
molecules

Article

The Nature of Triel Bonds, a Case of B and Al Centres
Bonded with Electron Rich Sites

Sławomir J. Grabowski 1,2

1 Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, and Donostia International Physics
Center (DIPC), P.K. 1072, 20080 San Sebastian, Spain; s.grabowski@ikerbasque.org; Tel.: +34-943-018-187

2 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

Academic Editor: Catherine Housecroft
Received: 29 May 2020; Accepted: 9 June 2020; Published: 11 June 2020

����������
�������

Abstract: The second-order Møller–Plesset perturbation theory calculations with the aug-cc-pVTZ
basis set were performed on complexes of triel species: BCl3, BH3, AlCl3, and AlH3 acting as Lewis
acids through the B or Al centre with Lewis base units: NCH, N2, NH3, and Cl− anion. These
complexes are linked by triel bonds: B/Al···N or B/Al···Cl. The Quantum Theory of ´Atoms in
Molecules´ approach, Natural Bond Orbital method, and the decomposition of energy of interaction
were applied to characterise the latter links. The majority of complexes are connected through
strong interactions possessing features of covalent bonds and characterised by short intermolecular
distances, often below 2 Å. The BCl3···N2 complex is linked by a weak interaction corresponding to
the B···N distance of ~3 Å. For the BCl3···NCH complex, two configurations corresponding to local
energetic minima are observed, one characterised by a short B···N distance and a strong interaction
and another one characterised by a longer B···N distance and a weak triel bond. The tetrahedral triel
structure is observed for complexes linked by strong triel bonds, while, for complexes connected
by weak interactions, the structure is close to the trigonal pyramid, particularly observed for the
BCl3···N2 complex.

Keywords: triel bond; boron centre; aluminium centre; tetrahedral structure; quantum theory of
atoms in molecules; natural bond orbital method; π-hole bond

1. Introduction

The number of experimental and theoretical studies concerning inter- and intramolecular
interactions increased rapidly in recent years [1–7]. The concept of σ-holes and π-holes is one
of the most important trials to explain nature of the broad spectrum of interactions [2,3]. The aerogen
(group 18), halogen (group 17), chalcogen (group 16), pnicogen (group 15), and tetrel (group 14)
atoms [1–7] may act as the Lewis acid centres interacting with electron-rich sites; these interactions
taking their names from names of corresponding centres are often classified as σ-hole bonds [2,3].
In the above-mentioned centres, the depletion of the electron charge may be observed on their edges in
directions of their bonds with other atoms. These sites are just named as σ-holes; the above-described
electron charge outflow is often sufficient to lead to the positive electrostatic potential (EP) at the
σ-holes and, thus, to their Lewis acid properties.

It may be confusing that the centres described here play a role of Lewis acids since the majority
of them are electronegative atoms. Some of these centres may be characterised by π-holes that
are also regions of the depletion of the electron charge and, consequently, often of the positive
electrostatic potential. The π-holes occur for planar species or planar molecular fragments in directions
perpendicular to the corresponding planes [2,3]. The elements of the 13th group in their numerous
compounds are characterised by the occurrence of π-holes. The corresponding interactions named as
triel bonds are also classified as π-hole bonds [8–10]. The triel bonds usually designate interactions
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between the triel centre characterised by the positive electrostatic potential, i.e., by the Lewis acid
properties, and the electron-rich site, lone electron pair, π-electrons, etc. This term covers the broad
spectrum of interactions, from very weak to those of a covalent nature, but most of them are quite
strong [8–10]. The boron trihydrides and trihalides are examples of simple planar species with the boron
centre possessing positive electrostatic potential that may interact with nucleophiles. It was found that
the acidity of the boron centre increases in the following order: BF3 < BCl3 < BBr3 < BI3 [11], which
seems to be surprising since the electronegativity of the halogen substituent decreases in this order.
Such increase of acidic properties was explained by the back bonding effect [12], where it is the greatest
for the BF3 species leading to the significant decrease of the positive charge of boron, i.e., to the decrease
of its acidic properties. However, other studies showed that this effect is negligible [13,14]. This led
to numerous discussions and polemics concerning the nature of the triel centre interactions [15,16].
It seems that the Lewis base units interacting with these boron trihalides also play a crucial role
since it was found that the above-mentioned order depends on the nature of the electron-donating
centres [17,18].

