
sensors

Article

Performance Analysis of Time Synchronization
Protocols in Wireless Sensor Networks

Linh-An Phan 1 , Taejoon Kim 1 , Taehong Kim 1,∗ , JaeSeang Lee 2 and Jae-Hyun Ham 2

1 School of Information and Communication Engineering, Chungbuk National University,
Cheongju 28644, Korea

2 The 2nd R&D Institute-Agency for Defense Development, Daejeon 34186, Korea
* Correspondence: taehongkim@cbnu.ac.kr; Tel.: +82-43-261-2481

Received: 23 May 2019; Accepted: 8 July 2019; Published: 9 July 2019
����������
�������

Abstract: The time synchronization protocol is indispensable in various applications of wireless
sensor networks, such as scheduling, monitoring, and tracking. Numerous protocols and algorithms
have been proposed in recent decades, and many of them provide micro-scale resolutions. However,
designing and implementing a time synchronization protocol in a practical wireless network is
very challenging compared to implementation in a wired network; this is because its performance
can be deteriorated significantly by many factors, including hardware quality, message delay jitter,
ambient environment, and network topology. In this study, we measure the performance of the
Flooding Time Synchronization Protocol (FTSP) and Gradient Time Synchronization Protocol (GTSP)
in terms of practical network conditions, such as message delay jitter, synchronization period, network
topology, and packet loss. This study provides insights into the operation and optimization of time
synchronization protocols. In addition, the performance evaluation identifies that FTSP is highly
affected by message delay jitter due to error accumulation over multi-hops. We demonstrate that
the proposed extended version of the FTSP (E-FTSP) alleviates the effect of message delay jitter and
enhances the overall performance of FTSP in terms of error, time, and other factors.

Keywords: time synchronization; clock; performance analysis; message delay jitter; wireless
sensor networks

1. Introduction

Time (clock) synchronization is a crucial requirement for the operation of wireless sensor networks
(WSNs). Various applications, such as time-division multiple access (TDMA) scheduling, device
tracking, monitoring, and data fusion, require all nodes to have synchronized clocks. A significant
number of studies regarding this problem have been conducted in recent years. Many protocols and
algorithms have been proposed to achieve sub-microsecond accuracy in experimental test-beds [1–23].
However, unlike time synchronization in wired networks, wireless networks present additional
challenges such as the uncertainty of wireless transmission, energy consumption, and mobility [24].
Moreover, the resource constraints on sensor devices (e.g., low computational memory and low data
rate) must be considered when designing a time synchronization protocol. In fact, the performance
of protocols can deteriorate due to many practical factors, such as hardware quality, message delay
jitter, ambient environmental conditions, network topology, and protocol configurations. Therefore, it
is necessary to understand the operation of time synchronization protocols and the possible effects of
those factors before using them in a real network.

In this study, we conduct a performance analysis on the Flooding Time Synchronization Protocol
(FTSP) [1] and Gradient Time Synchronization Protocol (GTSP) [11] which are representative time
synchronization protocols with centralized and distributed mechanisms, respectively. Both protocols

Sensors 2019, 19, 3020; doi:10.3390/s19133020 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9155-9819
https://orcid.org/0000-0001-6326-2559
https://orcid.org/0000-0001-6246-6218
http://www.mdpi.com/1424-8220/19/13/3020?type=check_update&version=1
http://dx.doi.org/10.3390/s19133020
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 3020 2 of 19

are listed in many surveys and comparative studies [25–29], and in particular, they are widely used as
benchmarks for newly proposed time synchronization protocols [4,30]. Many protocols use similar
methods to those of FTSP (least-squares regression) and GTSP (average consensus) in estimating clock
drift. For example, [2,3,6,9] used least-squares regression as in FTSP, and [12,13,17,19–21] used the
average consensus mechanism as in GTSP. In addition, the performance and stability of FTSP and
GTSP have been proved by experimental testbed and simulation study [30,31]. Therefore, we believe
that a performance study on FTSP and GTSP can provide comprehensive insights regarding how time
synchronization protocols work in different scenarios as well as the advantages and disadvantages of
each centralized and distributed mechanism.

The performance analysis is conducted to determine the diverse factors affecting the performance
of time synchronization protocols, such as message delay jitter, time synchronization period, network
topology, and packet loss ratio. In particular, FTSP is highly affected by message delay jitter and
network size because message delay is accumulated as the number of hops from the reference node
increases. To solve this problem, an extended version of FTSP (E-FTSP) is proposed and evaluated
together with FTSP and GTSP from a diverse range of aspects. The main contributions of this study
are as follows:

• A comprehensive study of the performance of time synchronization protocols under diverse
factors is performed. The effects of these factors on FTSP and GTSP were analyzed to understand
the behavior of time synchronization protocols. The simulation methods used can be applied to
the evaluation of future protocols.

• We propose an enhancement of FTSP (E-FTSP) and evaluate its advantages. We explain the
problem with FTSP caused by the accumulation of jitter and describe how our improvement
minimizes it. The simulation results prove that E-FTSP improves upon the performance of FTSP
significantly, especially in large-scale multi-hop networks.

The remainder of this paper is organized as follows. Related works are introduced in Section 2.
In Section 3, we briefly review the time synchronization problem and the primary concepts behind
FTSP and GTSP. Section 4 describes the simulation setup used for comparative analysis of the protocols.
Section 5 discusses the evaluation results for FTSP and GTSP in terms of message delay jitter, length
of synchronization period, topology, and packet loss. In this section, an extended version of FTSP
(E-FTSP) is described and evaluated to prove its advantages over FTSP. Finally, we conclude the paper
and suggest future works in Section 6.

2. Related Works

Evaluating the performance of time synchronization protocols in WSNs is a non-trivial task [32].
There are two common methods for achieving this task: using measurements on an experimental
testbed or using a simulation tool. Testbed implementation can provide reliable, accurate, and practical
results. However, the drawback of this method is that it is costly and time-consuming to build
a large-scale testbed. Simulation tools provide great flexibility for validating and testing various
scenarios. The accuracy of results from a simulation depends on how well the characteristics of the
actual network are modeled. It is interesting to note that the researchers who proposed FTSP and
GTSP used both aforementioned methods to demonstrate the precision of their proposed protocols.
Despite that there has been a lack of diverse evaluations considering factors such as message jitter,
network scale, and packet loss.

