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Monitoring PSA levels as chemical 
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Medical interventions increasingly rely on biosensors that can provide reliable quantitative 
information. A longstanding bottleneck in realizing this, is various non-idealities that generate offsets 
and variable responses across sensors. Current mitigation strategies involve the calibration of sensors, 
performed in software or via auxiliary compensation circuitry thus constraining real-time operation 
and integration efforts. Here, we show that bio-functionalized metal-oxide memristors can be utilized 
for directly transducing biomarker concentration levels to discrete memory states. The introduced 
chemical state-variable is found to be dependent on the devices’ initial resistance, with its response 
to chemical stimuli being more pronounced for higher resistive states. We leverage this attribute 
along with memristors’ inherent state programmability for calibrating a biosensing array to render 
a homogeneous response across all cells. Finally, we demonstrate the application of this technology 
in detecting Prostate Specific Antigen in clinically relevant levels (ng/ml), paving the way towards 
applications in large multi-panel assays.

Memristive technologies1–3 hold great potential for delivering highly scalable4, power-efficient5,6 electronic sys-
tems, while exhibiting more functionalities such as multiple resistive states (RS)7 and reconfigurability8. So far, 
the focus of memristors implementation has mainly been devoted on memory-oriented and neuromorphic 
applications9–12, with some more recent uses of the technology being exploited for linking biological functions 
with engineering systems13–15.

The hereby-presented chemical-memristor (chemristor) is a modified version of a metal-oxide memris-
tor that allows transducing chemical signals via the device’s state-variable. To achieve this, devices based on a 
metal–insulator–metal (MIM) architecture (Fig. 1a), are fabricated on a Silicon/Silicon dioxide (Si/SiO2) sub-
strate (see Methods section), are functionalized with receptor molecules, antibodies specific to Prostate Specific 
Antigen (PSA) (Methods section), and then exposed to the target PSA (Fig. 2a). PSA is a 30 kDa kallikrein 
protein and consists one of the main biomarkers for prostate cancer (PCa)16, used herein as a case study for the 
proposed concept. Morphological analysis data obtained using Atomic Force Microscopy (AFM) before (Fig. 1b) 
and upon bio-functionalization (Fig. 2b) qualitatively reveal the presence of the biological substances on the 
surface of the memristor, that ultimately results in an increase of the surface features recorded as well as in the 
formation of some agglomerating patterns, due to coalesced biological molecules, that are depicted in the form 
of high peak wrinkles (Fig. 2b). 

Pristine memristor devices react to input voltage as non-linear, thresholded, weighted integrators and as such 
have an inherent capability to store information as non-volatile RS transitions. Thus, the memristor instantly 
records the occurrence of an event as a change in RS (Fig. 1c), when subjected to an input stimulation (i.e. voltage 
pulse) of an amplitude that exceeds certain thresholds assessed at the desired sampling rate (Fig. 1d). In a similar 
fashion, the introduced chemristor device concept undergoes a memory state change (Fig. 2c) as a response to 
a chemical input, i.e. biomarker concentration, as showcased in Fig. 2d. Chemical and biological species such 
as proteins are composed of charged residues, hence demonstrating a net positive or negative charge17. Conse-
quently, the additional surface charges due to proteins introduced via physical adsorption on a surface as well 
as to proteins bound to already immobilized receptors, and the charge neutralization/enhancement associated 
with the selective reaction between receptor and target molecules on the sensing surface, result in an increase/
decrease in the overall net charge, and modify the effective local potential, ultimately acting equivalently to an 
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electrical stimulus that imposes a shift in the device’s memory state. Thereafter, the target molecule is electrically 
detected in a label-free manner by recording the dependence of the sensor response on the applied concentration.

Therefore, while a specific state can be achieved by modulating different voltage pulse characteristics (such 
as number of pulses, pulse width and/or amplitude) in the presented case, it is possible to transduce distinct 
concentrations of PSA via analogous memory-state changes, introducing a chemical state-variable.