Another topic related to boron trihalides interacting with Lewis bases concerns the double potential
energy minimum for some of such complexes [19–22]. In the case of the BF3···CH3CN complex, two
configurations corresponding to the energetic minima were found characterised by N···B distances
amounting to 1.818 Å and ~2.3 Å. The corresponding binding energies for these configurations are
equal to −7.7 kcal/mol and −8.7 kcal/mol, respectively [20,21]. For the BCl3···CH3CN complex, two
local energetic minima were found that are related to configurations with the N···B distances equal
to 1.601 Å and 2.687 Å; the binding energies amount to −12.0 and −4.9 kcal/mol, respectively [22].
It seems that it may be a more general problem for boron centres since, in numerous molecular systems,
they are obscured by various types of substituents. This may concern other centres since the similar
situation of the double potential minimum was observed for complexes of acetonitrile with tetrahalides
of elements of the fourth and 14th groups [23]. It was analysed in this study if such double minima
occur for the aluminium trichlorides and trihydrides.

The triel bonds discussed in this study were compared with hydrogen bonds recently [24]. It was
also discussed that different types of triel bonds are observed, similarly as for the other interactions.
This means that the triel centres may interact with single electron-rich sites, as well as with π-electron
systems, like acetylene and ethylene and their derivatives. The complexes of simple triel species
with benzene were also analysed recently [25]. The intramolecular triel bonds occur in crystal
structures. For example, the interactions in hydrides and halides of 1,2-bis(dichloroboryl)benzene and
1,8-bis(dichloroboryl)naphthalene were analysed theoretically, where these systems and similar ones
were also found in crystal structures; the corresponding interactions may be classified as intramolecular
triel bonds or bifurcated triel bonds [26].

The next matter concerns different properties of different triel elements. It was discussed that
characteristics of triel bonds depend on the kind of triel centre in contact with the electron-rich site,
i.e., boron, aluminium, gallium, or other 13th group element [8]. These interactions are often very
strong, and they possess characteristics of covalent bonds. Cambridge Structural Database [27,28]
searches were performed recently, and it was found that the boron centre possesses coordination
four most often, in ~64% of all cases, while this coordination for the aluminium centre occurs for
~70% of structures [24]. Coordination three is not so common in both cases in crystal structures, with
occurrences of 13.9% and 3.3%, respectively [24]. This is because the trivalent triel centres do not obey
the octet rule and, consequently, they are very reactive, strongly interacting with Lewis bases to form
tetrahedral structures. The aim of this study is to characterise properties of triel bonds where boron
and aluminium centres are in contact with electron-rich sites. The possibility of the existence of the
double potential energy minima is also analysed here.
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2. Results and Discussion

2.1. The Strength of Triel Bonds

The calculations were performed for complexes of the BCl3, BH3, AlCl3, and AlH3 species acting
as the Lewis acid units with the following Lewis bases: NCH, N2, NH3, and Cl− anion. Figure 1 and
Scheme 1 present a few examples of systems analysed here.
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Figure 2. presents maps of the electrostatic potential (EP) for the molecular surfaces of Lewis
acid units characterised by the electron density of 0.001 au. One can see regions of positive EP at
the triel centres that correspond to the π-holes; values of the maximum EP are also presented. These
positive EPs at π-holes determine the Lewis acid properties of triel centres that may be connected
with electron-rich sites. The EP value is greater for trihydride than for the corresponding trichloride;
moreover, EP is greater at the aluminium centre than at the boron centre of the corresponding species.
The lowest maximum value of EP for the BCl3 species may be explained by the influence of chlorine
substituents on the boron centre. However, there is no clear dependence of the EP value on the strength
of the corresponding triel bond, as results discussed further here show. Thus, this means that not only
electrostatic forces determine the strength of these interactions.
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minimum negative ones (red).

The energetic parameters of complexes linked by triel bonds and analysed here are presented
in Table 1. The interaction and binding energies, Eint and Ebin [29], respectively, are included, as
well as the deformation energy, Edef [30], and the basis set superposition error correction, BSSE [31].
The interaction energy is the difference between the energy of the complex and the sum of energies of
interacting units with their geometries taken from the geometry of the complex. One may say that
it describes the strength of interaction of the link in complex. In the binding energy, the energies
of the interacting units correspond to their geometries optimised separately. In such a way, Ebin

takes into account the deformation of these units resulting from the complexation, Ebin = Eint + Edef.
The latter term, the deformation energy, may be understood as “the energetic cost” of the complex
formation. There are systems where Eint is negative, indicating the local stabilising interaction, while
Ebin is positive, showing that the formation of the complex is not energetically preferred [32]; this may
correspond to an endothermic reaction. This is not a case for complexes analysed here, where both
interaction and binding energies are negative for all cases (Table 1).