Several studies [26–29] have provided comparisons of time synchronization protocols based on
theoretical analyses. However, they failed to provide quantitative performance analyses due to the
absence of a simulation study. Other studies focused on classifying protocols into different categories.
Essentially, synchronization protocols can be classified based on structure, synchronization approach,
or message exchange mechanism [28].

Regarding structure-based classification, time synchronization protocols can be grouped into
two categories: centralized and distributed time synchronization [33]. In centralized protocols [1–10],



Sensors 2019, 19, 3020 3 of 19

a reference node (also called a root or master node) will appear in the network. All other nodes in the
network will synchronize their clocks to the reference node by receiving flooded messages from the
reference node.

There are two approaches to flooding: slow flooding and rapid flooding. FTSP is slow
flooding-based because each node waits a predetermined amount of time to propagate its time
information. However, several studies [4,6,34] have pointed out that slow flooding decreases the
accuracy of time synchronization protocols. Yildirim et al. [4] proposed Flooding with Clock Speed
Agreement (FCSA) protocol to reduce the undesired effect of slow flooding. FCSA aims to force all
nodes to run at the same speed by estimating the relative hardware clock rate of a reference node. To
achieve this goal, the timing message of FCSA must carry additional information, such as hardware
clock rate and compensated drift (rate multiplier).

In contrast, rapid flooding was employed in PulseSync [6] to prevent the problem of slow flooding.
In PulseSync, nodes propagate the timing message from the reference node as fast as possible. However,
rapid-flooding protocols must deal with the problem of collisions in the wireless network to achieve
high performance. Moreover, this kind of flooding may not be possible in a low-duty cycle network
because a node must wait for its transmission.

The recently proposed Adaptive Value Tracking Synchronization (AVTS) [5] protocol, uses the
technique of adaptive value tracking to determine the rate of the reference clock and synchronize
the entire network. Because AVTS does not require least-squares regression, it has a smaller memory
footprint compared to FTSP, PulseSync, and FCSA. However, AVTS has slower convergence time
compared to the least-squares-based protocols [5].

Another study [10] introduced three approaches to synchronizing the time in low-power wireless
sensor networks. These approaches are self-correction, clock-prediction, and analytical-correction.
The authors argued that high accuracy is not necessary for all WSN applications, and they aimed to
provide a trade-off between synchronization accuracy and power consumption with a target accuracy
of milliseconds.

Meanwhile, distributed time synchronization protocols [11–23] do not require any reference node.
Therefore, they are robust to network topology changes and node failures. Most of them rely on
consensus algorithms to coordinate independent clocks in the network. For example, the main idea
of GTSP and Average TimeSynch (ATS) is to average local information repeatedly until all nodes
eventually have a common clock. However, one drawback of this approach is its slow convergence
speed [18]. To increase the convergence speed, the maximum time synchronization (MTS) [18] protocol
was proposed. Essentially, MTS forces all nodes to follow the fastest clock in the network. Therefore, it
can achieve faster convergence. However, clocks synchronized under MTS are faster than the desired
clock. Moreover, if a malicious node with an abnormally high clock value enters the network, the
synchronization may break down.

Besides the message passing-based time synchronization protocols, recent studies have leveraged
existing infrastructures, such as Wi-Fi beacons [35] and electromagnetic energy radiation [36], to
globally synchronize all nodes in the network. The advantage of these solutions is that the energy
consumption of sensor nodes is reduced. However, the synchronization error of these protocols is
higher than that of state-of-the-art solutions in WSNs (e.g., the mean synchronization error of [36] was
121 µs).

In summary, numerous time synchronization protocols in WSNs have been proposed in recent
decades. However, there has not been a quantitative performance study on the diverse aspects affecting
the performance of time synchronization in WSNs. The aim of this study is to provide comprehensive
insights into the operations, problems, and possible improvements in time synchronization protocols
through a quantitative analysis, which considers a diverse range of factors that affect performance,
such as message delay jitter, time synchronization period, network topology, and packet loss ratio of a
wireless link.



Sensors 2019, 19, 3020 4 of 19

3. Time Synchronization in WSNs

3.1. Problem and Challenge

In a wireless network, each node has its own local clock, typically referred to as a hardware
clock. This hardware clock’s timing is calculated by counting the pulses of an oscillator operating
at a particular frequency. However, the output frequency of each oscillator varies according to the
hardware age or ambient environmental conditions [5]. Consequently, each hardware clock is subject to
varying clock drift. Because of this clock drift, even when two nodes exhibit the same initial time, they
will exhibit different clock values after some time. The oscillators used in sensor hardware typically
exhibit a drift from 30-100 ppm (parts per million) [11]. The hardware clock value hi(t) of node i can
be modeled mathematically as follows:

hi(t) = αit + βi (1)

where αi is the hardware clock rate and βi is the initial hardware offset of node i. The difference between
hardware clock rates is called the clock skew. Because the hardware clock operates continuously and
should not be modified, a logical clock is defined to represent a global clock (synchronized clock).
The value of the logical clock Li(t) for node i is calculated as follows:

Li(t) = τi(αit + βi) + δi = τiαit + τiβi + δi (2)

where τiαi is the logical clock rate and τiβi + δi is the logical clock offset of node i. The goal of the
time synchronization protocol is to estimate τi and δi such that the logical times Li(t) of all nodes
are equivalent.

Designing a time synchronization protocol for WSNs is very challenging. Most time
synchronization approaches rely on message exchange between nodes. However, whenever a node
generates a timestamp and sends it to other nodes for synchronization, the packet is subject to variations
in delay before it reaches and is processed by receivers. Authors of FTSP analyzed the causes of delays
and the magnitude of each in message transmissions [1]. Assuming that deterministic delays can
be calculated exactly, the role of time synchronization protocols is to eliminate or reduce the effect
of nondeterministic delays. Additionally, implementing existing protocols in real-world networks
present particular practical challenges, such as packet loss, fast clock drifting, and mote limitations [37].
Therefore, the effects of these practical factors on the performance of time synchronization protocols
should be analyzed and discussed carefully.

