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J-proteins are molecular chaperones and present in a wide variety of organisms from prokaryote to eukaryote. Based on their
domain organizations, J-proteins can be classified into 4 types, that is, Type I, Type II, Type III, and Type IV. Different types
of J-proteins play distinct roles in influencing cancer properties and cell death. Thus, reliably annotating the types of J-proteins
is essential to better understand their molecular functions. In the present work, a support vector machine based method was
developed to identify the types of J-proteins using the tripeptide composition of reduced amino acid alphabet. In the jackknife
cross-validation, the maximum overall accuracy of 94% was achieved on a stringent benchmark dataset. We also analyzed the
amino acid compositions by using analysis of variance and found the distinct distributions of amino acids in each family of the
J-proteins. To enhance the value of the practical applications of the proposed model, an online web server was developed and can
be freely accessed.

1. Introduction

J-protein, also known as Hsp40 (heat shock protein 40 kD),
is a molecular chaperone protein and is found ubiquitously in
both prokaryotes and eukaryotes [1, 2]. J-proteins represent a
large family of molecular chaperones and have cooperative
functions with Hsp70. Most of the J-proteins contain a “J”
domain through which they can interact with and stimulate
Hsp70. Based on the structural differences, J-proteins can
be classified into four types, that is, Type I, Type II, Type
III, and Type IV J-proteins. Type I J-proteins contain an
N-terminal J-domain that is separated from the rest of the
proteins by a linker “G/F” region (glycine/phenylalanine
region) [3, 4]. Distal to G/F region is the zinc-binding
cysteine-rich sequence named as “Zinc-finger domain”which
distinguishes Type I proteins from other types of J-proteins
[4], and Zinc-finger domain is followed by the C-terminal
domain [1, 2]. Type II proteins possess all the domains
in Type I except the zinc-finger domain [3]. Type III J-
proteins contain a C-terminal J-domain but lack both G/F

and zinc-finger domains [3]. Type IV, also known as the J-
like protein [5], is a group of recently identified proteins that
lacks histidine, proline, and aspartate signaturemotifs in their
sequences [4].

By binding Hsp70 and Hsp90, J-proteins play impor-
tant roles in chaperone cycle regulation and control many
physiological functions [4], such as assisting the folding of
nascent and damaged proteins, translocation of polypeptides
across cellular membranes, and degradation of misfolded
proteins [6]. Studies carried out in the past decade have
also shown the regulatory roles of J-proteins in cell death.
In association with Hsp70, J-proteins not only involve in
the folding of caspase-activated DNase which is responsible
for the apoptosis-induced DNA fragmentation [7] but also
protect the macrophages from nitric-oxide-mediated apop-
tosis [8]. Gotoh and his colleagues have demonstrated the
role of J-protein in the inhibition of Bax translocation to the
mitochondria to prevent nitric-oxide-induced cell apoptosis
[9]. Kurisu et al. found that MDG1/ERdj4, a member of
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Table 1: Breakdown of the benchmark dataset used in current study.

Total number Subfamily Number

1245

Type I J-protein 63
Type II J-protein 53
Type III J-protein 1107
Type IV J-protein 22

the human J-protein family, can interact with GRP78/BiP
and protect against the cell death induced by endoplasmic
reticulum stress in human [10]. The regulation of cell death
by J-protein was also reported in plant. Liu and Whitham
found that the overexpression of J-protein stimulated the
hypersensitive response (HR)-like cell death in soybean [11].
Cancer progressions are also reported to be closely related to
J-proteins, but different types of J-proteins play distinct roles
[12, 13]. Type I J-protein is tumour promoting, while Type II
J-protein acts as tumour suppressors [13]. Therefore, reliably
annotating the types of J-proteins is of major importance
in order to clarify their distinct biological functions in cell
death. However, to the best of our knowledge, there is no
computational method for predicting the types of J-proteins.

Keeping these in mind, in the present work, we proposed
a model to predict the four functional types of J-proteins
based on reduced amino acid alphabet compositions. Accord-
ing to a recent review [14], the rest of the papers are organized
as follows: (i) construct a valid benchmark dataset to train
and test the predictor; (ii) formulate the samples with an
effective mathematical expression that can truly reflect their
intrinsic correlation with the target to be predicted; (iii)
select a powerful machine learning method to operate the
prediction; (iv) perform cross-validation tests to objectively
evaluate the anticipated accuracy of the predictor; (v) provide
a web server for the prediction method.