There is a sub-group of complexes analysed here, with anions being products of interactions
between the trivalent triel species and the chloride anion. The large −Eint and −Ebin values indicate that
they are stable systems with interactions corresponding to exothermic reactions. Large deformation
energies are observed for these anionic systems. In the BCl4− anion, this energy is close to 40 kcal/mol.
One can see that the formation of these anions leads to great deformations of geometries of interacting
units where the planar trichlorides and trihydrides are transformed into the tetrahedral structures.
For example, the BCl4− (see Scheme 1) and AlCl4− anions are characterised by the Cl–B/Al–Cl angle
of 109.5◦ as for methane and other ideal tetrahedral species. The corresponding H–B/Al–Cl angle for
the BH3Cl− and AlH3Cl− anions is equal to 106.5◦ and 107.1◦, respectively (Table 2). These anions,
being the result of interaction of trivalent B and Al species with chloride, are stable tetravalent systems
where the triel centre obeys the octet rule.
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Table 1. The energetic characteristics of complexes analysed (in kcal/mol), the interaction and binding
energy (Eint and Ebin, respectively), the deformation energy (Edef), and the basis set superposition error
(BSSE); a and b superscripts stand for complexes linked by weak and strong triel bonds, respectively.

Complex Ebin Eint BSSE Edef

BCl3···NCH a
−3.2 −3.5 0.8 0.3

BCl3···NCH b −3.8 −23.6 2.5 19.8
BCl3···N2

a
−1.5 −1.5 0.6 0.0

BCl3···NH3
b −26.7 −50.4 2.7 23.6

BCl4− b −45.6 −84.9 2.8 39.2
BH3···NCH b −18.6 −30.4 1.2 11.8

BH3···N2
b −6.1 −14.2 1.3 8.1

BH3···NH3
b −30.8 −44.0 1.1 13.2

BH3Cl− b −34.1 −50.9 1.7 16.8
AlCl3···NCH b −23.8 −29.5 1.5 5.7

AlCl3···N2
a

−7.0 −9.0 1.3 2.0
AlCl3···NH3

b −38.8 −45.7 1.6 6.9
AlCl4− b −76.0 −98.5 1.7 22.5

AlH3···NCH b −17.7 −20.6 0.7 2.9
AlH3···N2

a
−5.8 −6.5 0.7 0.7

AlH3···NH3
b −28.7 −32.8 0.6 4.1

AlH3Cl− b −52.2 −66.6 1.1 14.4

Table 2. The geometrical and the Natural Bond Orbital (NBO) parameters; B/Al···N/Cl is the distance
between the triel centre and the centre of the Lewis base unit (in Å), α-angle (in degrees) is defined in
Scheme 1, Ch-shift is the electron charge shift from the Lewis base unit to the Lewis acid that results
from complexation (au), while B/Al is the charge (in au) of the triel centre in the complex,1 and Pol-B/Al
is the percentage of the electron density of the B/Al···N/Cl bond orbital at the triel centre; a and b
superscripts stand for complexes linked by weak and strong triel bonds, respectively.

Complex B/Al···N/Cl α-angle Ch-shift B/Al Pol-B/Al

BCl3···NCH a 2.817 91.7 −0.012 0.344 -
BCl3···NCH b 1.628 104.0 −0.292 0.265 22.1

BCl3···N2
a 3.083 90.4 −0.005 0.320 -

BCl3···NH3
b 1.614 105.0 −0.411 0.312 22.8

BCl4− b 1.862 109.5 −0.690 0.238 30.4
BH3···NCH b 1.582 103.9 −0.260 −0.275 77.5

BH3···N2
b 1.622 101.6 −0.226 −0.287 21.1

BH3···NH3
b 1.652 104.7 −0.396 −0.234 79.4

BH3Cl− b 1.968 106.5 −0.549 −0.289 74.5
AlCl3···NCH b 2.024 100.0 −0.126 1.327 90.9

AlCl3···N2
a 2.213 96.1 −0.099 1.297 92.5

AlCl3···NH3
b 1.999 100.8 −0.186 1.325 90.4

AlCl4− b 2.164 109.5 −0.440 1.240 83.5
AlH3···NCH b 2.099 97.7 −0.107 0.903 91.5

AlH3···N2
a 2.290 93.8 −0.114 0.916 93.5

AlH3···NH3
b 2.071 99.2 −0.179 0.899 8.9

AlH3Cl− b 2.255 107.1 −0.376 0.822 15.1
1 Charges of triel centres in isolated Lewis acid units: BCl3 + 0.312 au, BH3 + 0.299 au, AlCl3 + 1.400 au, AlH3 +
1.125 au.