3.2. Flood Time Synchronization Protocol

FTSP [1] is one of the most well-known protocols for time synchronization in WSNs. In FTSP,
a root node maintains the global time and synchronizes all other nodes in the network. FTSP uses
MAC layer timestamps to eliminate most message delays and a linear regression table to compensate
for clock drifts. To achieve a high accuracy, a special timestamp method is proposed to reduce the
interrupt handling delay. By recording the timestamp at each byte boundary after SYNC bytes when it
is transmitted or received, the timestamp precision can be improved. However, this mechanism is only
available with calibrated hardware that uses byte-oriented radio chips (e.g., CC1000). Therefore, FTSP
is not a purely software-based solution.

In FTSP, when a node receives sufficient timing messages (defined by the value of
NUMENTRIES_LIMIT), it becomes a synchronized node and subsequently starts to forward the timing
messages to other nodes. This design allows FTSP to synchronize in multi-hop networks. The root node
is elected dynamically and can be re-elected in case of failure to ensure system robustness. The protocol
does not build an initial tree; hence, it can adapt to dynamic topology changes. The experimental data
indicate that the average synchronization error of FTSP is less than 3 µs per hop.



Sensors 2019, 19, 3020 5 of 19

3.3. Gradient Time Synchronization Protocol

GTSP [11] is designed to optimize the synchronization error between neighboring nodes and
is a completely distributed protocol that is based on the average consensus algorithm. Each node
synchronizes with its neighboring nodes and no special reference node exists. Unfortunately, this
property prevents GTSP from synchronizing to an external time source (e.g., UTC time) [16]. Similar
to FTSP, GTSP uses a MAC layer timestamp technique and one-way message dissemination. GTSP
avoids single points of failure and can dynamically adapt to topology changes. The researchers that
proposed GTSP reported that the average synchronization error between neighboring nodes (4.0 µs) is
slightly smaller than that of FTSP (5.3 µs), while the network synchronization error is higher.

4. Simulation Setup

The performance of time synchronization can vary even when implemented on the same hardware
platform [32]. For example, with the same Berkeley motes platform, researchers that proposed
Reference Broadcast Synchronization (RBS) [38] protocol reported 11 µs precision, while another
study [39] reported 29 µs precision for RBS. It is difficult to conclude that the latter evaluation is
incorrect because the difference in precision may have been caused by different conditions in the
evaluation (e.g., network topology, message delays, clock drift). Therefore, to ensure fairness and
repeatability in the comparison of time synchronization protocols, a simulation-based approach is
more appropriate for this study.

The Riverbed Modeler (OPNET) [40] is used to evaluate the performance of FTSP and
GTSP. The implementations of FTSP (https://github.com/tinyos/tinyos-main/tree/master/tos/
lib/ftsp) and GTSP (https://github.com/phsommer/sinalgo-timesync) are referred from original
implementation used to simulate these protocols. The MAC layer timestamp is implemented for both
protocols. Figure 1 describes the node model in our simulation. A node model includes basic layers
of a sensor node such as the application layer, MAC layer, and physical layer. The functions of time
synchronization protocols are implemented at the application layer. However, the timestamp in the
message is captured at the moment it is transmitted or received by the physical layer. Because GTSP
does not require a reference node, it is unfair to compare its convergence time with that of FTSP which
includes a leader election process. Hence, the first node (with ID = 1) is predefined as the reference
node in FTSP so that the network can start the synchronization process immediately after the nodes
are turned on. Each node in the network is set to a uniform random clock drift of ± 30–100 ppm. This
clock drift range is reasonable because a sensor node typically uses inexpensive oscillators, and this is
assumed in most studies [7,16,18,41].

Figure 1. Node model in OPNET used to implement protocols in the evaluation.

https://github.com/tinyos/tinyos-main/tree/master/tos/lib/ftsp
https://github.com/tinyos/tinyos-main/tree/master/tos/lib/ftsp
https://github.com/phsommer/sinalgo-timesync


Sensors 2019, 19, 3020 6 of 19

The network size is 600 m × 600 m and the transmission range is set to 100 m, which allows
distances of up to 12 hops in the network (grid topology 7 × 7) similarly to the evaluation of FTSP [1]
and GTSP [11]. In a random topology, the positions of all nodes are uniformly and randomly distributed
in the network. Noted that the following assumptions are made about the network: (1) the network is
connected and (2) the connection link between nodes is symmetric. To support microsecond resolutions,
the oscillator frequency is set to 1 MHz, implying that it generates one tick every microsecond.
The settings of FTSP and GTSP are derived from the original studies of [1] and [11], respectively.

Each simulation execution is run for 2 hours (7200 seconds) and repeated 10 times. Different
seeds are used in different executions to ensure that the random values are varied. However, it is
important to note that in each particular simulation run, the simulation conditions (e.g., network
topology, message delays, and clock drift) of each protocol are identical. The measurement data are
collected after each synchronization round (30 s as default). Table 1 summarizes the default settings of
the protocols and network, and a few settings are changed to evaluate the effects of different aspects
on the protocols in each scenario. The simulation results are explained in the next section.

Table 1. Setting values in simulation.

Category Setting Value

Common

Topology Grid/Random

Number of Nodes 50

Transmission Range 100 m

Network Coverage 600 m × 600 m

Initial Clock Drift ±30–100 ppm

Synchronization Period 30 s

Oscillator Frequency 1 MHz

Simulation Time 7200 s

Number of Executions (per scenario) 10

FTSP

NUMENTRIES_LIMIT 4

Initial Root Node ID 1

Regression Table Size 8

GTSP JUMP_THRESHOLD 10 µs

5. Evaluation Result

5.1. Effect of Message Delay Jitter

The term message delay is defined as the time elapsed from when a node starts transmitting
a message until the receiver finally processes it. This amount of time is accumulated by all
nondeterministic delays (e.g., channel access, interrupt handling, and propagation) and the deviation
in deterministic delays. Message delay is inevitable in network communications. However, it is
difficult to determine or estimate the total delay time exactly. Consequently, the message exchange
process suffers from variations in delay, known as message delay jitter.

5.1.1. Simulation Results

In this scenario, we wish to evaluate the effect of message delay jitter on the time synchronization
protocols. This is a practical aspect of a real network, but it is typically ignored in a theoretical
simulation [3,12,15,23,41]. Using the MAC layer timestamp, both FTSP and GTSP eliminated the
send (receive) and channel access delays. However, a small delay caused by interrupt handling and
message propagation remained. According to the experiment in [1], the likelihood delay can be several
microseconds for interrupt handling. Therefore, a uniform random delay of up to 5 µs is set on every
message sent.