2. Materials and Methods

2.1. Dataset. The sequences of J-protein were taken from the
HSPIR database at http://pdslab.biochem.iisc.ernet.in/hspir/,
which currently contains 3,901 J-protein sequences [15]. To
reduce homologous bias, J-proteins that have ≥40% pairwise
sequence identity to each other were removed by using the
CD-HITprogram [16]. By doing so,we obtained a benchmark
dataset containing 1,245 J-proteins that were classified into
four types: 63 Type I J-proteins, 53 Type II J-proteins, 1,107
Type III J-proteins, and 22 Type IV J-proteins (Table 1).
The benchmark dataset can be freely downloaded from
http://lin.uestc.edu.cn/server/iJPred/data.

2.2. Reduced Amino Acid Alphabet. Based on the physio-
chemical properties, the 20 native amino acids can be clus-
tered into a smaller number of representative residues called
reduced amino acid alphabet (RAAA) [17–19]. Compared
with the traditional amino acid composition, RAAA not
only simplifies the complexity of protein system but also
improves the ability in finding structurally conserved regions
and structural similarity of entire proteins.

Table 2: Scheme for reduced amino acid alphabet based on protein
blocks method.

Cluster profiles Protein blocks method
CP(13) G-IV-FYW-A-L-M-E-QRK-P-ND-HS-T-C
CP(11) G-IV-FYW-A-LM-EQRK-P-ND-HS-T-C
CP(9) G-IV-FYW-ALM-EQRK-P-ND-HS-TC
CP(8) G-IV-FYW-ALM-EQRK-P-ND-HSTC
CP(5) G-IVFYW-ALMEQRK-P-NDHSTC

Recently, a structural alphabet called protein blocks (PBs)
was proposed by de Brevern et al. [20, 21] and has been
widely used in computational proteomics as indicated in a
review [22]. To aid the design of mutations, Etchebest and his
colleagues defined a novel type of RAAA based on PBs [23],
where the 20 native amino acids can formfive different cluster
profiles, that is, CP(13), CP(11), CP(9), CP(8), and CP(5) as
shown in Table 2. Ever since it was proposed, RAAA has been
widely used for protein family classifications [24–27].

Hence, in the present study, the J-proteins were encoded
using the RAAA as formulated by the discrete feature vector
P:

P = [𝑓1 𝑓2 ⋅ ⋅ ⋅ 𝑓𝑖 ⋅ ⋅ ⋅ 𝑓𝐷]
T
, (1)

where T is the transposing operator and 𝑓
𝑖
is the occurrence

frequency of the 𝑖th 𝑛-peptide RAAA and defined as

𝑓
𝑖
=
𝑁
𝑖

𝐿 − 𝑛 + 1
, (2)

where 𝑁
𝑖
is the number of the 𝑖th𝑛-peptide (𝑛 = 1, 2, or

3) RAAA in a J-protein with length of 𝐿. For the different
cluster profiles (Table 2) and different values of 𝑛, the vector
dimension (𝐷) in (1) will be different. The corresponding
dimensions of reduced amino acid (𝑛 = 1) composition,
reduced dipeptide (𝑛 = 2) composition, and reduced
tripeptide (𝑛 = 3) composition were listed in Table 3.

2.3. Support Vector Machine (SVM). SVM is a powerful and
popular method for pattern recognition that has been widely
used in the realm of bioinformatics [28–41].The basic idea of
SVM is to transform the data into a high dimensional feature
space and then determine the optimal separating hyperplane
using a kernel function. To handle amulticlass problem, “one-
versus-one (OVO)” and “one-versus-rest (OVR)” methods
are generally applied to extend the traditional SVM. For a
brief formulation of SVM and how it works, see the papers
[28, 29].

In the current study, the LIBSVM 2.84 package [42] was
used as an implementation of SVM, which can be down-
loaded from http://www.csie.ntu.edu.tw/∼cjlin/libsvm/. The
OVO method was employed for making predictions using
the popular radial basis function (RBF). The regularization
parameter 𝐶 and the kernel width parameter 𝛾 were deter-
mined via an optimization procedure using a grid search
approach using the fivefold cross-validation. In grid research,
the search spaces for parameter𝐶 and 𝛾 range from 215 to 2−5
and from 2−5 to 2−15 with the steps of 2−1 and 2, respectively.

http://pdslab.biochem.iisc.ernet.in/hspir/
http://lin.uestc.edu.cn/server/iJPred/data
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 3: Feature vector dimension of 𝑛-peptide composition with different cluster profiles.

