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The use of attenuated bacteria as cancer therapeutic tools has garnered increasing 
scientific interest over the past 10  years. This is largely due to the development of 
bacterial strains that maintain good anti-tumor efficacy, but with reduced potential to 
cause toxicities to the host. Because of its ability to replicate in viable as well as necrotic 
tissue, cancer therapy using attenuated strains of facultative anaerobic bacteria, such 
as Salmonella, has several advantages over standard treatment modalities, including 
chemotherapy and radiotherapy. Despite some findings suggesting that it may operate 
through a direct cytotoxic effect against cancer cells, there is accumulating evidence 
demonstrating that bacterial therapy acts by modulating cells of the immune system to 
counter the growth of the tumor. Herein, we review the experimental evidence underlying 
the success of bacterial immunotherapy against cancer and highlight the cellular and 
molecular alterations in the peripheral immune system and within the tumor microen-
vironment that have been reported following different forms of bacterial therapy. Our 
improved understanding of these mechanisms should greatly aid in the translational 
application of bacterial therapy to cancer patients.

Keywords: bacterial therapy, attenuated Salmonella, cancer immunotherapy, tumor microenvironment, tumor-
infiltrating leukocytes, myeloid-derived suppressor cells

The practice of using bacteria for cancer therapy dates back to the nineteenth century. In 1893, 
William Coley, a New York-based physician, prepared a filtered mixture of bacteria and bacterial 
lysates, composed of Streptococcus pyogenes and Bacillus prodigiosus (now called Serratia marces-
cens) and called it “Coley’s Toxin.” He found that, in some cases, the tumors regress when Coley’s 
toxin is injected into the tumors (1). Later on he developed a safe vaccine, a mixture of heat killed  
S. pyrogenes and Seretia marcescenes, to successfully treat sarcoma, carcinoma, lymphoma, melanoma, 
and myeloma (2). These procedures practiced by Coley formed the basis of the recent advances in 
the cancer immunotherapy using attenuated bacterial strains. Today, the most common species of 
bacteria being used as immunotherapeutic agents are Clostridium novyi (3, 4), Listeria monocy-
togenes (5, 6), and Salmonella enterica serovar Typhimurium (hereafter referred to as Salmonella 
typhimurium) (6–10). Infection of poorly antigenic tumors with facultative anaerobic bacteria is 
thought to increase their antigenicity. Bacterial infections also alter the function of different cellular 
components of the immune system, such as CD4+ and CD8+ T cells, myeloid-derived suppressor 
cells (MDSCs), regulatory T cells (Tregs), tumor-associated macrophages (TAMs), and their activa-
tion. Many conserved bacterial ligands are agonists for innate immune system receptors, such as 
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toll-like receptors (TLR), and upon binding, initiate an intracel-
lular signaling cascade leading to the production of proinflam-
matory cytokines. Moreover, there is evidence that some bacterial 
components, such as exotoxins, may initiate anti-tumor activities 
not only by indirect activation of the immune system, but also 
by their direct action on tumor cells (11, 12). In addition to their 
immunotherapeutic properties against diverse types of cancers, 
Salmonella and Listeria are also used as vectors for delivering 
immunogenic tumor antigens to the host. The use of bacteria for 
delivering tumor antigens has been reviewed in detail elsewhere 
(13, 14). Here, we aim to review the direct effects of bacterial 
immunotherapeutic agents on different cellular components of 
the immune system.

eFFects OF BActeriAL tHerAPY  
ON MYeLOiD ceLLs

tumor-Associated Macrophages
As the tumor starts growing it gets enriched with different 
myeloid cell populations, such as MDSCs, tumor-associated 
neutrophils (TANs), TAMs, Tek tyrosine kinase receptor (TIE)-
2-expressing monocytes, and tolerogenic dendritic cells (15, 16). 
Monocytes are recruited to sites of tumor growth in response 
to chemoattractants released by tumor cells, such as colony 
stimulating factor 1 and the chemokine C-C motif chemokine 
ligand 2 (CCL2) (17), where they differentiate into macrophages. 
Usually, these are alternatively activated cells involved in tissue 
repair, also known as M2-type macrophages (18), and they 
express immunosuppressive molecules, such as arginase 1 (Arg1) 
(19) and the cytokine IL-10 (20). M2 macrophages support the 
growth and malignancy of tumors by suppressing the host’s anti-
tumor immune responses. In contrast, M1 macrophages, also 
known as classically activated or killer macrophages, express 
nitric oxide synthase (NOS2) and TNF-α and orchestrate protec-
tive anti-tumor immune responses (21, 22).