Sensors 2019, 19, 3020 7 of 19

Figure 2 shows the synchronization error between FTSP and GTSP in two settings: with message
delay jitter (up to 5 µs) and without (implying that the packet is received instantaneously). This is the
representative result (with random seed = 10) from 10 independent simulation runs. From the figure,
it can be seen that time synchronization error can be reduced significantly in an environment without
message delay, and the maximum network errors of both FTSP and GTSP were only approximately
20 µs. Meanwhile, with message delay jitter, the maximum network errors of FTSP and GTSP increased
significantly. However, the error scale of GTSP is smaller than that of FTSP. To clarify, Figure 3 shows
the synchronization error of all nodes in a grid topology that used FTSP. These results demonstrate
that a higher error occurs as the hop distance from the reference node increases in the presence of
message delay jitter.

Figure 2. Network error and maximum neighbor error of FTSP and GTSP in two settings: without
message delay and with delay jitter up to 5 µs. Random seed = 10.

Figure 3. Synchronization error between reference node (at 1×1) and other nodes in grid topology in
two settings: without message delay and with the message delay jitter up to 5 µs.



Sensors 2019, 19, 3020 8 of 19

We analyze the effect of message delay on FTSP to obtain the cause and solution for this problem.
We observed that the delay variation causes a fluctuation in the compensated drift. Figure 4a compares
the logical skew of the nearest node with that of the farthest node with the reference node. Clearly, the
logical skew must be close to 1 (implying nodes operating at the same speed as the reference node)
and stable to maintain the precision of the synchronized time. In fact, even if the clock drift of the
nodes is compensated completely, a minor offset error still appears at the receiving nodes because of
the nondeterministic delay in message delivery. It is worth noting that the offset error in this case is
not caused by insufficient compensation. Therefore, calculating the drift compensation again is not
necessary. In FTSP, the nodes calculate and compensate the clock drift and clock offset each time they
receive a timing message. However, these processes are independent of each other. Consequently, the
nodes adjust their compensated drift unnecessarily because the offset is caused by delay variation and
not by the difference in clock rate. Even though this adjustment of compensated drift is typically small,
it is accumulated through each hop in a multi-hop network and will eventually become a large at the
farthest nodes.

Figure 4. Relative skew of nearest node and farthest node with reference node in (a) FTSP and
(b) E-FTSP with grid topology (7 × 7).

5.1.2. Enhanced FTSP (E-FTSP)

To prevent unnecessary adjustment of the compensated drift, we propose a mechanism to control
the drift compensation process. The primary concept is that the nodes will decide whether they must
compensate for clock drift whenever they receive a timing message. To implement this concept, the
procedure to handle a received message with a newly defined variable estimatedDelay is as below:

• If offsetError is smaller than estimatedDelay, the nodes will regard the previous compensated drift as
sufficient and a recalculation will not be performed. In this case, the node must only compensate
for the offset (see lines 3–5 in Algorithm 1).

• Meanwhile, if offsetError is larger than estimatedDelay, the nodes must calculate and compensate
for the clock drift and clock offset using the algorithm of the original FTSP (see lines 7–9 in
Algorithm 1).

This modification allows the nodes to skip updating the compensation of the clock drift if the offset
error is trivial (smaller than estimatedDelay). Therefore, the nodes can reduce the skew fluctuation and
computation overhead. Figure 4b shows that the difference between the relative skews of the nearest
node and the farthest node with the reference node is insignificant after applying the proposed concept.



Sensors 2019, 19, 3020 9 of 19

Algorithm 1 Procedure to handle received message in E-FTSP

1: //Receive timing offset
2: //Calculate offsetError
3: if (offsetError < estimatedDelay) then

4: //Compensate for offset only
5: compensate_offset(offsetError);
6: else

7: //Compensate for offset and drift
8: compensate_offset(offsetError);
9: compensate_drift();

10: end if

To calculate estimatedDelay, we first analyze how FTSP stores the timing message in the regression
table. Table 2 shows the regression table, where the offset error of node i is calculated as:

Oi(t) = Lj(t)− hi(t) (3)

where Lj(t) is the global clock value included in the message from node j, and hi(t) is the hardware
clock value of node i. Assuming that the clock drifts of nodes i and j remain constant in the short-term
(several messages), the difference in hardware clock hi(tn)− hi(tn−1) should be constant if the messages
are sent periodically. Subsequently, the difference between two continuous messages Oi(tn)−Oi(tn−1)

should theoretically be constant. However, because of message delay jitter, the value of Oi(tn) −
Oi(tn−1) varies. Therefore, (3) becomes

Oi(t) = Lj(t)− hi(t) + σ(t) (4)

where σ(t) is a random delay in message delivery. Although the value of σ(t) varies each time the
message is sent, the maximum value of σ(t) can be calculated as

maxσ =
max

(
O(tn)−O(tn−1) : n ∈ {1...N}

)
2

(5)

where N is the number of entries in the regression table and maxσ is the estimatedDelay value. Figure 5
shows the average estimatedDelay value of nodes that have the same hop distance to the reference node.
The maximum delay in message delivery is 5 µs. The proposed protocol can estimate the maximum
delay exactly with nodes that are received directly from the reference node (hop 1), and estimatedDelay
slightly increases with further hops.

Table 2. Regression table of a node.

Index Local Time Offset

1 h(t1) O(t1)
2 h(t2) O(t2)
3 h(t3) O(t3)
4 h(t4) O(t4)
5 h(t5) O(t5)
6 h(t6) O(t6)
7 h(t7) O(t7)
8 h(t8) O(t8)



Sensors 2019, 19, 3020 10 of 19

Figure 5. Average estimatedDelay value of nodes at same hop distance to the reference node.

In addition to calculating estimatedDelay automatically, it is possible to predefine the value of
this variable. In a homogeneous WSN, the maximum and average delays can be obtained through
experiments and manually configured in the software. This allows for the complexity of the algorithm
to be reduced while maintaining the efficiency of the proposed protocol. We continue the first scenario
by comparing the performances of E-FTSP, FTSP, and GTSP in the presence of message delay jitter.
Figure 6 indicates that E-FTSP reduced the synchronization error significantly compared to FTSP. The
maximum network synchronization error of the E-FTSP is only approximately 20 µs and the maximum
neighbor synchronization error is approximately 10 µs. These synchronization errors are equivalent
to the results for FTSP and GTSP in a no-delay environment. However, it is noteworthy that E-FTSP
exhibits the same convergence time as FTSP. In addition, E-FTSP exhibits a smaller synchronization
error than GTSP under the same conditions.