Table 1 shows that other, neutral complexes are characterised by a broad spectrum of interactions,
from −Eint amounting to 1.5 kcal/mol for the BCl3···N2 complex, to 50.4 kcal/mol for the BCl3···NH3 one.
The deformation energy for neutral complexes is greater for stronger interactions. For the BCl3···NH3

complex, the Edef value amounts 23.6 kcal/mol. For the very weak interaction in the BCl3···N2 complex,
Edef is negligible, equal to 0.02 kcal/mol, while, for another weak interaction in the AlH3···N2 complex,
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it amounts to 0.7 kcal/mol. The complexes linked by weak interactions are marked in all tables by
superscript a, while those classified as connected by strong interactions are marked by superscript b.
However, there is no sharp border between strong and weak interactions, and the division proposed
here is rather contractual. These relationships between the deformation energy and the parameters
describing strength of interaction were observed earlier for complexes linked by triel bonds [10,24].
The BSSE correction is located in the range 1–2 kcal/mol for the majority of systems considered here;
for a few boron complexes, it is greater than 2 kcal/mol, while, for a few aluminium species, it is lower
than 1 kcal/mol.

There are two configurations of the BCl3···NCH complex, characterised by the energies of
interaction amounting to −23.6 kcal/mol and −3.5 kcal/mol with the corresponding B···N distances of
1.628 Å and 2.817 Å, respectively (Table 2). However, the binding energies of these two configurations
are almost equal since, for that characterised by the shorter B···N distance, the complexation is connected
with great changes of geometries of interacting units. The Cl–B–N angle amounts here to 104◦, and
the deformation energy is equal to 19.8 kcal/mol. For the configuration with the longer B···N distance,
these values are equal to 91.7◦ and 0.3 kcal/mol, respectively.

The angle mentioned above is designated as α hereinafter; it is between the Cl/H–B/Al bond
of the Lewis acid unit and the B/Al···N/Cl intermolecular distance (Scheme 1). In the case of strong
interactions, complexes are close to the tetrahedron structure, while, in the case of weak interactions,
the Lewis acid unit remains planar, or nearly so, and the α angle defined above is equal or close to 90◦.
For two configurations of the BCl3···NCH complex, one of them is close to the tetrahedral structure
and the other one is close to the trigonal pyramid with the Lewis acid unit close to the planarity.

The α angles are collected in Table 2, while the intermolecular distances are also included there,
as well as the selected the Natural Bond Orbital (NBO) [33,34] parameters. If one refers to the
consistent van der Waals radii proposed by Truhlar and co-workers (N—1.55 Å, Cl—1.75 Å, B—1.92 Å,
Al—1.84 Å) [35], all intermolecular distances are shorter than the corresponding sum of van der Waals
radii. However, the term “intermolecular” should be used with caution since, for the tetrahedral
anionic species, all links to the triel centre possess characteristics of covalent bonds. The stability of
the similar anion, BF4

−, was discussed recently [36]. The number of structures containing the BF4
−

anion amounts to 16,088 according to search performed through the Cambridge Structural Database
(CSD updates up to March 2020). The search performed here for the same version of CSD to find
BCl4− ions shows only 36 crystal structures. However, there are no structures containing BCl3 neutral
species. It was pointed out that trigonal boron trihalides occur only in the gas phase [37]; it seems they
are very reactive possessing strong Lewis acid properties, and they react with nucleophiles in more
condensed phases.

