTN3 
has been shown to be involved in the degradation of 
extracellular matrix (ECM) proteins [68]. G12C mutation 
in the KRAS gene is associated significantly with an 
altered activity of PRTN3 in pulmonary adenocarcinomas 
[69]. Downregulation of PRTN3 has also been reported 
to inhibit proliferation and induces differentiation of 
promyelocyte-like leukemia cells [70]. 

In the light of the differential expression of several 
extracellular proteases, MMP8, MMP9, PRTN3 and DPP4, 
another protein, CLCA1, merits special mention. It is a 
novel self-cleaving extracellular metalloprotease [71, 72] 
and is a homologue of likely tumor suppressors, CLCA2 
and CLCA4 [73, 74]. Low expression level of CLCA1 
was observed to be linked to poor prognosis in colorectal 
cancer and CLCA1 itself has been proposed as a prognostic 
marker [75, 76]. Thus, it is an attractive hypothesis that 
CLCA1 has a role in tumor suppression in PDAC, either by 
interaction with tumor microenvironment or by proteolytic 
activation of yet undiscovered substrates. Another 
explanation of the link between CLCA1 expression and 
survival is the confirmed role of this protein in modulating 
the TMEM16A/ANO1 Ca2+-activated chloride channel 
[72, 77]. Ion channels in general, and Ca2+-activated 
chloride channels in particular are known to be involved in 
regulating cell proliferation, cell migration and metastasis 
and are believed to be important emerging cancer drug 
targets in cancer [78, 79], particularly in pancreatic cancer 
where they may be mediating interactions with the tumor 
microenvironment [80].
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Apart from dysregulated pathways and processes, 
several of the proteins differentiating “long” and “short” 
survivors were previously noted as potential tumor 
markers. FAM96A, upregulated in “long” survivors, has 
been previously shown to regulate the iron-sulphur cluster 
assembly [81] and was reported to be a tumor suppressor 
[82]. CDH1 and CDH17 are also upregulated in “long” 
survivors. CDH17 is a known gastric cancer marker [83] 
while upregulation of CDH1 inhibits pancreatic cancer 
metastasis [84]. Another potential prognostic biomarker 
upregulated in “long” survivors in this study, LGALS4, 
was proposed as exocrine-like subtype PDAC marker [85]. 
Its homologue, LGALS1, has been previously reported to 
be associated with long-term survival in PDAC [15]. 

Another novel observation notable among proteins 
significantly correlated to survival is the UPF0553 protein 
C9orf64. This is a typical example of an interesting 
protein whose obscure gene symbol makes it likely to 
be ignored in large-scale studies [86]. In fact, C9orf64 
is a protein of Q_salvage family in the Pfam database 
(PF10343, previously called DUF2419). Similar to 
DNA glycosidases and ribonucleoside hydrolases, it is 
involved in salvaging the micronutrient queuosine [87]. 
The importance of queuosine, which is involved in tRNA 
covalent modifications [88] is starting to be appreciated, as 
its roles in modulating cell proliferation are elucidated and 
correlation of queuosine deficiency of tRNA to severity of 
malignancy is revealed [89]. Thus, our results provide the 
first hypothesis that a link may exist between queuosine 
modifications and PDAC.

In conclusion, we have identified several tumor-
expressed proteins that offer prognostic information in 
PDAC. Of note, TP53 related proteins and neutrophil-
derived proteins were upregulated in PDAC patients 

with poor survival, supporting their potential role in 
tumor progression. Our results indicate that the tumor 
microenvironment, with an activated stroma state, is 
closely related to disease progression. The findings also 
highlight the importance of the Wnt signaling pathway. 
Nevertheless, there are some limitations of the present 
study that deserve to be mentioned. Firstly, by employing a 
label-free quantification, only a relative quantification was 
possible and the absolute upregulation or downregulation 
of proteins in each survival group remains unknown. 
Incorporating corresponding normal tissues would also 
be of value. Secondly, the prognostic significance of 
the biomarker candidates needs to be validated in larger 
cohorts with alternative approaches, which are more 
accessible in the clinic, such as immunohistochemistry 
and tissue microarray technology. Finally, we recommend 
further in-depth analysis into the mechanistic role 
of identified biomarker candidates in order to better 
understand the pathophysiological events in PDAC.