Figure 6. Network errors and maximum neighbor errors of FTSP, GTSP, and E-FTSP in the presence of
message delay jitter.



Sensors 2019, 19, 3020 11 of 19

5.2. Effect of Synchronization Period

Choosing a proper synchronization period when implementing a time synchronization protocol
is a trade-off problem. A short synchronization period allows a network to become synchronized
quickly, whereas a long period allows the nodes to save energy. In this simulation scenario, the effect
of the synchronization period of each protocol is analyzed from the perspective of synchronization
speed (convergence time) and accuracy. We consider only the number of synchronization rounds
instead of the amount of time for comparison. It is apparent from Figure 7 that the number of rounds
required to synchronize the entire network is lower for a shorter period with GTSP, while that in
FTSP tends to be constant regardless of the duration of the synchronization period. The reason for
this phenomenon is that GTSP gradually adjusts the clock rate of each node to a common clock rate.
A “common clock rate” implies that the difference in clock rate between nodes must be trivial such
that the offset will be small after a synchronization period. However, with a short synchronization
period, the logical clock values are synchronized regularly even though the clock rate of each node is
not strictly common. In other words, GTSP does not require many rounds to achieve a common clock
rate in a short synchronization period.

Regarding the synchronization error, it is interesting that the short period does not improve
the accuracy of both protocols but slightly increases the error in FTSP as shown in Figure 8.
The simulation is repeated 10 times, and 300 points of data were collected after the network had
achieved synchronization. The boxplots describe the distribution of the maximum network error
and maximum neighbor error for each protocol. In general, changing the synchronization period
does not increases the synchronization error of GTSP or E-FTSP. However, FTSP exhibits a higher
synchronization error when it sends a message in over short period. As explained previously, FTSP
incurs clock skew fluctuations due to message delay jitter. This problem is even more serious in a
short synchronization period. Meanwhile, E-FTSP always demonstrates outstanding performance; its
synchronization error is smaller than those of FTSP and GTSP for any synchronization period.

Figure 7. Number of rounds required to synchronize entire network in FTSP and GTSP with different
synchronization periods.



Sensors 2019, 19, 3020 12 of 19

Figure 8. Network error and maximum neighbor error of FTSP, GTSP and E-FTSP with different
synchronization periods.

5.3. Effect of Topology

Topology is an important factor that affects both the time synchronization protocols and other
protocols in the network (e.g., routing protocol). The researchers that proposed FTSP and GTSP claimed
that both protocols operate well in different topologies. In this scenario, we wish to demonstrate how
different topologies affect the performance of FTSP and GTSP.

5.3.1. Position of Reference Node in FTSP

FTSP in a multi-hop network has been reported to have poor performance. To understand the
effect of hop distance from the reference node, the maximum hop distance between the reference
node and the farthest node(s) is changed, as shown in Figure 9. The results of this simulation are
shown in Figure 10. It is clear that the number of rounds required to synchronize the entire network
in FTSP depends on the hop distance to the farthest node(s) as shown in Figure 10a. Because GTSP
does not require a reference node, it is not affected by this. To reduce the waiting time in the “flooding”
message, the NUMENTRIES_LIMIT value in FTSP setting can be reduced (e.g., two entries). This
configuration allows the nodes to start forwarding the timing message after receiving a sufficient
number of messages. The position of the reference node affects the network synchronization error
as shown in Figure 10b. Thus, the choice of reference node is an important factor in achieving better
performance with FTSP. In a static topology, it is easy to choose a reference node that allows the hop
distance values to be minimized. However, in a dynamic network, the position of the reference node
can be changed regularly. Additionally, FTSP does not provide any mechanism to ensure that a center
node will become a leader in the election process. Hence, this is an open issue with FTSP.

Figure 9. Hop distance between reference node (root) and farthest node in grid topology.



Sensors 2019, 19, 3020 13 of 19

(a) (b)

Figure 10. (a) Number or rounds required to synchronize entire network with different hop distances
between reference node and farthest node. (b) Synchronization error of FTSP with different hop
distances between reference node and farthest node.

5.3.2. Distribution of Nodes in GTSP

Because GTSP is not affected by the position of the reference node, this subsection extends the
previous simulation of GTSP to different topologies. We do not include FTSP in this scenario because
the convergence of FTSP depends on the hop distance from the reference node, as demonstrated in
the previous evaluation. Figure 11b shows that the number of rounds required to synchronize the
entire network differs according to the network topology. Even with the same topology, the number
of rounds also varies in each execution. With each topology, the simulation is repeated 15 times with
different seeds. Consequently, the initial clock drift and the time to broadcast the message of each node
are different in every simulation. Therefore, the synchronization speed and the agreement clock rate
also vary. However, Figure 11a shows that after achieving synchronized status, the synchronization
error is similar among the various topologies.

Li [42] demonstrated that convergence speed depends on the distribution property of a network.
In detail, it depends on the number of neighbors (links) of each node. Hence, increasing the density
and node connections in a network will increase the convergence speed of GTSP. A simple method
to increase the convergence speed is to increase the transmission range of the nodes, as shown in
Figure 12. In this scenario, the transmission range of nodes in a random topology (50 nodes) is
increased gradually. As a result, the number of links is increased, and the convergence time is reduced.
Although this is not always possible in WSNs because the transmission range is limited by hardware.
However, it can provide insights into the acceleration of convergence time by exploiting the number of
links in GTSP [43].



Sensors 2019, 19, 3020 14 of 19

Figure 11. (a) Network error and maximum neighbor error of GTSP with different topologies.
(b) Number of rounds required to synchronize entire network in GTSP with different topologies.

Figure 12. Number of rounds required to synchronize entire network in GTSP with different
transmission ranges.

5.3.3. Large-Scale Network

In this subsection, we analyze the performance of FTSP, GTSP, and E-FTSP in term of network
scalability, which is an important criterion for network protocols. Network scalability can be defined
as the overall network performance may not degrade regardless of the network size and the number
of nodes. Since the effect of the network density is discussed in Section 5.3.2, this subsection focuses
on the effect of the network size, especially the number of nodes, by fixing network density for all
experiments. A random topology was used as same as previous evaluations, but the number of nodes
is increased from 75 to 1200 nodes as a logarithmic scale. Please note that the network size is also
enlarged to maintain the same network density for each experiment. As explained in Section 5.3.1,
the synchronization errors of FTSP are accumulated through multi-hops from the reference node.
Therefore, we marked the number of nodes together with the maximum hop distance between the
reference node (located at the center of the network) and the farthest node in x-axis of Figure 13.