The electron charge shift from the Lewis base to the Lewis acid unit that results from complexation
calculated within the NBO approach is included in Table 2. One can see that greater electron charge
shifts are observed for stronger interactions. The greatest shifts between −0.38 au and −0.69 au occur
for anionic complexes, as well as for the BCl3···NH3 and BH3···NH3 complexes, while the smallest ones,
lower than −0.01 au, occur for complexes linked by the weakest interactions, such as the BCl3···N2

complex and the BCl3···NCH configuration characterised by the longer B···N distance. Table 2 presents
the atomic charge of the Lewis acid centre, boron, and aluminium. For all complexes analysed, their
formation leads to this charge decrease, up to negative values for the boron centre in the BH3 complexes.
There are only two exceptions to the above rule; for the weakest interactions in the BCl3···N2 complex
and in one of the BCl3···NCH configurations, the complexation leads to the increase of the positive
charge of the boron centre. The Lewis acid properties of the triel centres are supported by the positive
electrostatic potentials (EPs) at their surfaces that are related to the above-mentioned π-holes; the
positive EPs for simple species of boron and other triel elements were analysed in former studies in
detail [8–10,38].

It is worth recalling that, for the latter two cases of weakest interactions, the smallest α-angles
occur; thus, the BCl3 part of the complex is close to the planarity. For all remaining complexes, the
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NBO approach detects the σ-bond orbital between the boron or aluminium centre and the nitrogen or
chlorine Lewis base site. The polarisation of the latter link is shown in Table 2. It is understood as
the percentage of the electron density at the triel (B or Al) centre. One can see that there is no clear
tendency here. The greatest concentrations of the electron density at the triel centre occur for the
AlCl3 complexes, as well as for the AlH3···N2 and AlH3···NCH complexes, above 90% (except of the
AlCl4− complex where it amounts to 83.5%). In the case of AlH3···NH3 and AlH3Cl−, the polarisation
is equal to 8.5% and 15.1%, respectively, which means that the electron density for the Al–N and
Al–Cl links, respectively, is accumulated mainly at nitrogen and chlorine centres. The analysis of these
intermolecular links that may be classified as triel bonds, based on results collected in Tables 1 and 2,
shows that their properties for aluminium and boron centres differ.

2.2. Double Minima for Triel–Lewis Base Potential Energy Curves

It was mentioned earlier here that there are examples of complexes of simple boron species that are
characterised by two configurations corresponding to energetic minima, i.e., by the double minimum
of potential energy [19–22,38]. This also concerns simple moieties of elements of the fourth and 14th
groups [23]. In the case of triel species, two configurations were discussed for the BCl3···CH3CN and
BF3···CH3CN complexes; however, in the latter case, one of the potential energy minima is not well
separated [20–22]. Two configurations were shortly discussed recently for the BCl3···NCH complex,
and two local energy minima were also found for the BBr3···NCH and BI3···NCH complexes [38]. It was
concluded that the existence of two configurations in simple triel species is the result of the balance of
interaction energy terms, and that Pauli repulsion plays a crucial role [19]. In a more recent study, it
was discussed that the double minimum results from the balance of electrostatic interactions between
the BX3 (X = Cl, Br, I) and HCN units [38].

Potential energy curves were constructed for all complexes analysed here, and the double
minimum was found only in one case, i.e., for the BCl3···NCH complex. This curve and other potential
energy curves for the three additional complexes are presented in Figure 3. Because of differences
in the scale for each complex considered, the curves for BH3···NCH, AlCl3···NCH, and AlH3···NCH
complexes are restricted only to the proximity of energetic minima. Each of the curve is “normalised”
separately. This means that, for each complex, the differences between their energies and the energetic
minimum are plotted versus the corresponding Al/B···N distances.
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It seems that the existence of two potential energy minima for the BCl3···NCH complex results
from the influence of chlorine substituents that obscure the boron centre. One may consider that
the interaction between the BCl3 and NCH units contains the electrostatic interactions between the
nitrogen centre with the boron centre and with the chlorine substituents. The first N···B interaction is
attractive, while the N···Cl interactions are repulsive. This is the electrostatic balance mentioned above
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here. In contrast, the chlorine substituents cannot obscure the aluminium centre that is characterised
by a greater volume than the boron one. However, it seems that the transfer from one configuration
characterised by the shallow minimum into the configuration corresponding to the deeper one in the
BCl3···NCH complex may be easily forced, for example, by crystal structure forces, since the potential
barrier height for such a transfer amounts to 1.6 kcal/mol only.

