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Phenotypic variation between individuals of a species is often under quantitative genetic control. Genomic analysis of
gene expression polymorphisms between individuals is rapidly gaining popularity as a way to query the underlying
mechanistic causes of variation between individuals. However, there is little direct evidence of a linkage between
global gene expression polymorphisms and phenotypic consequences. In this report, we have mapped quantitative
trait loci (QTLs)–controlling glucosinolate content in a population of 403 Arabidopsis Bay 3 Sha recombinant inbred
lines, 211 of which were previously used to identify expression QTLs controlling the transcript levels of biosynthetic
genes. In a comparative study, we have directly tested two plant biosynthetic pathways for association between
polymorphisms controlling biosynthetic gene transcripts and the resulting metabolites within the Arabidopsis Bay 3

Sha recombinant inbred line population. In this analysis, all loci controlling expression variation also affected the
accumulation of the resulting metabolites. In addition, epistasis was detected more frequently for metabolic traits
compared to transcript traits, even when both traits showed similar distributions. An analysis of candidate genes for
QTL-controlling networks of transcripts and metabolites suggested that the controlling factors are a mix of enzymes
and regulatory factors. This analysis showed that regulatory connections can feedback from metabolism to transcripts.
Surprisingly, the most likely major regulator of both transcript level for nearly the entire pathway and aliphatic
glucosinolate accumulation is variation in the last enzyme in the biosynthetic pathway, AOP2. This suggests that
natural variation in transcripts may significantly impact phenotypic variation, but that natural variation in metabolites
or their enzymatic loci can feed back to affect the transcripts.
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Introduction

A longstanding goal in genetics is to unravel the molecular
and genetic bases of complex traits such as disease resistance,
growth, and development. While phenotypic variation in
natural populations is largely quantitative and polygenic,
understanding this variation is complicated by the interac-
tion of environmental and genetic factors [1,2]. Quantitative
trait mapping, the most common approach to analyze
complex traits, measures the association of genetic markers
with phenotypic variation, delineating quantitative trait loci
(QTLs) [1,3]. Advances in statistical models, improvements in
marker technology, and expanding genomic resources have
lead to increasingly refined QTL maps for a wide array of
traits, ranging from development and morphology to
metabolism and disease resistance [4–10]. In spite of these
considerable efforts, the molecular basis of many quantitative
traits remains unknown.

Recently, our understanding of quantitative traits has been
enhanced by genomic approaches that use microarray
technology to measure global transcript levels in mapping
populations and map expression QTL (eQTL) [11–13].
Whole-genome eQTL analysis in yeast, mice, and humans
has revealed that gene expression traits are highly heritable,
and can have surprisingly complex underlying genetic

architecture [13–15]. Recently, similar global analysis of gene
expression was conducted in two independent A. thaliana
recombinant inbred line (RIL) mapping populations [16,17].
These studies revealed large numbers of both cis- and trans-
acting eQTL, with evidence of nonadditive genetic variation
and transgressive segregation, consistent with results from
animal systems. In addition, network eQTL analysis in the Bay
3 Sha RIL population showed that transcript variation was
controlled by variation in specific biological networks
including both biosynthetic and signal transduction pathways
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[18]. These studies present a detailed picture of variation in
gene expression and its underlying genetic architecture, but
the relationship between transcript levels and the resultant
phenotypic variation remains poorly understood.

Testing the connection between eQTLs and downstream
phenotypic variation requires a phenotype with detailed
molecular and quantitative genetic information. Metabolic
phenotypes are ideal for these studies, because these traits are
highly variable and can be accurately measured using high-
throughput techniques [5,19,20]. Knowledge of biochemical
pathways enables comparison between the transcript level of
a biosynthetic gene and downstream metabolic phenotypes.
This engenders detailed hypotheses about the basis of
metabolic variation that incorporate biochemical relation-
ships, flux concepts, and transcriptional regulation [21].
Derived traits generated from the raw metabolite accumu-
lation data can provide unique insights into the metabolic
network [22,23]. These derived traits can include the sum of
related metabolites, providing information about the whole
pathway, or the ratio of two metabolites related as precursor
and product can be used to query variation in a specific
enzymatic process.

We test our ability to link eQTLs with phenotypic variation
using two secondary metabolite pathways responsible for the
synthesis of aliphatic and indolic glucosinolates within A.
thaliana. These metabolites play an important role in plant
defense against herbivory, and have chemopreventive activity
in the human diet. An improved understanding of the genetic
basis of glucosinolate variation thus affects evolution and
ecology as well as nutrition and agriculture [24,25]. Glucosi-
nolates are synthesized by a well-studied biosynthetic pathway
[24,26,27], with known transcription factors [28,29] and
cloned QTLs controlling structural diversity and content
within Arabidopsis [19,30] (Figure 1).