𝑛-peptide Cluster profiles
CP(13) CP(11) CP(9) CP(8) CP(5)

𝑛 = 1 13 11 9 8 5
𝑛 = 2 169 121 81 64 25
𝑛 = 3 2197 1331 729 512 125

2.4. Performance Evaluation. Theperformance of themethod
was measured in terms of sensitivity (Sn), specificity (Sp),

Matthew’s correlation coefficient (MCC), and overall accu-
racy (OA) defined as follows:

Sn (𝑖) = TP (𝑖)
TP (𝑖) + FN (𝑖)

,

Sp (𝑖) = TN (𝑖)
TN (𝑖) + FP (𝑖)

,

MCC (𝑖) = TP (𝑖) × TN (𝑖) − FP (𝑖) × FN (𝑖)
√[TP (𝑖) + FP (𝑖)] [TP (𝑖) + FN (𝑖)] [TN (𝑖) + FP (𝑖)] [TN (𝑖) + FN (𝑖)]

,

OA = 1
𝑁

𝑀

∑

𝑖=1

TP (𝑖) ,

(3)

where TP(𝑖), TN(𝑖), FP(𝑖), and FN(𝑖) represent true positive,
true negative, false positive, and false negative of family 𝑖;𝑀 is
the number of subsets and equals to 4, while𝑁 is the number
of the total J-proteins in benchmark dataset.

3. Results and Discussion

3.1. Cross-Validation. Three cross-validation methods,
namely, subsampling (or K-fold cross-validation) test,
independent dataset test, and jackknife test, are often used
to evaluate the quality of a predictor [43]. Among the three
methods, the jackknife test is deemed the least arbitrary
and most objective as elucidated in [44] and hence has been
widely recognized and increasingly adopted by investigators
to examine the quality of various predictors [31, 34, 45–50].
Accordingly, the jackknife test was used to examine the
performance of the model proposed in the current study.
In the jackknife test, each sequence in the training dataset
is in turn singled out as an independent test sample and all
the rule parameters are calculated without including the one
being identified.

The jackknife results obtained by the proposed model
on the benchmark dataset based on the five different cluster
profiles of the tripeptide (i.e., 𝑛 = 3) case were listed in
Table 4. As it can be seen from Table 4, the best success rate
of 94.06% was achieved when the predictions were based on
CP(8) with a dimension of 512. For comparison, the results of
the amino acid (i.e., 𝑛 = 1) and dipeptide (i.e., 𝑛 = 2) cases
were also calculated and listed in Table 5, from which we can
see that none of them has higher success rates than the case
of 𝑛 = 3.

In our previous study [27], the six HSP families were
successfully classified by using the dipeptide of RAAA. But
for the classification of the J-protein subfamilies in the present
work, the best predictive result was obtained by using the
tripeptide of RAAA. Hsps belong to the same family share
more sequence identity than that of different families [5];
hence we need more suitable parameters to encode the
protein sequences as used in the current study.

3.2. Comparison with Other Methods. Since there is no
published work to predict the types of J-proteins, we could
not provide the comparison analysis with existing results
to confirm that our presented model is superior to other
methods. However, for the purpose of comparison, we com-
pared the results of the present model with that of Random
Forest and Näıve Bayes using the same optimal features (the
reduced tripeptide compositions based onCP(8)).The results
of jackknife test on the benchmark dataset for RandomForest
and Näıve Bayes are listed in Table 6. It is shown that the
accuracy of SVM is higher than that of Random Forest and
Näıve Bayes.

3.3. Amino Acids Composition Analysis. To provide an overall
view, the frequencies of the 20 naive amino acids were com-
pared among the four types of J-proteins using the analysis of
variance (ANOVA), and the average amino acid frequency of
one type of J-protein with that of another type was further
explored and compared using the Fisher’s least significant
difference (LSD) test. The result is given in Figure 1, where
the green boxes indicate that the frequency differences among
different types of J-proteins are not significant, while blue
and red boxes indicate that the frequency differences are
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Table 4: Results obtained in identifying J-protein functional types with tripeptide case (𝑛 = 3).