Figure 4 presents the potential energy curve only for the BCl3···NCH complex. However, the
potential energy curve in Figure 4 is more flattened than the corresponding one in Figure 3 because of
scale reasons. Another curve presented in Figure 4 also presents energies of this complex for various
B···N distances; however, the rigid HCN and BCl3 moieties are considered as possessing geometries
corresponding to the isolated species in their energetic minima. This means that these geometries
do not change for different B···N distances. This curve is normalised according to the global energy
minimum of the complex. One can recall that, in the case of the curve with two minima for each
B···N distance, the other geometrical parameters are relaxed (optimised). One can see (Figure 4) that,
for the rigid interacting units, a monotonic increase of energy is observed with the shortening of the
B···N distance. This means that the increase of repulsion between chlorine centres and nitrogen is not
compensated for by the boron···nitrogen attraction. In the case of “relaxed” geometries, the α-angle
increases with the shortening of the B···N distance. The latter results in weaker Cl···N repulsions than
for “the rigid case”. These repulsions for relaxed geometries are compensated for by the B···N attraction,
resulting in the occurrence of the second deeper potential energy well for the B···N distance equal
to 1.628 Å (see Table 2). However, other interaction energy terms should also be taken into account.
The Pauli repulsion is weaker for relaxed geometries than for the rigid interacting species, whereas the
orbital energy related to the electron charge shifts is also more important for shorter B···N distances.
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2.3. Covalency of Triel Bonds

The former results discussed here show that the majority of triel bonds possess characteristics of
covalent bonds. This is in agreement with the experimental data since the X-ray and neutron diffraction
results concerning crystal structures indicate that coordination four occurs most often for the triel
centres [24]; in other words, the trivalent triel centres are very reactive and they interact strongly
with nucleophiles.

Quantum Theory of Atoms in Molecules (QTAIM) [39,40] calculations were performed here at the
level corresponding to the optimised geometries, MP2/aug-cc-pVTZ - the second-order Møller–Plesset
perturbation theory (MP2) calculations with the aug-cc-pVTZ basis set. Table 3 shows the characteristics
of Al/B···N/Cl bond critical points (BCPs) for links between the trivalent triel units and the Lewis base
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species. The electron density at the corresponding BCP, ρBCP, is situated between 0.006 au for the
BCl3···N2 complex and 0.131 au for the BCl3···NH3 complex. The first value is typical for weak van der
Waals interactions, while the latter one is typical for covalent bonds that are characterised by values of
~0.1 au [39,40]. Few complexes analysed in this study possess ρBCP values outweighing 0.1 au.

Table 3. The Quantum Theory of Atoms in Molecules (QTAIM) parameters (in au), the electron density
at the bond critical point (BCP) (ρBCP), the Laplacian of the electron density (∇2ρBCP), and the total
electron energy density at BCP (HBCP); a and b superscripts stand for complexes linked by weak and
strong triel bonds, respectively.