Figure 13a shows that network synchronization error of FTSP grows exponentially with network
size (hop distance), whereas that of GTSP only slightly increases. This indicates that GTSP is not
affected by hop distance due to its inherent design of the distributed algorithm. Remarkably, the
synchronization error of E-FTSP tends to be constant with increasing network size. This proves that
E-FTSP minimizes the effect of error accumulation through multi-hops.

Figure 13b describes the average number of rounds required to complete synchronization of
each network. It indicates that to achieve less than 100 µs accuracy the convergence time of GTSP
increases proportionally to the network size, while those of FTSP and E-FTSP only slightly increase.
It proves that the convergence time of GTSP highly depends on the maximum hop distance of a
network. In contrast, the convergence times of FTSP and E-FTSP only depend on the hop distance



Sensors 2019, 19, 3020 15 of 19

between the reference node and the farthest node. Because the reference node is located at the center
of the network, both FTSP and E-FTSP have tendencies to increase in convergence time as network
size increases, but the impact is relatively small compared to that of GTSP.

In summary, FTSP has tendency that time synchronization error increases for the large-scale
network while GTSP requires long convergence time proportionally to the network size. Therefore,
neither are suitable for operating in large-scale networks. In contrast, the simulation results prove that
E-FTSP provides high accuracy and fast synchronization regardless of network scale.

(a) (b)

Figure 13. (a) Average network error of FTSP, GTSP, and E-FTSP according to the network size (number
of nodes). (b) Average number of rounds required to synchronize entire network of FTSP, GTSP, and
E-FTSP according to the network size (number of nodes).

5.4. Effect of Packet Loss

Packet loss might occur frequently in a practical network, especially in wireless networks. Packet
loss can be caused by many factors, such as collision during transmission, signal quality, hardware, and
software issues [44]. In this simulation scenario, we do not focus on the cause of packet loss in WSNs.
Instead, the performance of each protocol is evaluated for different packet loss ratios. It is predicted
that the packet loss will deteriorate the performance of the time synchronization protocols. Figure 14a
shows that the number of rounds (convergence time) increases gradually with the packet loss ratio.
Similarly, the network synchronization error increases with the packet loss ratio, as shown in Figure 14b.
Generally, the network synchronization error of E-FTSP is still smaller than those of GTSP and FTSP
under the same conditions. It is noteworthy that the network still achieves synchronization even in
high-error environments such as one with 30% packet loss. This is because the time synchronization
protocols send messages periodically; hence, it is acceptable if packets are lost in some synchronization
rounds. In other words, packet loss does not cause abnormal errors in E-FTSP (and in FTSP and GTSP).
This proves the robustness of these protocols.



Sensors 2019, 19, 3020 16 of 19

(a) (b)

Figure 14. (a) Number or rounds required to synchronize entire network for different packet loss ratios.
(b) Network synchronization error of each protocol with different packet loss ratios.

6. Conclusions

In this paper, we presented a performance analysis of time synchronization protocols under the
effects of different factors, such as message delay jitter, synchronization period, network topology, and
packet loss. From the simulation, our conclusions are as follows:

• Message delay jitter can be considered to be the primary factor affecting the performance of
time synchronization protocols. In particular, it causes fluctuations in the clock skew through
multi-hop flooding and reduces the accuracy of FTSP significantly. An extended version of
FTSP (E-FTSP) was proposed to reduce the effect of message delay jitter and it demonstrated
outstanding performance compared to FTSP and GTSP, especially in a large-scale network.

• Regarding network topology, the position of the reference node affects the convergence time and
synchronization error of FTSP and E-FTSP. In detail, the hop distance from the farthest node(s)
should be as small as possible to achieve a high performance in FTSP and E-FTSP. Meanwhile, the
distribution of nodes, especially the number of links between nodes in the network, affects the
convergence time of GTSP. In detail, the convergence speed of GTSP increases with the number
of links. In a small-scale network, there is no significant difference between the aforementioned
protocols in term of synchronization error and convergence time. However, in a large-scale
multi-hop network, FTSP has huge synchronization error, and GTSP has very slow convergence
time. Meanwhile, E-FTSP provides more accurate and faster time synchronization regardless of
network scale.

• Changing the synchronization period (interval) does not reduce the synchronization errors of
FTSP and GTSP. A short synchronization period slightly increases the synchronization error in
FTSP. Interestingly, a short synchronization period reduces the number of rounds required to
achieve convergence in GTSP. Time synchronization protocols require short intervals for fast
synchronization and long intervals to save energy. Therefore, adaptive synchronization protocols
should be further investigated.

• Packet loss clearly increases the convergence times and the synchronization errors of FTSP and
GTSP. However, the network still achieves a synchronized status even when approximately one
third of packets are lost. This proves the robustness of FTSP, GTSP, and E-FTSP.

Apart from accuracy, convergence speed, robustness, and scalability, other attributes of a time
synchronization protocol, such as energy efficiency and time complexity of algorithms, also need to
be evaluated before implementing them in a real system. Thus, it is expected that studies on these
attributes will improve the feasibility of real systems.



Sensors 2019, 19, 3020 17 of 19

In our simulation, we did not evaluate the performance of FTSP and GTSP is mobile and the fast
drifting environments. The mobility of the nodes in an ad-hoc network may generate unexpected
results and problems. Although it has been claimed that FTSP and GTSP can operate well under
dynamic topology changes, it is important to evaluate the performance of time synchronization
protocols in a dynamic environment. These evaluations will be performed in future works.
We believe that this study furthers our understanding of the performance of time synchronization
protocols in real networks. Moreover, this work provides insights into the optimization of time
synchronization protocols.

Author Contributions: Conceptualization, L.-A.P. and T.K. (Taehong Kim); Software, L.-A.P.; Writing – Original
Draft Preparation, L.-A.P.; Review & Editing, T.K. (Taejoon Kim) and T.K. (Taehong Kim); Supervision, T.K.
(Taejoon Kim) and T.K. (Taehong Kim); Funding Acquisition, J.L. and J.-H.H.