We have recently reported that treatment of mice bearing 
B16.F1 melanoma with an attenuated strain of S. typhimurium 
led to maturation of intratumoral myeloid cells and diminished 
their suppressive capacity, enhancing the host’s anti-tumor 
immune responses, and eventually leading to tumor regression 
(23). Multi-color flow cytometric analysis of tumor-infiltrating 
leukocytes (TILs) revealed that Salmonella induced tumor 
inhibition (Figure  1A) results in increased immune responses 
in the tumor microenvironment. This fact is evidenced by the 
significantly elevated levels of TILs in the tumors of Salmonella-
treated mice (Figures  1B,C) including both CD11b+ myeloid 
cells (Figures 1D,E) and CD4+ and CD8+ T cells (Figures 1F–I). 
Analysis of the different subpopulations of tumor-associated 
myeloid cells showed that Salmonella treatment led to a large 
increase in the proportion of cells characterized by being 
CD11b+/F4/80+/Ly6C−/Ly6G−, which are commonly known 
as TAMs (Figure  1J). Upon treatment with Salmonella, TAMs 
increase the expression of M1-type macrophage activation 
markers, such as the IFN-γ-dependent Sca-1 and MHC class II 
proteins (Figures 1K–N). Representative FACS plots of the data 
highlighting the gating strategy for untreated (Figure  1T) and 

Salmonella-treated tumors (Figure  1U) are also shown. This 
observation indicates that treatment with Salmonella skews the 
TAMs profile, reprogramming them toward proinflammatory 
functions and indicating the functional plasticity of M1/M2 
macrophages. A similar shift in the phenotypic characteristics of 
macrophages was reported by Hong and coworkers upon intra-
tumoral injection of a recombinant, attenuated S. typhimurium 
vaccine into Her2/Neu-expressing CT26 tumors (24). Following 
the injections, the phenotype of the splenic and intratumoral 
macrophage populations was shifted from an immature to 
mature-type expressing TNFα (24). Treatment of mice bearing 
an aggressive ID8-Defb29/Vegf-A ovarian carcinoma with an 
attenuated strain of L. monocytogenes (ΔactA/ΔinlB) also resulted 
in augmented infiltration of macrophages into the tumor and in 
a shift from their M2 to M1 profile (25). These macrophages dis-
played elevated phagocytic and tumoricidal activity. Moreover, 
TAMs in the peritoneal exudates of treated mice exhibited 
increased expression of the co-stimulatory molecules CD80 and 
CD86, increased gene expression of proinflammatory cytokines, 
and downregulated transcriptional activity of suppressive effector 
molecules (25).

Dendritic cells and tANs
Of note, it was recently reported that murine or human 
melanoma cell lines infected with pathogenic L. monocytogenes 
(LMWT), transformed these malignant melanocytes into profes-
sional antigen-presenting cells (APCs) with a phenotype and 
function analogous to those of skin DCs (5). These infected 
melanoma cells expressed phenotypic markers, such as CD11c, 
F4/80, MHCII, CD40, and CD83 similar to mature dendritic 
cells (5). The mechanisms explaining these phenotypic changes 
by invasive pathogens, such as Salmonella, consist in their capac-
ity to stimulate TLR signaling pathways, which also enhance the 
expression of co-stimulatory molecules (e.g., CD86 and CD80) 
on APCs (26). Such events, enable APCs to strongly activate 
antigen-specific CD8 T cells and natural killer (NK) cells, which 
in turn, mediate tumor killing and regression. Most TLRs signal 
through myeloid differentiation primary response 88 (MyD88), 
an essential cytoplasmic adaptor protein that links triggering 
of TLRs and IL-1/IL-18 receptors with downstream activation 
of IL-1 receptor-associated kinases (IRAKs) and NF-κB (27). 
Treatment of MyD88-deficient mice carrying B16.F1 tumors 
with attenuated Salmonella was ineffective in regressing tumor 
growth, indicating that bacterial therapy of tumors is dependent 
on TLR-MyD88 signaling (23). These findings suggest that the 
anti-tumor effect of attenuated Salmonella is mediated through 
changes in intratumoral myeloid cells.