Complex ρBCP ∇
2ρBCP HBCP

BCl3···NCH a 0.011 0.035 0.001
BCl3···NCH b 0.106 0.403 −0.070

BCl3···N2
a 0.006 0.022 0.001

BCl3···NH3
b 0.131 0.256 −0.111

BCl4− b 0.123 −0.055 −0.116
BH3···NCH b 0.105 0.662 −0.056

BH3···N2
b 0.088 0.652 −0.038

BH3···NH3
b 0.104 0.444 −0.069

BH3Cl− b 0.084 0.132 −0.065
AlCl3···NCH b 0.048 0.310 0.002

AlCl3···N2
a 0.028 0.164 0.003

AlCl3···NH3
b 0.060 0.340 −0.005

AlCl4− b 0.063 0.292 −0.011
AlH3···NCH b 0.038 0.244 0.004

AlH3···N2
a 0.023 0.125 0.003

AlH3···NH3
b 0.048 0.274 0.000

AlH3Cl− b 0.050 0.226 −0.006

The typical QTAIM characteristic of the covalent character of the atom–atom link is the negative
value of the Laplacian of electron density at the corresponding BCP, ∇2ρBCP. This negative value
that indicates the concentration of the electron density in the interatomic region is observed only for
the BCl4− anion. However, it is often assumed that, even for positive ∇2ρBCP values, the negative
value of the total electron energy density at the BCP, HBCP, confirms the partly covalent character of
interaction [41–43]. The majority of the links presented in Table 3 are characterised by the negative
HBCP values. The positive HBCP values correspond to the weakest interactions. However, there is
no correlation between binding or interaction energy and the QTAIM characteristics: ρBCP, ∇2ρBCP,
or HBCP. For example, the linear correlation coefficient for the dependence between the ρBCP and
interaction energy, Eint, is equal to 0.517. The ρBCP parameter is related to the part of the interaction
connected with its covalent character and not to the total interaction energy [44]. It seems that, for the
part of complexes analysed here, the electrostatic interaction is more important than the term related
to covalency—the orbital energy. For example, for the BCl3···NH3 complex mentioned above, the
ρBCP value amounts to 0.131 au, while, for the AlCl3···NH3 complex, it is equal to 0.060 au (Table 3).
The interaction and binding energies for these systems are very close to each other (Table 1). However,
the electron density at the BCP concerns the covalent character of interaction that is greater for the
boron system than for the aluminium one.

The α-parameter presented earlier here (Scheme 1) also expresses the covalent character of the
interaction since it informs about the transformation from the triel planar trivalent system into the
tetrahedral structure. Figure 5 shows the excellent exponential correlation between α and ρBCP.
The anionic systems significantly differing from the remaining complexes are excluded from this
dependence; they are presented in this figure only for comparison. The results of the decomposition
of interaction energies are shown in Table 4. The decomposition was performed for the density
functional theory (DFT) calculations. However, there is an excellent agreement between the DFT
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and MP2/aug-cc-pVTZ results; for example, a linear correlation between DFT and MP2 interaction
energies is observed, R2 = 0.981. Thus, the results of decomposition are well fitted to the MP2 results
of calculations discussed here.
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Table 4. The interaction energy terms (in kcal/mol) for systems analysed here (see Computational Details
section for description and designations); a and b superscripts stand for complexes linked by weak and
strong triel bonds, respectively.

Complex ∆Eint ∆EPauli ∆Eelstat ∆Eorb ∆Edisp

BCl3···NCH a
−1.9 8.5 −5.8 −2.6 −2.1

BCl3···NCH b −18.5 168.9 −86.9 −98.7 −1.9
BCl3···N2

a
−1.0 3.7 −1.7 −1.3 −1.7

BCl3···NH3
b −43.8 202.8 −125.8 −117.7 −3.1

BCl4− b −80.9 186.8 −126.6 −140.2 −0.9
BH3···NCH b −36.7 109.9 −59.3 −86.2 −1.1

BH3···N2
b −23.6 93.6 −42.3 −73.8 −1.1

BH3···NH3
b −45.9 110.7 −78.1 −76.7 −1.9

BH3Cl− b −53.8 88.9 −63.1 −78.8 −0.9
AlCl3···NCH b −32.7 57.4 −47.6 −40.0 −2.6

AlCl3···N2
a

−10.1 35.2 −20.5 −22.4 −2.3
AlCl3···NH3

b −43.7 82.1 −78.7 −43.6 −3.6
AlCl4− b −95.1 93.6 −113.2 −73.8 −1.6

AlH3···NCH b −21.0 41.9 −34.3 −27.2 −1.5
AlH3···N2

a
−8.5 22.3 −13.7 −16.0 −1.2

AlH3···NH3
b −32.7 59.5 −58.6 −31.2 −2.3

AlH3Cl− b −65.5 67.1 −81.2 −50.8 −0.7

Let us return to the BCl3···NH3 and AlCl3···NH3 pair of complexes discussed above here. They are
characterised by a similar strength of interaction; however, for the former one, the ρBCP is over two
times greater than for the latter complex. A negative HBCP is observed for the former complex and it is
also negative for the latter one, but the latter value is very close to zero. This may suggest that, for the
boron moiety, the B···N contact is covalent in nature, at least partly, while the Al···N link for the latter
complex is electrostatic in nature. This also supports the suggestion of Gillespie and Popelier [44] that
electron density at the bond critical point expresses the covalent nature of interaction. Furthermore, for
the aluminium complex, the electrostatic interaction energy term is almost two times greater than the
orbital energy, which concerns the absolute values (Table 4). In the case of the BCl3···NH3 complex,
another situation is observed, where orbital and electrostatic energies are comparable to each other.
The results of Table 4 show that there is no specific difference between boron and aluminium complexes
or between the triel centres connected with chlorine or hydrogen substituents. One can also see that
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the dispersion energy is much less important with respect to stabilising the systems considered than
the electrostatic and orbital terms; this is observed for all complexes analysed.