Aliphatic and indolic glucosinolates, derived from elon-
gated methionine derivatives and tryptophan, respectively,
are synthesized and subsequently modified by two independ-
ent yet parallel pathways (Figure 1A). These biosynthetic
pathways possess distinct enzymes and divergent regulation
[27]. Production of aliphatic glucosinolates is controlled by
three cloned QTLs controlling specific biosynthetic enzymes:
GSL.Elong, GSL.ALK, and GSL.OX (GSL ¼ GlucoSinoLate;

Figure 1B and 1C) [31–33]. Additional QTLs have been
identified which, according to current knowledge, are not
associated with known biosynthetic genes [30,34]. As such, the
aliphatic and indolic glucosinolate metabolic pathways
provide a useful model system to link phenotypic QTLs with
eQTLs.
To compare phenotypic QTLs and eQTLs, we measured

the accumulation of aliphatic and indolic glucosinolates in
the Bay 3 Sha RIL population. In addition to 14 and 11
metabolic QTL for the indolic and aliphatic metabolites,
respectively, several epistatic interactions were detected.
Using the same seeds and developmental stages as the

Figure 1. Glucosinolate Biosynthesis

Arrows show the known and predicted steps for glucosinolate biosyn-
thesis with the gene name for each biochemical reaction within the
arrow. For compounds that are undetected intermediates, chemical
names only are provided. For detected compounds, both the structure
and chemical name are provided. The position of known genetic loci
controlling biosynthetic variation is shown in italics.
(A) The pathway and genes responsible for the production of the core
glucosinolate structure from tryptophan (indolic glucosinolates) and
methionine (aliphatic glucosinolates).
(B) The chain elongation cycle for aliphatic glucosinolate production.
Each cycle of these reactions adds a single carbon to a 2-oxo-acid, which
is then transaminated to generate homo-methionine for aliphatic
glucosinolate biosynthesis. The GSL.Elong QTL alters this cycle through
variation at the MAM1, MAM2, and MAM3 genes that leads to differential
glucosinolate structure and content [32].
(C) The enzymes and genetic loci controlling aliphatic glucosinolate side
chain modification within the Bay-0 3 Sha RIL population. Side-chain
modification is controlled by variation at the GSL.ALK QTL via cis-eQTLs at
the AOP2 and AOP3 genes. The Cvi and Sha accessions express AOP2 to
produce alkenyl glucosinolates. In contrast, the Ler and Bay-0 accessions
express AOP3 to produce hydroxyl glucosinolates. Col-0 is null for both
AOP2 and AOP3, producing only the precursor methylsulfinyl glucosino-
lates [31]. The GSL.OX QTL appears to be controlled by cis-eQTLs
regulating flavin-monoxygenase enzymes that oxygenate a methylthio
to methylsulfinyl glucosinolate [33].
doi:10.1371/journal.pgen.0030162.g001
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Author Summary

Natural genetic variation and the resulting phenotypic variation
between individuals within a species have been of longstanding
interest in wide-ranging fields. However, the molecular under-
pinnings of this phenotypic variation are relatively uncharted.
Recently, genomics methodologies have been applied to under-
standing natural genetic variation in global gene expression. This,
however, did not resolve the connection between variation in gene
expression and the resulting physiological phenotype. We used two
metabolic pathways within the model plant Arabidopsis to show
that it is possible to connect genomic analysis of genetic variation to
the resulting phenotype. This analysis showed that the connections
between gene expression and metabolite variation were complex.
Finally, the major regulators of gene expression variation for these
pathways are two biosynthetic enzymes rather than traditional
transcription factors. This analysis provides insights into how to
connect transcriptomic and metabolomic datasets using natural
genetic variation.



previous eQTL mapping in the Bay 3 Sha RIL population
allowed us to compare metabolite QTL and eQTL locations
[17]. Comparing metabolite QTLs with network eQTLs
controlling the expression of aliphatic and indolic glucosi-
nolate biosynthetic pathways indicates that all network
eQTLs colocate with metabolic QTLs, but the inverse
statement is not true, as some QTLs are detected only for
metabolite traits. We obtained evidence that variation in
biosynthetic enzymes and possibly transcription factors can
control natural variation for transcript levels of glucosinolate
biosynthetic genes. The heritability of metabolic traits was on
average lower than that for transcript levels, suggesting that
metabolite accumulation may be more susceptible to envi-
ronmental factors. This detailed picture of glucosinolate
accumulation and modification shows that eQTLs can be
associated with changes in the resulting phenotype, allowing
us to generate testable mechanistic hypotheses regarding the
interplay between expression variation and downstream
phenotypic variation.