MATERIALS AND METHODS

Patients and samples

Patients with surgically resectable PDAC were 
diagnosed and underwent surgery at the Department 
of Surgery, Skåne University Hospital, Lund, Sweden, 
between the year of 1995 and 2011.Archival FFPE tissue 
samples were obtained from the primary tumor and the 
tissue blocks were sectioned at a thickness of 10 μm. The 
hematoxylin-eosin staining FFPE slides from each patient 
were carefully reviewed by our pathologist (Figure 9). 
For each patient, two sections were collected in one 
tube, which were barcoded to be traceable and referred 

Figure 9: Histology images of FFPE slides from two representative cases. H&E, 10x objective magnification. Left: A long 
survival PDAC case with histological grade 2. Notice irregular gland formation located in rich stroma. Abnormal epithel imitating normal 
duct epithel. Adenocarcinoma is situated in upper right part of the picture and infiltrate an atrophied pancreas parenchyma. Right: A short 
survival PDAC case with histological grade 3. Notice solid area of cancer structures of cells with nuclear pleomorphy and relative scanty 
cytoplasma. Stroma is not dominant in this picture.
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to their patient identities. These tubes were stored in the 
South Swedish Biobank, which is located in the Center of 
Excellence in Biological and Medical Mass Spectrometry 
(CEBMMS), at the Biomedical Center (BMC), Lund, 
Sweden. From the biobank, we retrospectively selected 
patients with PDAC who met the following criteria: 
1) “short” survival (< 12 months) or “long” survival (> 
45 months); 2) resectable disease; 3) tumors located in 
the head of the pancreas. Accordingly, 9 patients with 
PDAC with “short” survival and 10 patients with “long” 
survival were selected for further study. There were 
no significant differences in terms of pathologically 
confirmed lymph node metastasis, R1 resection status and 
use of chemotherapy between “short” and “long” survival 
groups. The clinical characteristics of the patients are 
summarized in Table 2. Ethical approval for this study 
was granted by the institutional review board at Lund 
University.  

Sample preparation

Two sections of FFPE tissues (10 μm) from each 
patient were obtained and incubated in 1mL of 1:50 
diluted EnVision™ FLEX Target Retrieval Solution, 
High pH (Dako, Glostrup, Copenhagen, Denmark) for 10 
min at 97°C, followed by centrifugation at 14,000g for 
3 min and removal of the supernatant. After a repeated 
de-paraffinization step, the pellets were incubated in 
1mL 500 mM Tris-HCl pH 8.0 at 90°C for 1.5 hours to 
break down cross-linking between proteins and other 
molecules. This was followed by centrifugation at 14,000g 
at 4°C for 15 min, and the supernatant was removed. 
For denaturation and extraction of proteins, 250 µL 6 
M Guanidine-HCl in 50 mM Ammonium bicarbonate 
(AMBIC) was added and sonication was applied by 
sonication probe (Branson SLPe, Emerson Electric Co., 
St. Louis, MO, USA), operating with 20% amplitude, 
5 min for 2 times and 20 seconds cool down period in-
between on ice. After centrifugation at 14,000g for 10 
min, the supernatant was stored. Protein concentration 
was determined by Micro BCA Protein Assay Kit (Thermo 
Fisher Scientific, San José, CA, USA). For each sample 
150 μg proteins were diluted by AMBIC in a final volume 
of 180 μL and 7.5 μL of chicken lysozyme (0.02 μg/μL) 
was added to evaluate the variance from sample handling 
and instrument performance among samples. Following 
reduction with 3 mM DTT (1 h at 56°C) and alkylation 
with 15 mM iodoacetamide (30 min at 24°C in dark), the 
samples underwent precipitation with 1:9 volume ratio of 
samples to pure ethanol overnight. This was followed by 
centrifugation at 14,000g at 4°C for 15 min and carefully 
removal of the supernatant. The pellets were dissolved 
in 200 μL AMBIC, followed by adding 1.25 μg trypsin 
(Promega, Madison, WI, USA) for digestion at 37°C for 
18 h. Peptide concentrations were determined by Micro 
BCA kit.