Funding: This work has been supported by the Small-scale Mobile Ad-hoc Network with Bio-networking
Technology project of the Agency for Defense Development (UD170094ED).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Maróti, M.; Kusy, B.; Simon, G.; Lédeczi, Á. The flooding time synchronization protocol. In Proceedings
of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA,
3–5 November 2004. [CrossRef]

2. Ganeriwal, S.; Tsigkogiannis, I.; Shim, H.; Tsiatsis, V.; Srivastava, M.; Ganesan, D. Estimating Clock
Uncertainty for Efficient Duty-Cycling in Sensor Networks. IEEE/ACM Trans. Networking 2009, 17, 843–856.
[CrossRef]

3. Akhlaq, M.; Sheltami, T.R. RTSP: An accurate and energy-efficient protocol for clock synchronization in
WSNs. IEEE Trans. Instrum. Meas. 2013, 62, 578–589. [CrossRef]

4. Yildirim, K.S.; Kantarci, A. Time synchronization based on slow-flooding in wireless sensor networks.
IEEE Trans. Parallel Distrib. Syst. 2014, 25, 244–253. [CrossRef]

5. Yildirim, K.S.; Gurcan, O. Efficient Time Synchronization in a Wireless Sensor Network by Adaptive Value
Tracking. IEEE Trans. Wirel. Commun. 2014, 13, 3650–3664. [CrossRef]

6. Lenzen, C.; Sommer, P.; Wattenhofer, R. PulseSync: An efficient and scalable clock synchronization protocol.
IEEE/ACM Trans. Netw. 2015, 23, 717–757. [CrossRef]

7. Kim, K.S.; Lee, S.; Lim, E.G. Energy-Efficient Time Synchronization Based on Asynchronous Source
Clock Frequency Recovery and Reverse Two-Way Message Exchanges in Wireless Sensor Networks.
IEEE Trans. Commun. 2017, 65, 347–359. [CrossRef]

8. Berger, A.; Pichler, M.; Klinglmayr, J.; Pötsch, A.; Springer, A. Low-Complex Synchronization Algorithms for
Embedded Wireless Sensor Networks. IEEE Trans. Instrum. Meas. 2015, 64, 1032–1042. [CrossRef]

9. Gong, F.; Sichitiu, M.L. CESP: A Low-Power High-Accuracy Time Synchronization Protocol. IEEE Trans.
Veh. Technol. 2016, 65, 2387–2396. [CrossRef]

10. Tavares Bruscato, L.; Heimfarth, T.; Pignaton de Freitas, E. Enhancing Time Synchronization Support in
Wireless Sensor Networks. Sensors 2017, 17, 2956. [CrossRef]

11. Sommer, P.; Wattenhofer, R. Gradient Clock Synchronization in Wireless Sensor Networks. In Proceedings
of the 2009 International Conference on Information Processing in Sensor Networks, Washington, DC, USA,
13–16 April 2009.

12. Schenato, L.; Fiorentin, F. Average TimeSynch: A consensus-based protocol for clock synchronization in
wireless sensor networks. Automatica 2011, 47, 1878–1886. [CrossRef]

13. Wu, J.; Jiao, L.; Ding, R. Average time synchronization in wireless sensor networks by pairwise messages.
Comput. Commun. 2012, 35, 221–233. [CrossRef]

14. Lin, L.; Ma, S.; Ma, M. A Group Neighborhood Average Clock Synchronization Protocol for Wireless Sensor
Networks. Sensors 2014, 14, 14744–14764. [CrossRef] [PubMed]

15. Wu, J.; Zhang, L.; Bai, Y.; Sun, Y. Cluster-based consensus time synchronization for wireless sensor networks.
IEEE Sens. J. 2015, 15, 1404–1413. [CrossRef]

http://dx.doi.org/10.1145/1031495.1031501
http://dx.doi.org/10.1109/TNET.2008.2001953
http://dx.doi.org/10.1109/TIM.2012.2232472
http://dx.doi.org/10.1109/TPDS.2013.40
http://dx.doi.org/10.1109/TWC.2014.2316168
http://dx.doi.org/10.1109/TNET.2014.2309805
http://dx.doi.org/10.1109/TCOMM.2016.2626281
http://dx.doi.org/10.1109/TIM.2014.2366272
http://dx.doi.org/10.1109/TVT.2015.2417810
http://dx.doi.org/10.3390/s17122956
http://dx.doi.org/10.1016/j.automatica.2011.06.012
http://dx.doi.org/10.1016/j.comcom.2011.09.007
http://dx.doi.org/10.3390/s140814744
http://www.ncbi.nlm.nih.gov/pubmed/25120163
http://dx.doi.org/10.1109/JSEN.2014.2363471


Sensors 2019, 19, 3020 18 of 19

16. Yildirim, K.S.; Kantarci, A. External gradient time synchronization in wireless sensor networks. IEEE Trans.
Parallel Distrib. Syst. 2014, 25, 633–641. [CrossRef]

17. He, J.; Cheng, P.; Shi, L.; Chen, J. SATS: Secure average-consensus-based time synchronization in wireless
sensor networks. IEEE Trans. Signal Process. 2013, 61, 6387–6400. [CrossRef]

18. He, J.; Cheng, P.; Shi, L.; Chen, J.; Sun, Y. Time Synchronization in WSNs: A Maximum-Value-Based
Consensus Approach. IEEE Trans. Automat. Contr. 2014, 59, 660–675. [CrossRef]

19. Sun, W.; Strom, E.G.; Brannstrom, F.; Gholami, M.R. Random Broadcast Based Distributed Consensus Clock
Synchronization for Mobile Networks. IEEE Trans. Wirel. Commun. 2015, 14, 3378–3389. [CrossRef]

20. Apicharttrisorn, K.; Choochaisri, S.; Intanagonwiwat, C. Energy-Efficient Gradient Time Synchronization
for Wireless Sensor Networks. In Proceedings of the 2010 2nd International Conference on Computational
Intelligence, Communication Systems and Networks, Liverpool, UK, 28–30 July 2010.