Results

Metabolite Trait Distributions
We measured glucosinolate production by the A. thaliana

accessions, Bayreuth (Bay-0) and Shahdara (Sha), the parents
of the Bay 3 Sha RIL population. The Bay-0 and Sha
accessions differed in both the quantity of glucosinolates
accumulated and the specific structures synthesized, verifying
that the Bay-0 3 Sha RIL population is potentially informa-
tive for analyzing the relationship of eQTLs to metabolic
variation. The glucosinolate profile of Sha is similar to that
previously published for the Cape Verdi Islands (Cvi-1)
accession, which forms predominantly three carbon (C3)
and four carbon (C4) alkenyl glucosinolates, with high total
aliphatic glucosinolate content (Tables 1, S1, and S2) [19,30].
In contrast, Bay-0 resembles Landsberg erecta (Ler), which
contains mostly C3 hydroxy glucosinolates, with lower total
aliphatic glucosinolate content (Table 1) [19,30]. The parental
accessions also differed in partitioning of indolic glucosino-

lates into different structures, with Bay-0 producing signifi-
cantly more 4-methoxy-indol-3-ylmethyl glucosinolate (Table
1).
We measured the average glucosinolate content within the

Bay-0 3 Sha RILs and compared the trait distribution among
403 RILs to the Bay-0 and Sha parental means (Table 1). Some
RILs accumulated two aliphatic glucosinolates (4-methylsulfi-
nylbutyl [4-MSO] and 4-methylthiobutyl [4-MT]) that are not
found in the parental accessions. Transgressive segregation
for this biosynthetic capability was previously observed in the
Ler x Cvi RIL population and shown to result from epistasis
between the GSL.AOP and GSL.Elong loci [6,30–32,35–37]. In
the Sha parent, the AOP2 enzyme fully converts all 4-MSO
into but-3-enyl glucosinolate, preventing the detectable
accumulation of 4-MSO within Sha. In Bay-0, 4-MSO does
not accumulate due to the Bay-0 allele at Elong, preventing
the formation of 4C glucosinolates. Plants containing the
GSL.AOPOHP (AOP3) allele from the Bay-0 parent and the
GSL.ElongC4 (MAM1) allele from Sha accumulate 4-MSO and
4-MT because the AOP3 enzyme expressed by the GSL.AO-
POHP allele from Bay-0 can not convert the 4-MSO precursor
to hydroxyl glucosinolates (Figure 1) [31].
In addition to transgressive segregation for biosynthetic

potential, there is transgressive segregation for glucosinolate
levels. For this population, the transgressive segregation for
the quantity of glucosinolates produced is almost entirely
negative, as the RIL population includes numerous lines
producing less total aliphatic glucosinolate than either
parental accession, but no lines that accumulate average
levels higher than the Sha parent (Table 1). This is especially
striking for total indolic glucosinolate content, where all of
the RILs were significantly lower than both parents. Because
the Bay-0 and Sha parents were grown concurrently with the
RILs, this is not due to environmental effects. This observa-
tion of negative transgressive segregation contrasts with the
Ler 3 Cvi RIL population, where both positive and negative
transgressive segregation was observed, with RILs producing
both greater and lesser quantities of glucosinolates than
either parental accession [30]. Given that the GSL.AOP and

Table 1. Variation in Aliphatic Glucosinolates within Bay-0, Sha, and the Bay-0 3 Sha RILs