Exploiting strong cation exchange by Microspin 
column (MA SEM HIL-SCX, 10–100 μg capacity, The 
Nest group Inc., South Borough, MA, USA), 30 μg 
peptides from each sample were separated into 5 fractions 
by applying step-wise gradient of 20 mM, 40 mM, 60 mM, 
100 mM and 500 mM KCl in 10 mM KH2PO4 containing 
20% ACN (pH = 2.8). Each fraction underwent desalting 
by Ultra Microspin Silica C18 column (SUM SS18V, 3–30 
μg capacity, The Nest group Inc.). Fractions were dried by 
centrifugal evaporator and each fraction was resuspended 
with 30 μL of solvent A (0.1% formic acid).

nanoLC-MS/MS analysis (Discovery phase)

The digested peptides were loaded onto a C18 
trap column (Acclaim PepMap 100 pre-column, 2 cm x 
75 μm ID, 3 μm particles, 100 Å pore size, PN: 164705, 
Thermo Fisher Scientific) and then separated on a C18 
analytical column (EASY-Spray column, 25 cm x 75 μm 
ID, 2 μm particles, 100 Å pore size, PN: ES802, Thermo 
Fisher Scientific). A flow rate of 300 nL/min and a column 
temperature of 35°C were applied. A nonlinear gradient 
was exploited using solvent A (0.1% formic acid) and 
solvent B (0.1% formic acid in acetonitrile). The gradient 
went from 7% to 26% B during the first 70 min, then 
increasing to 35% B during the next 20 min, followed by a 
raise to 90% B in 5 min, which was maintained for 15 min. 
The total amount of fractionated protein digest injected 
onto the column was estimated to be 1 μg. Fractionated 
samples were injected in the order of increasing salt 
concentrations used for elution of the peptides. To avoid 
carryover, each sample injection was followed by a blank 
injection with solvent A. Each fraction was measured for 
three times. 

The fractionated protein digests were analysed on a 
Q-Exactive Plus mass spectrometer connected to an Easy-
nLC 1000 pump (Thermo Fisher Scientific) with a top 10 
data-dependent acquisition (DDA) method. For ionization, 
1.8–2.0 kV of spray voltage and 280°C capillary 
temperature were used. Full MS scans were acquired with 
the Orbitrap mass analyser over m/z 350–1800 range with 
resolution of 70,000 (at m/z 200), target AGC value of 
1e6 and maximum injection time of 100 ms. The ten most 
intense peaks with charge state >= 2 were fragmented in 
the HCD collision cell with normalized collision energy 
of 30%, and tandem mass spectra were acquired in the 
Orbitrap mass analyzer with resolution of 35,000 (at m/z 
200), target AGC value of 1e6 and maximum injection 
time of 120 ms. The ion selection threshold was set to 
4.2e4 and dynamic exclusion was 20 s.

Verification by parallel reaction monitoring

Using unfractionated protein digests from 
each sample, a targeted proteomic method, parallel 
reaction monitoring (PRM) was employed to verify the 
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differentially expressed proteins. One or two unique 
peptides of each protein of interest were selected. A panel 
of 110 peptides from 73 proteins was finally scheduled 
in one run to verify potentially prognostic proteins in 10 
patients with “long” survival and 9 patients with “short” 
survival. Five peptides from chicken lysozyme and five 
PRTC peptides (Product no 88320, Pierce, Rockford, 
IL, USA)  were added to the PRM panel to evaluate the 
experimental process. The samples were prepared in the 
same way as it was described previously but without 
SCX fractionation. The retention time, precursor m/z and 
charge state of peptides was referred to the prior DDA 
experiments. The retention times and transitions were 
further modified and confirmed in several preliminary 
PRM runs. The same LC-MS platform was applied for 
the PRM study. A total of 1 μg peptide was injected and 
the same LC parameters were used for the separation. 
Targeted MS2 mode was operated with time-scheduled 
acquisition of the selected peptides in +/− 5 min retention 
time windows. PRM scanning was performed at 17,500 
resolution (AGC target 1 × 105, 50 ms maximum injection 
time) as triggered by a scheduled inclusion list. The 
chromatographic peak width is 30 s. Fragmentation was 
performed with normalized collision energy of 27 and MS/
MS scans were acquired with a resolution of 70,000 at 
m/z 200. 