21. Maggs, M.K.; O’Keefe, S.G.; Thiel, D.V. Consensus Clock Synchronization for Wireless Sensor Networks.
IEEE Sens. J. 2012, 12, 2269–2277. [CrossRef]

22. Leva, A.; Terraneo, F.; Rinaldi, L.; Papadopoulos, A.V.; Maggio, M. High-Precision Low-Power Wireless
Nodes’ Synchronization via Decentralized Control. IEEE Trans. Control Syst. Technol. 2016, 24, 1279–1293.
[CrossRef]

23. Elsharief, M.; Abd El-Gawad, M.A.; Kim, H. Fads: Fast scheduling and accurate drift compensation for time
synchronization of wireless sensor networks. IEEE Access 2018, 6, 65507–65520. [CrossRef]

24. Wu, Y.C.; Chaudhari, Q.; Serpedin, E. Clock Synchronization of Wireless Sensor Networks. IEEE Signal
Process. Mag. 2011, 28, 124–138. [CrossRef]

25. Ranganathan, P.; Nygard, K. Time Synchronization in Wireless Sensor Networks: A Survey. IJU 2010,
1, 92–102. [CrossRef]

26. Youn, S. A Comparison of Clock Synchronization in Wireless Sensor Networks. Int. J. Distrib. Sens. Netw.
2013, 9, 532986. [CrossRef]

27. Bae, S.K. Classification and Analysis of Time Synchronization Protocols for Wireless Sensor Networks in
Terms of Power Consumption. In Ubiquitous Information Technologies and Applications; Jeong, Y.S., Park, Y.H.,
Hsu, C.H., Park, J.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 80, pp. 221–228.

28. Sarvghadi, M.A.; Wan, T.C. Message Passing Based Time Synchronization in Wireless Sensor Networks:
A Survey. Int. J. Distrib. Sens. Netw. 2016, 12, 1280904. [CrossRef]

29. Dalwadi, N.; Padole, M. An Insight into Time Synchronization Algorithms in IoT. In Data, Engineering
and Applications; Shukla, R.K., Agrawal, J., Sharma, S., Singh Tomer, G., Eds.; Springer: Singapore, 2019;
pp. 285–296.

30. Khalil, A. Current Implementation of the Flooding Time Synchronization Protocol in Wireless Sensor
Networks. Ph.D. Thesis, The University of Western Ontario, London, ON, Canada, 2019.

31. Sommer, P.A. Wireless Embedded Systems: Time, Location, and Applications. Ph.D. Thesis, ETH Zurich,
Zürich, Switzerland, 2011.

32. Römer, K.; Blum, P.; Meier, L. Time Synchronization and Calibration in Wireless Sensor Networks. In Handb.
Sens. Networks; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 199–237.

33. Elson, J.E. Time Syncronization in Wireless Sensor Networks. Ph.D. Thesis, University of California,
Los Angeles, CA, USA, 2003.

34. Lenzen, C.; Sommer, P.; Wattenhofer, R. Optimal clock synchronization in networks. In Proceedings of the
7th ACM Conference on Embedded Networked Sensor Systems, Berkeley, CA, USA, 4–6 November 2009.

35. Rowe, A.; Gupta, V.; Rajkumar, R.R. Low-power clock synchronization using electromagnetic energy
radiating from AC power lines. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, Berkeley, CA, USA, 4–6 November 2009.

36. Hao, T.; Zhou, R.; Xing, G.; Mutka, M.W.; Chen, J. WizSync: Exploiting Wi-Fi Infrastructure for Clock
Synchronization in Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2014, 13, 1379–1392. [CrossRef]

37. Djenouri, D.; Bagaa, M. Synchronization protocols and implementation issues in wireless sensor networks:
A review. IEEE Syst. J. 2016, 10, 617–627. [CrossRef]

38. Elson, J.; Girod, L.; Estrin, D. Fine-grained network time synchronization using reference broadcasts.
ACM SIGOPS Oper. Syst. Rev. 2002, 36, 147–163. [CrossRef]

http://dx.doi.org/10.1109/TPDS.2013.58
http://dx.doi.org/10.1109/TSP.2013.2286102
http://dx.doi.org/10.1109/TAC.2013.2286893
http://dx.doi.org/10.1109/TWC.2015.2404917
http://dx.doi.org/10.1109/JSEN.2011.2182045
http://dx.doi.org/10.1109/TCST.2015.2483559
http://dx.doi.org/10.1109/ACCESS.2018.2878272
http://dx.doi.org/10.1109/MSP.2010.938757
http://dx.doi.org/10.5121/iju.2010.1206
http://dx.doi.org/10.1155/2013/532986
http://dx.doi.org/10.1155/2016/1280904
http://dx.doi.org/10.1109/TMC.2013.43
http://dx.doi.org/10.1109/JSYST.2014.2360460
http://dx.doi.org/10.1145/844128.844143


Sensors 2019, 19, 3020 19 of 19

39. Ganeriwal, S.; Kumar, R.; Srivastava, M.B. Timing-sync protocol for sensor networks. In Proceedings
of the 1st international conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA,
5–7 November 2003.

40. Riverbed. Riverbed Modeler. Available online: https://www.riverbed.com (accessed on 12 June 2019).
41. Blum, P.; Meier, L.; Thiele, L. Improved interval-based clock synchronization in sensor networks.

In Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks,
Berkeley, CA, USA, 26–27 April 2004.

42. Qun Li.; Rus, D. Global clock synchronization in sensor networks. IEEE Trans. Comput. 2006, 55, 214–226.
[CrossRef]

43. Linh-An, P.; Kim, T.; Kim, T.; Lee, J.; Ham, J.H. Poster Abstract : A Fast Consensus-based Time
Synchronization Protocol with Virtual Links in WSNs. IEEE INFOCOM 2019, 1, 1–2.

44. Bhadra, D.R.; Joshi, C.A.; Soni, P.R.; Vyas, N.P.; Jhaveri, R.H. Packet loss probability in wireless networks:
A survey. In Proceedings of the 2015 International Conference on Communications and Signal Processing
(ICCSP), Melmaruvathur, India, 2–4 April 2015.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.riverbed.com
http://dx.doi.org/10.1109/TC.2006.25
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Time Synchronization in WSNs
	Problem and Challenge
	Flood Time Synchronization Protocol
	Gradient Time Synchronization Protocol

	Simulation Setup
	Evaluation Result
	Effect of Message Delay Jitter
	Simulation Results
	Enhanced FTSP (E-FTSP)

	Effect of Synchronization Period
	Effect of Topology
	Position of Reference Node in FTSP
	Distribution of Nodes in GTSP
	Large-Scale Network

	Effect of Packet Loss

	Conclusions
	References