In Fig. 3a, six identical devices (labeled as D1–D6), are electroformed and then functionalized with anti-PSA 
antibodies, demonstrating two baseline-operating regimes D1–3 (I) and D4–6 (II) respectively. At first, all devices 
are simultaneously exposed to a mild PSA concentration of 0.6 ng/mL in Phosphate Buffered Saline (PBS). PSA 
is selectively bound to the immobilized antibody since the antigenic determinant (epitope) is recognized by the 
paratope of the antibody ultimately forming a label-free immunoassay format. The introduction of the antigen 
solution results in a shift in the operating regime, as recorded in Fig. 3b. This shift can be attributed to the surface 
charge density modulation due to the introduction of the negatively charged PSA solution that contributes a 
net negative charge, masking the effect brought by the presence of antibodies17. The PSA concentration is then 
progressively increased (tenfold) in four stages and the RS of all sensors are recorded following subsequent 
incubation to each of the four antigen concentrations considered. The consecutive adsorption of increasing 
PSA concentration results in a one-way increasing trend of the devices’ RS. The obtained state-responses for 
the specific target are presented in Fig. 3c, d as recorded after each biomarker uptake. An average resistive level 
of (236.5 ± 13.2) kΩ [D1–3 (I)] and (44.2 ± 14.5) kΩ [D4–6 (II)] is first obtained for a concentration of 0.6 ng/
mL in PBS and an increasing trend is acquired with the antigen uptake reaching a RS level of average value 
(358.2 ± 26.5) kΩ and (49.4 ± 12.6) kΩ respectively for a concentration of 6.1 μg/mL. Implementing the highest 
concentration of PSA, the RS level shows a total increase from the initial value of 51.4% for the operating regimes 
D1–3 (I) and of 13.4% for the D4–6 (II) respectively.

The introduced chemical state-variable exhibits a dependence on the initial resistance of the devices. The sen-
sors belonging to the operating regimes D1–3 (I) demonstrate higher sensitivity when responding to externally 
introduced perturbations like for instance in this case the uptake of PSA. More specifically, the state-response 
for sensors belonging to the baseline operating regimes D4–6 (II) demonstrate a linear response with an average 

Figure 1.   Illustration and operation of a memristor. (a) Schematic cross-section of the device concept 
comprising a Pt/TiO2/Al2O3/Pt metal–insulator–metal memristor. (b) AFM surface morphology of the device’s 
Pt top-electrode. (c) Transient response of a memristor’s state-variable RS in response to (d) voltage input 
pulses.



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:15281  | https://doi.org/10.1038/s41598-020-71962-3

www.nature.com/scientificreports/

chemical sensitivity of (1.6 ± 0.9) kΩ/[dec.CPSA]. Meanwhile, the sensors belonging to the higher baseline state 
window [baseline operating regimes D1–3 (I)] obey a sigmoidal function while depicting a linear region (Fig. S1) 
with average chemical sensitivity of (68.7 ± 12.7) kΩ/[dec.CPSA] (Supplementary information).

We further exploit the fact that the sensitivity of the chemical memristor can be tuned in accordance to the 
chosen sensing operating regime, in combination with the inherent programming properties of the chemical 
memristors for achieving a homogeneous sensing array that comprises a uniform sensing baseline across all the 
individual sensing components. This can be realized by bringing all sensors of the array to a common operating 
regime, through normalization of the array’s sensing characteristics at the device-level, before the commencement 
of the sensing procedure. For achieving this hardware-based calibration, each individual chemristor is subjected 
to an initializing process consisting of voltage pulses of pre-specified duration and amplitude (as described in 
Methods), until all sensors are brought to a common operating regime.

As an example, the memory state values of a small biosensing array consisting of nine identical devices are 
recorded in Fig. 4a, utilizing the custom-made instrumentation18 (Fig. S2) and software7. Following bio-func-
tionalization with anti-PSA antibodies, a further shift in the operating regimes and a larger variation among the 
sensing devices are observed (Fig. 4a). The array’s sensing characteristics are calibrated at the device-level, with 
each individual chemristor to be subjected to the initializing hardware calibration procedure, that is repeated 
until a common operating regime (113 ± 10) kΩ is achieved for all the sensors of the array. Figure 4b shows the 
calibrated memory-state values of the sensors as an output pixel-representation image.