The effect of Salmonella immunotherapy on TANs has also 
been reported. Treatment of the mammary LM3 adenocarcinoma 
with a Salmonella typhi vaccine strain led to the activation and 
recruitment of neutrophils into the tumor site. These neutrophils 
were able to secrete TNFα, which in combination with IFNγ, 
exerted synergistic cytotoxic effects on endothelial and tumor 
cells within the tumor microenvironment (28). Recruitment of 
TANs into the tumor tissue was observed when a B-cell non-
Hodgkin lymphoma was intratumorally injected with the attenu-
ated S. typhimurium strain LVR01. This treatment elicited both 
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FiGUre 1 | Increased immunogenicity of B16.F1 melanoma tumors following intraperitonial treatment with Salmonella typhimurium strain BRD509E. Decreased 
tumor weights (A) in Salmonella-treated mice correlates with increased percentage (B) and absolute counts (c) of tumor-infiltrating leukocytes (TIL) as elucidated by 
CD45 expression and analyzed by multi-color FACS analysis of total tumor cells. Increased cellular infiltration into tumor tissue is observed for CD11b+ myeloid cells 
(D,e), CD8+ T cells (F,G), and CD4+ T cells (H,i). The increase in cellular infiltration is observed in terms of the percentage of indicated cells in the whole tumor 
(D,F,H) and in terms of absolute cell counts per gram of tumor tissue (e,G,i). Salmonella treatment also enhanced infiltration and maturation of tumor-associated 
macrophages (TAMs) (J–N) and monocytic myeloid-derived suppressor cells (MDSCs) (O–s). Percentage of CD11b+F4/80+Ly6G−Ly6C− TAMs  
(J) and CD11b+Ly6G−Ly6C+ M-MDSCs (O) among total tumor cells. The proportion of both myeloid cell types was significantly higher in Salmonella-treated tumors 
than non-treated tumors. Percentage of Sca-1-positive and Sca-1 expression level shown as mean fluorescent intensity among TAMs (K,L) and MDSCs (P,Q). 
Percentage of MHC class II-positive and MHC class II expression level among TAMs (M,N) and MDSCs (r,s). (t–U) Representative FACS plots of the data 
highlighting the gating strategy for untreated (t) and Salmonella-treated tumors (U). The gated CD11b+ cells are out of selected CD45+ cells. The analysis was 
carried out on day 12 post Salmonella administration. Asterisks indicate significant differences, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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local and systemic anti-tumoral immune responses, eventually 
leading to enhanced host survival (29). The exact cause of the 
phenotypic changes in myeloid cells during bacterial immuno-
therapy is not known. Such alterations in intratumoral myeloid 
cells have also been reported during cancer therapy using the 
parasitic protozoan Toxoplasma gondii (30, 31). It is likely that 
stimulation of TLR signaling by various bacterial components 
could account for these effects (32).

eFFects OF BActeriAL tHerAPY ON 
tUMOr-AssOciAteD LYMPHOiD ceLLs

The tumor microenvironment harbors lymphoid subpopulations, 
such as NK cells, B cells, CD4+ T cells, CD8+ T cells, and Tregs  

(15, 16). The lymphoid cells can be tumor promotive or suppres-
sive in nature. The tumor microenvironment is a critical factor 
that influences the function of these lymphoid subpopulations in 
the tumor (33).

NK cells
Natural killer cells are prototypical innate lymphoid cells able 
to recognize and eradicate tumor cells without prior antigenic 
exposure. However, immunosubversion (i.e., when the tumor 
suppresses the host immune system) as well as immunoediting 
or immunoselection (i.e., outgrowth of poorly immunogenic 
tumor-cell variants) impairs NK cell responses to tumors (34, 35). 
We have previously shown that NK cells are readily activated by 
a recombinant Salmonella strain engineered to express IL-2 (36). 
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Moreover, this recombinant strain exhibited superior anti-tumor 
activity against B16.F1 melanoma in a syngeneic tumor model, 
an activity that correlated with its capacity to induce a higher 
level of tumor cell killing in  vivo (37). In addition, Salmonella 
strains expressing IFN-γ or TNF-α have been shown to induce 
highly effective immune-potentiating anti-microbial as well as 
anti-tumoral responses (38–41). The enhanced anti-tumoral 
capacity of an engineered IFN-γ-expressing Salmonella strain 
was dependent on the activation of NK cells (41). A recent study 
reported that treatment of non-Hodgkin lymphoma-bearing 
mice with attenuated Salmonella resulted in increased expression 
of chemokines, such as Ccl2, Ccl3, and Ccl5, which are involved 
in the recruitment of NK cells, and enhanced NK cell cytotoxic 
activity against target cells (42).