Statistics and bioinformatics

Exploiting multidimensional protein identification 
technology (MudPIT), the data from 5 fractions of each 
sample were submitted together to Sequest HT search 
engine in Proteome Discoverer 1.4, being processed as 
one continuous input file for protein identification and 
quantification. The quantification of protein intensities 
is based on the averaged intensities of their three most 
abundant peptides. Uniprot Human Reviewed (released 
2013/09) was referred as search database. Decoy database 
containing reversed version of all protein sequences were 
added for the monitoring of false discovery rate (FDR). 
For the identification of peptides, precursor and fragment 
mass tolerances were 10 ppm and 0.02 Da respectively. 
Oxidation and carbamidomethylation were taken into 
consideration as variable and static modifications, 
respectively, and one maximum missed cleavage site was 
allowed. Proteins were identified based on at least two 
peptides with high confidence (FDR < 1%). Precursor 
ions area detector was applied in the search engine for 
the quantification of peptides. Redundant proteins were 
automatically grouped by default. Perseus software [90] 
was used for the statistics. Those proteins that were 
detected in less than half (<5) of the samples in both 
groups were excluded from further analysis. To minimize 

Table 2: Patient characteristics
PDAC (SS) PDAC (LS)

Sex (female/male) 3/6 7/3
Age [median (range), year] 64 (48–74) 71 (43–77)
Diabetes mellitus 5 4
Tumor location
 pancreas head 9 10
Tumor diameter (cm) 2.5 (1–6) 3 (2–7)
Lymph node metastasis 4 7
Staging
 IIA 5 3
 IIB 4 7
R1 resection 4 3
Surgery 9 10
Adjuvant chemotherapy 5 9
 Gemcitabine 3 5
 5-FU 1 1
 Capecitabine 0 2
 Gemcitabine, 5-FU 1 0
 Gemcitabine, Capecitabine 0 1
Radiotherapy 1 0
Survival (mean (SD), month) 7.3 (1.9–11.5) 59.1 (47.0–120.9)

Abbreviations: PDAC: Pancreatic ductal adenocarcinoma; SS: short survival; LS: long survival.
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the technical variance introduced by sample handling 
and instrument, each sample was run for three times 
(replicates) whereas the intensities of proteins in each 
replicate were normalized to its median intensity. Log 2 
transformation was applied to the normalized intensities 
to make the data normally distributed and suitable for 
further statistics. Missing values were replaced from 
random numbers drawn from a normal distribution, which 
represents low abundance measurements (default setting). 
Using Student’s t-test, protein intensities were compared 
between two groups based on the average of log 2 
transformed normalized protein intensities in each sample. 
Proteins were also defined as differentially expressed if 
detected more frequently (≥ 5 samples) in one group than 
in the other group. Hierarchical clustering and principal 
component analysis were also performed to visualize 
any significant differences between two groups. Skyline 
software was used for MS1 filtering and MS1 quantitation 
in the PRM study.  The intensities of targeted peptide of 
each protein were log 2 transformed and then compared 
between groups by Student’s t-test. For those proteins 
having two targeted peptides, the peptide with higher 
intensity will be compared. The bioinformatics analysis 
of relationship networks between differentially expressed 
proteins used STRING [19] and Ingenuity Pathway 
Analysis (IPA, Qiagen, Inc. Redwood City, CA, USA). 
Assessment of overrepresented functional annotations and 
pathways was performed using Gene Ontology resources 
[91], Panther [92], Reactome [93], David [94] and IPA. 
In David, Panther and IPA, the whole sets of proteins 
detected in the study were used as analysis backgrounds. 

Abbreviations

CV: coefficient of variation; DDA: data-
dependent acquisition; ECM: extracellular matrix; FDR: 
false discovery rate; FFPE: formalin-fixed paraffin-
embedded; IPA: Ingenuity Pathway Analysis; MMPs: 
matrix metalloproteases; MudPIT: multidimensional 
protein identification technology; PC: Pancreatic cancer; 
PDAC: pancreatic ductal adenocarcinoma; PMNs: 
polymorphonuclear neutrophils; PRM: parallel reaction 
monitoring; PSMs: peptide-spectrum matches.
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