The normalized sensor platform is then employed as an antigen sensing array, by implementing custom-made 
instrumentation18 (Fig. S2) and software7. Groups of individual chemristors are exposed to three PSA concentra-
tions and their RS response is recorded, more specifically, D3, D4 and D9 to a concentration of 60.9 ng/mL, D1, 
D5 and D6 to 0.6 μg/mL and D2, D7 and D8 to 6.1 μg/mL. Figure 4c schematically shows the RS levels relative 
percentage change with respect to an initial, mild analyte concentration, operating regime, corresponding to the 
three employed PSA concentrations. Exposure to the lowest PSA concentration under consideration results to 
an average relative RS change percentage of 4.9 ± 1.6% and to a 9.2 ± 1.2% and 19.5 ± 1.8% for the medium and 
highest concentrations respectively.

Figure 2.   Illustration and operation of a chemical-memristor (chemristor). (a) Schematic cross-section of the 
device concept comprising a Pt/TiO2/Al2O3/Pt metal–insulator–metal memristor functionalized with anti-PSA 
antibodies. (b) AFM surface morphology of the device’s Pt top-electrode after the bio-functionalization. (c) 
Transient response of a chemristor’s state-variable RS in response to (d) bio-chemical inputs rendering distinct 
PSA levels.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:15281  | https://doi.org/10.1038/s41598-020-71962-3

www.nature.com/scientificreports/

Figure 3.   PSA sensitivity dependence on chemristors’ operating regime. (a) Six identical devices (D1–6) are 
electroformed for bringing them in to two baseline operating regimes D1–3 (I) and D4–6 (II) in dry-condition. 
All sensors are then exposed to a PSA solution in PBS with a mild PSA concentration of 0.6 ng/mL, resulting 
into a further shift in the baseline operating regimes, shown in (b). The PSA concentration is progressively 
increased (tenfold) in four stages and following incubation the RS of all sensors are recorded for all four antigen 
concentrations. (c, d) Depict the corresponding PSA state-dependent responses for the six transducers under 
consideration (D1–3 and D4–6).

Figure 4.   Employing device-state programmability for offset removal. (a) Nine identical devices (D1–D9) are 
electroformed for acquiring hysteretic properties. All devices are then functionalized with anti-PSA antibodies 
and converted to memristor-based sensing elements. Treatment with charged biological substances results 
into a further shift in the operating regimes. The sensors are subjected to a device-level hardware calibration, 
each individual chemical memristor is subjected to an initialization process comprising input programming 
pulses and the process is repeated until reaching the desired RS level for all the sensors under study. (b) RS 
levels achieved for the sensors (D1–D9) after the normalization procedure are represented via different pixel 
colors and intensities. (c) Corresponding PSA RS level relative change (%)-dependent responses of the nine 
chemical memristors (D1–D9) after exposure to different PSA concentrations as illustrated by indexed color 
representation.
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In conclusion, the presented chemristor device concept presents a new and versatile approach for antigen-
specific transduction, as the sensors’ specificity can be determined in an ad hoc manner via bio-functionalization. 
The inherent state-programmability attributes of the sensors can be readily used for reliably sensing a variety of 
biomarkers, without resourcing to external software/hardware calibration approaches; performing the calibra-
tion in-situ at device level. This capability along with the excellent scaling prospects of memristive arrays brings 
new prospects for realizing robust multi-panel diagnostic assays for serving the needs of modern medicine.

Methods
Fabrication of MIM memristors.  MIM devices are realized on a 6-inch oxidized Si wafer (200 nm of 
dry thermal SiO2). Initially, 20 μm wide bottom electrodes are defined through optical lithography, electron 
beam evaporation of a 5 nm titanium (Ti) adhesion layer and 10 nm of platinum (Pt) and lift-off process in 
N-Methyl-2-pyrrolidone (NMP). Using reactive magnetron sputtering 25 nm of titanium dioxide (TiO2−x), as 
the solid electrolyte, are deposited from Ti target in a 8 sccm oxygen (O2) environment. Using the same process 
from an aluminium (Al) target, and without breaking the vacuum, a further 4 nm of aluminium oxide (AlxOy) is 
deposited, acting as the interface barrier layer of a final bilayer configuration. Then top 20 μm wide Pt electrodes 
(10 nm thickness) are defined through the same process as bottom electrodes (Fig. S3). Following the fabrica-
tion process, the wafer is diced into chips of 3 × 3 mm2. Each single chip, consisting of multiple MIM devices, 
is wire-bonded to a commercially provided ceramic quad flat J-shaped (CQFJ) chip-holder with connections 
suitable for the in-house memristor characterization platform that is used18 as it shown in Fig. S2. The MIM 
devices are electroformed for demonstrating hysteretic characteristics. The electroforming results to a controlla-
ble breakage of the active layer realized through the application of a pulsed voltage ramps. The biasing protocols 
are implemented using custom-made hardware18 (Fig. S2) supported by custom-made software7. The devices are 
subjected to consecutive 10 to 1000 μs pulses of negative polarity ranging from − 3 to − 12 V with a 0.25 V voltage 
step. Interval between pulses (interpulse time) has been kept constant at 10 ms.