cD4+ and cD8+ t cells
The anti-tumor functions of CD4 T-cell depend upon their 
specific subset (Th1, Th2, or Th17 cells) (43). Th1 cells are anti-
tumorigenic by virtue of either activating CD8 T  cells (44) or 
directly killing tumor cells by secreting TNF-α and/or IFN-γ 
(45). Th1 cells also act against tumor development by licensing 
DCs and macrophages, e.g., increasing their antigen-presenting 
potential that enable T CD8+ cells to develop a strong cytotoxic 
activity (45). On the other hand, while Th2 cells are less relevant 
to cancer pathology, Th17 cells found within the tumor micro-
environment facilitate tumor growth by the secretion of IL-17,  
a pro-angiogenic cytokine (46).

In the B16.F1 melanoma model, intraperitoneal treatment 
with attenuated Salmonella led to increased infiltration of both 
CD4+ and CD8+ T  cells into the tumor (Figures  1F–I). Both 
T cell types were increased by >threefold in terms of percentage 
within total tumor cells and in their absolute counts per weight 
of tumor tissue. CCL5 and macrophage inflammatory protein 1 
alpha, which are secreted by proinflammatory M1 macrophages, 
are known to recruit activated T cells into the tumor (47). Hence, 
this represents a mechanism by which activated macrophages 
induced by Salmonella treatment could be responsible for the 
enhanced T  cell infiltration into tumors. Several studies have 
reported similar effects as a result of administration of attenuated 
bacteria in different models. When mice bearing EL4 lymphoma 
were immunized with Salmonella typhi by injecting the bacteria 
into the tumor and the draining lymph node areas, the leukocyte 
populations in the tumor draining lymph nodes were expanded 
and tumor growth was significantly decreased (48). The tumors 
in treated mice contained significantly decreased levels of IL-10 
and this was accompanied by a reduction in the mitotic index of 
tumors, a delayed development of palpable lymph node metastases 
and, most importantly, increased survival compared to untreated 
mice. In another study, an enhancement of tumor-infiltrating 
activated CD8 T cells was observed following treatment of mice 
carrying A20 lymphoma with the attenuated S. typhimurium 
LVR-01 strain, which consequently led to a reduction in tumor 
growth (29). When the vaccine was supplemented with IL-2, 
there was an increased infiltration of CD4 and CD8 T  cells in 
the tumors. The combined treatment resulted in better control 
of tumor growth and improved animal survival significantly over 
the Salmonella vaccine alone treatment (49). This effect is similar 