Figure 6 presents linear correlations between the electron density at the B/Al···N/Cl BCP, ρBCP, and
two terms of the interaction energy resulting from its partitioning: Pauli repulsion (∆EPauli) and orbital
energy (∆Eorb) (see Computational Details section). These are good correlations despite them concerning
the sample of complexes containing various kinds of interactions. These two terms, ∆EPauli and ∆Eorb,
are often related to the covalent character of interaction [43], especially the orbital energy, which is
connected with the electron charge shifts resulting from complexation. It was pointed out in several
studies that the dominance of the ∆Eorb term testifies to the covalent character of interaction [43]. It is
worth mentioning that ρBCP does not correlate with ∆Eelstat, with the ∆Edisp term, or with the total
interaction energy, as mentioned above.
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3. Conclusions

The simple complexes of boron and aluminium trichlorides and trihydrides with Lewis base
units such as hydrogen cyanide, molecular nitrogen, ammonia, and chloride anion were analysed.
These complexes are linked through interactions that were named in recent studies as triel bonds.
The majority of interactions analysed here are classified as strong ones that possess characteristics of
covalent bonds. For the corresponding complexes of the latter interactions, the complexation leads
to the transformation of the planar trigonal trichlorides and trihydrides into structures containing a
tetrahedral triel centre (boron or aluminium). In particular, such a situation occurs for complexes of
the chloride anion, while perfect tetrahedron structures are observed for BCl4− and AlCl4− species.

In a few cases, weak triel bonds are observed, especially for the BCl3···N2 complex and one of
configurations of the BCl3···NCH complex. The interactions linking the AlCl3···N2 and AlH3···N2

complexes may also be classified as weak ones. For these weak interactions, the Lewis acid unit, BCl3,
AlCl3, or AlH3, retains almost a flat structure in the complex.

Different parameters may describe the character of triel bonds. Among numerous findings
presented in this study, it is worth recalling that the angle parameter, α, describes the transformation
from the trigonal planar structure into the tetrahedron; this parameter corresponds to the strength of
interaction. It is discussed here that the electron density at the BCP corresponds rather to the part of the
energy of interaction that is related to the electron charge shifts, and not to the total interaction energy.
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4. Materials and Methods

Computational Details

The calculations were carried out with the use of Gaussian16 set of codes [45]. These are the
second-order Møller–Plesset perturbation theory (MP2) [46] calculations with the aug-cc-pVTZ basis
set [47]. Frequency calculations were performed at the same MP2/aug-cc-pVTZ level to confirm that
the optimised structures of complexes correspond to the energetic minima.

The Quantum Theory of Atoms in Molecules (QTAIM) [39,40] was also used to analyse bond
critical points (BCPs) of the intermolecular B/Al···N and B/Al···Cl contacts. The AIMAll program [48]
was applied to carry out QTAIM calculations, as well as to calculate the electrostatic potentials (EPs).
The analysis of the electron charge density shifts, being the result of complexation, was performed with
the use of the Natural Bond Orbital (NBO) method [33,34]. The NBO calculations were performed at
the BP86-D3/TZ2P level; i.e., with the use of the BP86 functional [49,50] in conjunction with the Grimme
dispersion corrections (BP86-D3) [51] and the uncontracted Slater-type orbitals (STOs) as basis functions
with triple-ζ quality for all elements [52]. The same BP86-D3/TZ2P level was applied to perform
decomposition energy calculations. The NBO [53] and decomposition energy [54,55] calculations
were carried out with the use of the ADF2017 program package [55,56] and using geometries of
complexes optimised previously at the MP2/aug-cc-pVTZ level. The total interaction energy for the
ADF partitioning is composed according to equation given below.

∆Eint = ∆Eelstat + ∆EPauli + ∆Eorb + ∆Edisp. (1)

The term ∆Eelstat corresponds to the quasi-classical electrostatic interaction between the
unperturbed charge distributions of atoms; it is usually attractive (negative). The Pauli repulsion,
∆EPauli, is the energy change associated with the transformation from the superposition of the
unperturbed electron densities of the isolated fragments to the wave function that properly obeys
the Pauli principle through antisymmetrisation and renormalisation of the product wave function.
This repulsive term (positive) comprises the destabilising interactions between electrons of the same
spin on either fragment. The orbital interaction, ∆Eorb, corresponds to the charge transfer and
polarisation effects.
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