Pathway Glucosinolate Abbreviation Bay-0 Sha RIL Percentile

Mean SE Mean SE 95th 5th

Aliphatic 3-hydroxypropyl 3-OHP 2.90 0.40 0.00 - 2.24 0.00

Aliphatic 4-methylsulfinylbutyl 4-MSO 0.00 - 0.00 - 0.79 0.00

Aliphatic Allyl Allyl 0.00 - 2.52 0.38 2.58 0.00

Aliphatic But-3-enyl But-3-enyl 0.00 - 6.38 1.08 4.92 0.00

Aliphatic 3-methylthiopropyl 3-MT 0.19 0.03 0.08 0.02 0.11 0.00

Aliphatic 4-methylthiobutyl 4-MT 0.00 - 0.00 - 0.36 0.00

Aliphatic 8-methylsulfinyloctyl 8-MSO 1.48 0.29 0.51 0.16 1.25 0.05

Aliphatic 8-methylthiooctyl 8-MT 0.19 0.02 0.08 0.01 0.22 0.02

Aliphatic Total aliphatic 4.71 0.69 9.56 1.53 7.03 0.77

Indolic Indol-3-ylmethyl I3M 0.64 0.10 0.69 0.10 0.52 0.10

Indolic 4-methoxy-indol-3-ylmethyl 4MO-I3M 0.26 0.03 0.08 0.01 0.20 0.05

Indolic N-methoxy-indol-3-ylmethyl NMO-I3M 0.05 0.01 0.04 0.01 0.05 0.01

Indolic Total indolic 0.95 0.13 0.81 0.11 0.65 0.22

Mean glucosinolate content in lmol cm�2 is shown for Bay-0 and Sha grown concurrently with RILs, as well as the 95th and 5th percentile values for the RILs. SE shows the standard error
of the measurement. Pathway indicates whether the glucosinolate is derived from methionine (aliphatic) or tryptophan (indolic). Total aliphatic and total indolic are the sum of all aliphatic
and indolic glucosinolates, respectively.
doi:10.1371/journal.pgen.0030162.t001
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GSL.ELONG loci are in common between both populations,
this difference in transgressive segregation suggests the
influence of additional QTLs that are not variable in both
populations.

Heritability
To compare the underlying genetics controlling metabolite

variation with variation in gene expression, we estimated the
heritability of individual glucosinolate metabolic traits and
total glucosinolate content traits, as well as transcript levels
for glucosinolate biosynthetic genes (Figure 2 and Tables S1
and S2). Heritability estimates for glucosinolate content traits
were significantly lower than the heritability of RMA (robust
multichip analysis) estimated transcript levels of their
respective biosynthetic genes. This was true for both indolic
and aliphatic glucosinolates (Figure 2). Differences in herit-
ability of metabolite and expression traits could arise from
differences in population size used for these estimates (403
lines for metabolites and 211 lines for transcript levels).
However, recalculating heritabilities for the glucosinolate
metabolites using the same 211 RILs measured in the eQTL
analysis did not significantly change the values (unpublished
data).

Aliphatic Glucosinolate QTLs
Analysis of aliphatic glucosinolate variation among the

RILs identified 11 QTLs that control either aliphatic
glucosinolate content or the partitioning of aliphatic
glucosinolates into particular structures (Figure 3). The QTLs
affecting the largest number of aliphatic glucosinolate traits
and causing the largest phenotypic differences were the
previously identified GSL.AOP and GSL.Elong loci (Tables S4
and S5 and Figure 1). Polymorphism at these QTLs altered
aliphatic glucosinolate content as well as derived ratio and
summation traits. The GSL.ALIPH.II.42 and GSL.ALIPH.V.66
QTLs altered individual glucosinolate content and summa-
tions but did not have as dramatic an affect on the
glucosinolate ratios (Figures 3 and 4). In contrast, GSL.ALI-
PH.I.0, GSL.ALIPH.III.10, and GSL.ALIPH.IV.48 QTLs were

more specific to the derived summation and ratio traits than
to the raw glucosinolate metabolite accumulation (Figure 3
and Tables S4 and S5). For example, the GSL.ALIPH.IV.48
QTL influences only 3C aliphatic glucosinolate accumulation,
and the GSL.ALIPH.I.0 QTL controls ratio traits involving 4-
MT and 8C glucosinolate (Figure 4 and Tables S4 and S5).
These QTLs highlight the ability of derived traits to provide
unique insights into metabolic variation.
Mapping eQTLs controlling transcript levels for the known

aliphatic glucosinolate biosynthetic genes identified eight
eQTL clusters that all coincided with aliphatic glucosinolate
metabolite QTLs (GSL.ALIPH.I.0, GSL.ALIPH.I.73, GSL.ALI-
PH.II.15, GSL.ALIPH.II.42, GSL.ALIPH.III.10, GSL.AOP, GSL.E-
long, and GSL.ALIPH.V.66; Figures 3 and 4 and Table S6). Two
of these eQTLs, GSL.AOP and GSL.Elong, are known to be cis-
eQTLs controlling the expression of four biosynthetic genes
[31]. However, these loci appear to modify in trans the
transcript levels for a broad set of aliphatic glucosinolate
biosynthetic genes. Conducting a network expression analysis
using an updated gene list for the aliphatic biosynthetic
pathway showed that six of these eQTL clusters (including
GSL.AOP and GSL.Elong) were also detected using the network
mean z-score for the aliphatic glucosinolate biosynthetic gene
network. The network mean z-score is a derived trait
obtained by averaging across the aliphatic glucosinolate
transcripts within a RIL (Table S7) [18]. As the aliphatic
glucosinolate transcripts are believed to participate in a
highly coregulated network, this derived trait is potentially
informative regarding network control [18,38,39]. These six
network eQTLs appear to control transcript levels of the
pathway in trans, but whether trans functionality occurs via
metabolite feedback or transcriptional mechanisms remains
to be elucidated (Figure 4). The eQTLs detected in the
network analysis predominantly controlled biosynthetic
enzymes acting early in the aliphatic glucosinolate path-
way—in the elongation and core biosynthetic stages—and not
the secondary modification stages (Figures 4 and S1). Of the
other three metabolite QTLs that did not show a network
eQTL, the GSL.ALIPH.I.20 QTL overlapped with a cis-eQTL