to our previously reported findings demonstrating the superior 
anti-tumor activity of an IL2-expressing Salmonella strain in 
the melanoma model (37). Thus, treatment of the tumors with 
Salmonella alone or in combination with interleukins potenti-
ates the tumoricidal activity of tumor-infiltrating lymphocytes. 
Moreover, there is direct evidence that cytokine-expressing 
Salmonella strains can strongly modulate macrophage activation 
and function (40). Using CD4 and CD8 T cell-deficient mice, Lee 
and coworkers showed that Salmonella treatment of Lewis lung 
carcinoma (LL2)-bearing mice was relatively less efficient in the 
absence of T cells (34–42% inhibition in tumor growth compared 
to 50% in WT mice) (50). Systemic treatment with Salmonella 
induced a Th1 inflammatory response at the tumor site, which 
was accompanied by macrophage and neutrophil infiltration and 
a significant increase in IFNγ production (50). Similarly, immu-
nization of mice bearing a subcutaneous mammary tumor (LM3 
adenocarcinoma) with attenuated S. typhi in the peritumoral tis-
sue and the tumor draining lymph nodes initiated an anti-tumor 
Th1 response that was characterized by increased frequencies of 
IFNγ-secreting CD4+ and CD8+ T cells within the tumor. Treated 
mice displayed a reduced tumor growth and lung metastasis, 
and prolonged survival compared to unimmunized mice (28). 
In another study, when mice bearing Her2/neu-expressing 
CT-26 tumors were injected with a recombinant attenuated  
S. typhimurium vaccine intratumorally, a significant reduction in 
tumor growth was evidenced. This effect on tumor growth was 
partially lost upon depletion of CD8 T  cells, suggesting a role 
for these cells in Salmonella-mediated tumor suppression (24). 
Using the attenuated S. typhimurium strain A1-R, which was 
originally derived by in vivo passaging through tumor tissue (51), 
Murakami and colleagues recently demonstrated its efficacy in 
promoting CD8 T cell infiltration and tumor growth arrest in a 
syngeneic pancreatic-cancer orthotopic mouse model (52). The 
immunotherapeutic effect of L. monocytogenes is also partially 
mediated by cytotoxic T  lymphocytes (CTLs). Immunization 
of mice carrying triple negative mammary tumors (4T1 cells) 
with Listeria led to direct killing of tumor cells by the bacteria, 
eventually leading to the eradication of the primary tumor and 
all the metastases. Depletion of CD8 T  cells partially restored 
tumor growth in these mice, indicating that CTLs also play an 
important role in Listeria-mediated tumor therapy (53). Finally, 
treatment of ovarian carcinoma with attenuated strain of the 
parasite T. gondii (CPS) led to an increase in CD4+ and CD8+ 
T cell infiltration into the tumor microenvironment, activation 
of tumor-resident T  cells, and enhanced IFN-γ production by 
T cell populations (31). Taken together, these data highlight the 
immune-potentiating, anti-tumor effects of bacterial therapy in 
diverse cancer models.

Bacterial immunotherapeutic agents can induce memory 
T cell responses as well. Treatment of mice harboring established 
hepatic metastases of colorectal cancers with an attenuated strain 
of L. monocytogenes expressing a tumor-associated antigen led to 
a strong initial tumor specific CD8 T cell response that success-
fully treated 90% of the animals (54). It also generated central and 
effector memory T cells that protected the mice against tumor 
re-challenge. Additionally, the treatment led to a decrease in the 
expression of PD-1, an immune inhibitory molecule expressed 
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on tumor-infiltrating lymphocytes, demonstrating the efficacy of 
this vaccine to down modulate the immunosuppressive tumor 
microenvironment (54).

Gamma-Delta (γδ) t cells
Gamma-delta T cells are a subset of T lymphocytes characterized 
by the presence of a surface antigen recognition complex type 2. 
Activated γδ T cells exhibit potent anti-tumor activity by releas-
ing copious amounts of IFN-γ and TNF-α (55). Mycobacterial 
immunotherapy using Mycobacterium vaccae, M. obuense, 
or BCG induced the proliferation and activation of γδ T  cells 
(56). Activated γδ T  cells showed enhanced effector responses 
including upregulated granzyme expression and production of 
Th1 cytokines, such as IFN-γ and TNF-α (56). When Listeria 
moncytogenes was used as immunotherapeutic agent against cer-
vical cancer in mice, increased levels of intratumoral IL-17 and 
IL-17-positive γδ T  cells were observed (57). However, despite 
the activation of γδ T cells by Listeria treatment in tumor-bearing 
mice, tumor progression was unaltered in γδ T  cell-deficient 
mice. Instead, Listeria-induced anti-tumor activity was critically 
dependent on αβ T cells. This indicated that, at least in this cervi-
cal cancer model, Listeria immunotherapy-associated γδ T cell 
activation is of secondary importance (57).

eFFect OF BActeriAL tHerAPY ON 
iMMUNOsUPPressive ceLLs

Myeloid-Derived suppressor cells
Myeloid-derived suppressor cells, the immature myeloid cells 
present in the bone marrow, peripheral blood, and spleen under 
normal physiological conditions, can undergo tremendous 
expansion in various pathological conditions, such as cancers 
and autoimmune diseases (58). Recruitment of MDSCs and 
Tregs into the tumor microenvironment helps tumors to evade 
the host immunosurveillance system. In cancers, these cells sup-
press CD4 and CD8 T cell-mediated anti-tumor responses by the 
nitration of the T cell receptors (59). Hence, MDSCs are regarded 
as one of the most important targets for cancer therapy. Several 
drugs that differentiate MDSCs into mature phenotypes are in 
use for cancer therapeutic purposes.