Subfamily Metrics
Feature dimension of 𝑛 = 3 for each cluster profile

CP(13) CP(11) CP(9) CP(8) CP(5)
2197 1331 729 512 125

Type I J-protein
Sn 63.49% 74.60% 77.78% 74.60% 60.31%
Sp 99.56% 98.94% 99.11% 98.76% 98.93%

MCC 0.74 0.76 0.79 0.75 0.66

Type II J-protein
Sn 37.73% 45.28% 39.62% 49.06% 24.53%
Sp 100% 99.31% 99.39% 99.05% 99.56%

MCC 0.60 0.57 0.53 0.57 0.41

Type III J-protein
Sn 99.81% 98.82% 99.09% 98.56% 99.19%
Sp 44.44% 58.78% 55.72% 62.02% 40.00%

MCC 0.63 0.68 0.67 0.69 0.56

Type IV J-protein
Sn 0 27.27% 13.64% 31.81% 4.54%
Sp 100.00% 100.00% 100.00% 100.00% 100.00%

MCC 0 0.52 0.37 0.56 0.21
OA 93.57% 94.06% 93.98% 94.06% 92.36%

A C D E F G H I K L M N P Q R S T V W Y

III–IV
II–IV
II–III
I–IV
I–III
I–II

Figure 1: Statistical results to show the divergent distributions of the
20 amino acids among the four (I, II, III, and IV) types of J-proteins.
The green boxes indicate that the frequency differences among
different types of J-proteins are not significant. The blue boxes
indicate that the amino acid is significantly enriched (𝑃 < 0.05;
LSD test) in one type of J-proteins compared with its counterpart.
TakingW as an example, the blue box with the coordinate (W, I–IV)
indicates thatW is enriched inType I J-proteins comparedwithType
IV J-proteins. The red boxes indicate that the amino acid is lacking
in one type of J-proteins but significantly enriched (𝑃 < 0.05; LSD-
test) in its counterpart. Also taking W as the example, the two red
boxes with the coordinates (W, I–III) and (W, II-III) indicate thatW
is lacking in both Type I and Type II J-proteins compared with Type
III J-proteins, respectively.

significant (𝑃 < 0.05; LSD test) among different types of J-
proteins (see Figure 1 for more details).

We found that, except Asn (N), the frequencies of all
the other 19 amino acids are significantly different among
the four types of J-proteins. Compared with other three
types, Type I J-proteins are enriched in Cys (C), Gly (G),
and Thr (T), Type II J-proteins are enriched in Phe (F),
Type III J-proteins are enriched in Ala (A) and Leu (L),
while Type IV-J proteins are enriched in Met (M), Gln (Q),
Glu (E), and Pro (P) but lack Asp (D) and His (H). The
lack of D and H residues in Type IV-J proteins leads to
their inability to stimulate ATP hydrolysis [5]. Moreover,

Figure 2: A semiscreenshot to show the top page of the web server.
It is available at http://lin.uestc.edu.cn/server/Jpred.

according to the binomial distribution [51], we also found
the overpresented tripeptides in each family and listed them
in Supporting Table S1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2014/935719, where the
over-presented tripeptides with their confidence levels are
provided.These results indicate that the distinct distributions
of amino acids in the four types of J-proteins may account for
their distinct functions in biological processes.

3.4. Web Server Guide. To enhance the value of the practical
applications of the proposed model and for the convenience
of the vast majority of experimental scientists, an online
predictor was developed. The step-by-step guide on how to
use it is provided as follows.

(1) Open the web server at http://lin.uestc.edu.cn/server/
Jpred and you will see the top page as shown in
Figure 2. Click on the Read Me button to see a brief
introduction about the predictor and the caveat when

http://lin.uestc.edu.cn/server/Jpred
http://dx.doi.org/10.1155/2014/935719
http://lin.uestc.edu.cn/server/Jpred
http://lin.uestc.edu.cn/server/Jpred
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Table 5: Results obtained in identifying functional types with (a) single amino acid case (𝑛 = 1) and (b) dipeptide case (𝑛 = 2).

(a) For the single amino acid case (𝑛 = 1)

Subfamily Metrics
Feature dimension of 𝑛 = 1 for each cluster profile

CP(20) CP(13) CP(11) CP(9) CP(8) CP(5)
20 13 11 9 8 5

Type I J-protein
Sn 71.42% 65.08% 68.25% 52.38% 50.79% 22.22%
Sp 98.58% 98.66% 98.66% 98.93% 98.48% 98.03%

MCC 0.71 0.67 0.69 0.60 0.56 0.26

Type II J-protein
Sn 33.96% 30.19% 33.96% 16.98% 16.98% 15.09%
Sp 99.82% 99.21% 99.12% 99.47% 99.56% 99.09%

MCC 0.54 0.42 0.45 0.30 0.31 0.23

Type III J-protein
Sn 98.74% 98.28% 98.10% 99.09% 98.73% 98.19%
Sp 48.12% 42.86% 45.52% 32.31% 31.54% 17.46%