Bio‑functionalization process.  For the surface modification, the MIM memristive devices are treated 
with O2 plasma for 15 min (30 sccm, 99 mTorr). The plasma treatment clears any organic residues and generates 
free surface hydroxyl (OH)-terminating groups. Hydroxyl groups serve as surface treatment, enabling a stable 
chemical attachment of the biomolecules. The MIM memristors are converted to PSA-specific chemical mem-
ristors (chemristors) through a direct-adsorption surface bio-functionalization with 200 μg/mL of Anti-PSA 
antibody ([8A6] (ab10187) purchased by Abcam) in PBS (P4417 Sigma-Aldrich) via a 2 h incubation at room 
temperature. The antibody solution is introduced on the surface of the substrate via standard drop-casting using 
a precision micropipette (Fisher Scientific precision pipette) directly on the area of interest. After completing the 
incubation, the devices are gently washed using PBS solution.

Target molecule uptake.  Following the bio-functionalization process, the sensors are implemented for 
biomarker sensing (PSA, hereby used as a case of study). The devices are exposed to PSA (Millipore Angebot 
R-1939458.1; 539834 purchased from Merck) for 1 h at room temperature in PBS (P4417 Sigma-Aldrich) at the 
indicated concentrations belonging to the range [0.6 ng/mL–6.1 μg/mL] and achieved by following a ten-fold 
serial dilution protocol. The excess of antigen is removed after each biomarker update by extensive, gentle wash-
ing of the substrate surface with PBS, after each incubation.

Electrical characterization methodology.  The RS of each device is monitored by means of the custom-
made instrumentation18 (Fig.  S2) and software7 allowing fully automated device-by-device measurements of 
entire packaged arrays. Namely, following the completion of each individual step and in order to extract the RS 
level of each case, the devices are subjected to non-switching pulses that allow the readout without affecting the 
state (0.2 V read pulses set at a 1 s sampling rate) for 1 min since in this range the devices have been shown to 
maintain the RS for long period7. The measurements of the RS are performed in an intermittent way by the fol-
lowing sequence: MIM memristor (after the electroforming), MIM chemristor (after the bio-functionalization), 
and for each antigen uptake at different concentrations.

Initializing calibration process.  For the device-level hardware calibration, each individual chemical 
memristor is subjected to trains of input pulses using the custom-made hardware18 (Fig. S2) at a fixed duration 
in the range of 100 ns–100 μs and 1–3 V implementing steps of 50 mV. This process allows the sequential set of 
the memory state of the device gradually until it is stabilized at the desired level. Each cycle is alternating with 
RS reads at 0.2 V for recording the new RS achieved for each chemristor and the process is repeated until all the 
chemical memristors are brought to a common operating point.

Surface topography characterization.  Morphological AFM analysis of the structures is performed 
using a Bruker Atomic Force Microscope system and AFM probes, also provided by Bruker. The AFM measure-
ments are carried out on bare samples and after the bio-modification of the surface with an Anti-PSA antibody 
([8A6] (ab10187) purchased by Abcam) in PBS (P4417 Sigma-Aldrich). Tapping Mode AFM is implemented 
for carrying out the imaging throughout the complete characterization process, mollifying the issues of sample 
dragging across the surface, especially in the case where the bio-functionalized devices are considered. The data 
analysis is performed using WSxM 5.0 Develop 9.3 software.
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Data availability

The data that support the findings of this study are available from the University of Southampton institutional 
repository at https​://doi.org/10.5258/SOTON​/D1439​.
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