Recently, we demonstrated that treatment of B16.F1 mela-
noma with an attenuated strain of S. typhimurium leads to an 
increase in the CD11b+Gr1+ myeloid cells in both spleen and 
tumor (23). Subsequent to Salmonella treatment, intratumoral 
myeloid cells exhibited a significant loss in their immunosuppres-
sive capacity. Interestingly, this phenotype shift was not observed 
among the splenic myeloid cells, suggesting that the splenic and 
intratumoral myeloid cells respond differentially to Salmonella 
treatment. Moreover, we observed an increase in the expression 
of co-stimulatory molecules, such as CD40, CD80, and CD86 on 
myeloid cells in the treated group of mice, suggesting that the 
myeloid cells shifted from an immature to mature phenotype 
following Salmonella inoculation (23). Further analysis of intra-
tumoral MDSCs indicated that Salmonella treatment resulted in a 
significant increase in the proportion of M-MDSCs (Figure 1O). 
Furthermore, these cells increased their expression of the 

differentiation markers Sca-1 (Figures 1P,Q) and MHC class II 
(Figures 1R,S), indicative of their activity level and maturation 
status. This suggested that Salmonella treatment triggered the 
differentiation of intratumoral MDSCs, causing a reduction in 
their immunosuppressive properties.

Wallecha and coworkers demonstrated that cancer immuno-
therapy using L. monocytogenes-LLO (Lm-LLO) diminished the 
suppressive functions of MDSCs and Tregs in the tumor microen-
vironment (60). This diminished suppressive function was linked 
to a reduction in the expression of Arg1 by MDSCs and IL-10 
by Tregs (60). While the former decreases the expression of the 
T-cell receptor CD3ς chain (19), the latter is a pleiotropic immu-
nosuppressive cytokine (61). When used as an immunothera-
peutic vaccine to treat 4T1 tumors in young and old aged mice,  
L. monocytogenes-infected MDSCs in the blood and the primary 
tumors causing a reduction in their number and converting them 
into immune-stimulating, IL12-producing macrophages. This 
was accompanied by a dramatic reduction in tumor metastasis 
and tumor growth (62). A recent study by Zhang and colleagues 
demonstrated the capacity of bacterial lipoprotein (BLP), a 
TLR1/2 agonist, to decrease intratumoral MDSC accumulation 
while allowing for infiltration by IFNγ-expressing CD8+ T cells 
(63). Using a syngeneic glioma mouse model, the authors showed 
that mice treated with a systemic injection of BLP and adoptively 
transferred antigen-specific T cells had improved survival. The 
alterations in MDSC and CD8+ T cells ratios within the tumor 
microenvironment were associated with increased expression of 
CXCL10, a chemokine that induces CD8+ T cell migration, and 
a reduction in the expression of CCL2, known to regulate the 
migration of MDSC (63).

regulatory t cells
Regulatory T  cells are implicated in autoimmune diseases and 
cancers. Under healthy conditions, CD4+CD25+Foxp3+ Tregs 
function to prevent immune reactions to autoantigens. However, 
these cells are known to attenuate anti-tumor immunity by inhibi-
ting tumor antigen-specific CTLs (64). Recent studies showed 
that Tregs could be targets of bacterial immunotherapy against 
cancer. Peritumoral injection of attenuated S. typhi in mammary 
adenocarcinoma-bearing mice led to a reduction in T  regula-
tory cells in tumor draining lymph nodes and led to decreased 
metastasis and enhanced overall host survival (28). Likewise, 
intratumoral injection of attenuated Salmonella reduced the 
percentage of CD25+FoxP3+ cells among spleen and tumor CD4+ 
T cells in a colon cancer model (24). The precise reason for the 
effect of Salmonella vaccines on Tregs is obscure. However, it is 
known that Salmonella treatment leads to the downregulation 
of CD44, a key cell surface molecule on Tregs as well as tumor 
cells, and contributes to tumor angiogenic invasiveness and pro-
liferative potential (65). Interestingly, systemic administration of 
a synthetic BLP, a TLR1/TLR2 agonist, to mice with established 
lung carcinoma, melanoma, or leukemia, led to tumor regression 
and a long-lasting protective response against tumor re-challenge 
(66). The BLP-mediated immunotherapeutic effect was due to a 
reduction in the suppressive function of Tregs and a concomitant 
enhancement in anti-tumor CTL response (66). In another 
study, intraperitoneal administration of a lppAB/msbB mutant of  
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S. typhimurium (lacking Braun lipoprotein; LPP) failed to induce 
anti-tumor activity against subcutaneously implanted B16.F10 
tumors. This indicated that LPP is a critical factor for the anti-
tumoral activity of attenuated Salmonella (65).