MCC 59.71% 0.53 0.54 0.48 0.45 0.26

Type IV J-protein
Sn 4.54% 0 0 0 0 0
Sp 99.91% 100.00% 100.00% 100.00% 100.00% 100.00%

MCC 0.15 0.53 0 0 0 0
OA 92.93% 91.97% 92.13% 91.48% 91.08% 89.08%

(b) For the dipeptide case (𝑛 = 2)

Subfamily Metrics
Feature dimension of 𝑛 = 2 for each cluster profile

CP(20) CP(13) CP(11) CP(9) CP(8) CP(5)
400 169 121 81 64 25

Type I J-protein
Sn 74.42% 60.31% 73.02% 60.32% 58.73% 49.20%
Sp 97.58% 98.59% 98.76% 97.71% 98.32% 97.79%

MCC 0.75 0.63 0.73 0.58 0.60 0.5

Type II J-protein
Sn 39.76% 45.23% 39.62% 39.62% 35.84% 28.30%
Sp 94.31% 99.29% 99.48% 99.03% 98.60% 97.99%

MCC 0.57 0.57 0.54 0.49 0.42 0.31

Type III J-protein
Sn 98.88% 98.10% 98.82% 97.74% 98.01% 97.31%
Sp 46.37% 50.74% 51.14% 50.79% 48.80% 40.34%

MCC 60.08% 0.59 0.62 0.57 0.56 0.46

Type IV J-protein
Sn 13.16% 27.27% 0 22.73% 25.00% 9.09%
Sp 99.91% 99.91% 100.00% 100.00% 100.00% 99.91%

MCC 0.13 0.48 0 0.47 0.47 0.24
OA 91.47% 92.93% 93.25% 91.97% 92.04% 91.16%

Table 6: Comparative result of SVM with other methods for J-protein types classification.

Subfamily SVM Random Forest Näıve Bayes
Sn SP MCC Sn SP MCC Sn SP MCC

Type I J-protein 74.60% 98.76% 0.75 14.29% 99.55% 0.29 74.60% 92.17% 0.47
Type II J-protein 49.06% 99.05% 0.57 13.33% 99.82% 0.31 54.72% 94.67% 0.39
Type III J-protein 98.56% 62.02% 0.69 99.73% 12.70% 0.31 88.62% 65.83% 0.43
Type IV J-protein 31.81% 100.00% 0.56 4.55% 100.00% 0.21 13.64% 100.00% 0.37
OA 94.06% 89.96% 85.14%
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using it, and click on the Data button to download
the benchmark datasets used to train and test the
predictor. The relevant papers that document the
algorithm of the predictor can be found by clicking
on the Citation button.

(2) Either type or copy/paste the query J-protein
sequence into the input box at the center of Figure 2.
The input protein sequence should be in the FASTA
format that can be seen by clicking on the Example
button right above the input box.

(3) Click on the Submit button to see the predicted result.
For example, if you use the four query J-protein
sequences in the Example window as the input, after
clicking the Submit button, youwill obtain the results:
the outcome for the 1st query sample is “Type I J-
protein;” the outcome for the 2nd query sample is
“Type II J-protein;” the outcome for the 3rd query
sample is “Type III J-protein;” the outcome for the 4th
query sample is “Type IV J-protein.”

4. Conclusion

Cell death is a common phenomenon in developmental pro-
cesses or in normal physiological conditions and is induced
by an array of extra- or intracellular stimuli [7]. However,
organisms are equipped with their own physiological defense
to cope with environmental stress in order to prevent or
induce cell death depending upon the severity of the stress
[7]. In mammalian cells, the stress response involves the
induction of Hsps, such as Hsp70 and Hsp90. By interacting
with J-proteins, these Hsps play pivotal roles in cell death
regulations. Since J-proteins act as intermediates, the analysis
of J-proteins functions is urgent in order to clarify the
regulatory roles of Hsps in cell death.

Based on combination of whole-genome analyses and
biochemical evidences, a large number of J-proteins have
been identified [6]. However, the exact roles for many of the
J-proteins are far from being understood [2, 52]. In order to
understand its biological functions, it is highly desirable to
know which family a given J-protein belongs to.

By encoding the sequences using the reduced amino acid
alphabet information, a predictor was developed to identify
the four different families of J-proteins in the present work.
To enhance the value of the practical applications of the
proposed model and for the convenience of the experimental
scientists, an onlineweb serverwas provided and can be freely
accessed at http://lin.uestc.edu.cn/server/Jpred.We hope that
the present model will be helpful for scientists who focus on
J-proteins and will provide novel insights into the research of
cell death.
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