A schematic summary of the multiple effects of bacterial 
immunotherapy on different immune cell types is shown in 
Figure 2.

cONcLUDiNG reMArKs

More than 120 years after Coley’s documentation of the effect of 
bacterial infections on human tumors, various forms of “Coley’s 
toxins” are currently being actively developed as therapeutic 
agents to treat cancers (67). The greatest challenge for a wide 
acceptance of this approach has been the concerns about the 
safety of using potentially pathogenic bacteria for therapeutic 
purposes. In order to overcome this limitation, genetically 
modified organisms have been developed in such a way to bal-
ance the requirement for safety while maintaining therapeutic 
efficacy. There are many examples where engineered strains of 
Salmonella enterica serovar Typhimurium, L. monocytogenes, 
and Clostridium novyi-NT have been used in preclinical models 
as well as in clinical trials (4, 68–72). Although so far limited, 
a few examples of the use of attenuated bacteria in clinical 
trials have been reported. Intratumoral injection of C. novyi-
NT spores has been successfully used to treat a patient with 
advanced leiomyosarcoma (4). Moreover, the safety of attenu-
ated L. monocytogenes strains has been demonstrated in patients 
with advanced cancers (71, 72).

Accumulating evidence has demonstrated that heavy altera-
tions in the pathogenicity of bacteria through the introduction 
of mutations to alleviate safety concerns actually compromise 
their therapeutic potential. However, important achievements 
have improved this perspective. Notably, it was recently shown 
that mutations in genes involved in the shikimate pathway, such 
as aroA, attenuates Salmonella while enhancing their immuno-
genicity (73). Furthermore, mutations that lead to modifications 
in lipid A and flagella synthesis result in an increased immune-
stimulatory capacity and as such the mutant strain was able to 
overcome the efficacy-limiting effects of pre-exposure (74). 
Conditional expression of LPS by using an inducible promoter 
has been useful in enhancing the intrinsic anti-tumor effects of 
attenuated Salmonella strains (75).

It is currently clear that using live bacteria to treat cancer is 
a form of immunotherapy. However, the precise mechanisms 
underlying this process remain incompletely understood. The 
findings to date point to strong immunomodulatory effects of 
bacterial therapy within the tumor microenvironment. This is 
perhaps best illustrated in the case of Salmonella therapy where 
the accumulation of bacteria within the tumor tissue leads to 
increased immunogenicity of tumors. Given that myeloid cells are 
the natural habitat for Salmonella organisms, these cells appear 
to be the major modulatory targets of this form of anti-tumor 
therapy. Salmonella-mediated inhibition of B16.F1 melanoma 
was not compromised when tested in nude mice, suggesting 
that the anti-tumor effect of Salmonella therapy is thymus-
independent (23). Instead, effective Salmonella therapy was 
totally abrogated in mice deficient in the TLR-MyD88 signaling 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


7

Kaimala et al. Bacterial Immunotherapy of Cancer

Frontiers in Oncology | www.frontiersin.org May 2018 | Volume 8 | Article 136

pathway (23), implicating innate immune cells as the primary 
target of this intervention. It is likely that the contribution of 
the different arms of the immune system to Salmonella-mediated 
cancer control is highly dependent on the relative tumorigenicity 
and immunogenicity of the tumor being investigated. As dem-
onstrated by findings in our laboratory and others, successful 
inhibition of tumor growth by Salmonella is associated with the 
transformation of suppressive M2-like myeloid cells to inflam-
matory M1-type mature macrophages, which in turn likely leads 
to an enhancement in anti-tumor T cell responses. The capacity 
of Salmonella organisms to induce changes in macrophage func-
tions in infections and cancer is well established (37, 76, 77). The 
effectiveness of anti-cancer bacterial therapy through targeting 
myeloid cells has refocused attention on the importance of 
these lymphoreticular “white” cells in tumors, first described 
by Virchow more than 150  years ago (78). Our increased 
understanding of the properties of bacteria that enhance their 
anti-tumor and immunostimulatory capacity, and their precise 
cellular and molecular targets within the tumor microenviron-
ment, promises to usher in new modalities for cancer treatment.
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