Figure 2. Estimated Heritability for Different Glucosinolate Traits

Heritability of glucosinolate traits for both the aliphatic and indolic glucosinolate pathways as estimated from 403 Bay-0 3 Sha RILs. These include the
Content¼ content of individual glucosinolates, Summation¼ the summation of various glucosinolates, Ratio¼ the ratio of glucosinolates to each other,
and Gene Expression ¼ the expression of glucosinolate biosynthetic genes. Heritability for Gene Expression was estimated using the RMA obtained
expression values. Error bars show standard error of the mean.
doi:10.1371/journal.pgen.0030162.g002
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for UGT74B1, and the other two did not coincide with loci
affecting the expression of any known biosynthetic genes.

Enzyme-Encoding Genes and Network eQTLs
Variation at the side-chain–modifying GSL.AOP and GSL.E-

long loci controlled the accumulation of most metabolites and
transcripts (Figures 3 and 4). Neither locus had been
previously identified as impacting transcript accumulation
for the whole glucosinolate biosynthetic network. Both
GSL.AOP and GSL.Elong are controlled by cis-eQTLs leading
to differential enzyme expression. As in Cvi, the Sha GSL.AOP
locus expresses the AOP2 enzyme, leading to alkenyl
glucosinolate production, higher glucosinolate content, and
elevated transcript levels for most aliphatic glucosinolate
genes (Figure 4 and 5). We used Col-0 (which is null for AOP2
and AOP3) transformed with a functional AOP2 gene from
Brassica oleracea to test if the presence of functional AOP2
transcript can affect both metabolite and transcript levels
[40]. AOP2 from B. oleracea conducts the same reaction as
AOP2 from Sha and is also associated with elevated aliphatic
glucosinolate content in Brassica, allowing us to test the
conservation of this locus across the two species [40,41].
Introduction of a transcript encoding functional AOP2

results in the production of alkenyl glucosinolates and a
statistically significant doubling of total aliphatic glucosino-
late content, as is the case with the presence of a functional
AOP2 transcript contributed by the Sha allele at the GSL.AOP
QTL (Figure 5). The introduction of the AOP2 transcript also
leads to induction of 17 of 22 aliphatic glucosinolate
biosynthetic genes and three of seven regulatory genes
(Figure 5). This supports the hypothesis that the Sha allele
at the GSL.AOP QTL controls metabolite and transcript levels
for aliphatic glucosinolates due to increased expression of the
AOP2 gene. This suggests the presence of a previously
unrecognized regulatory effect of AOP2, whereby it controls
transcript accumulation for most biosynthetic genes poten-
tially through transcription factors. While we could not
detect any micro-RNA signatures within the AOP2 transcript
or gene, it remains to be shown whether the metabolite and
transcript effect is due to the enzymatic activity of AOP2 or

Figure 3. QTL Summary for Aliphatic Glucosinolates

QTL position for aliphatic glucosinolate biosynthetic gene expression
estimates and aliphatic glucosinolate metabolite accumulation is shown
on the x-axis with the Roman numeral representing the chromosome
number (I–V), while the arabic numeral shows the cM position on that
chromosome. All five Arabidopsis chromosomes are represented
contiguously. Names of the QTL positions that were shown by ANOVA

to be statistically significant are included within the figure for reference.
(A) The left-hand y-axis and the dotted line show the number of genes in
the aliphatic glucosinolate biosynthetic pathway (22 total) that have an
eQTL at a given position as determined within QTL Cartographer. The
right-hand y-axis and solid line shows the likelihood ratio (LR) trace for
direct QTL analysis of the average transcript level across the genes for
the aliphatic glucosinolate biosynthetic pathway as estimated using the
mean z-score approach. The dashed and solid horizontal lines show
significance thresholds (a ¼ 0.05) as estimated by 1,000 permutations.
Breaks in lines show the end of chromosomes.
(B) The QTLs for the nine aliphatic glucosinolate metabolites were
mapped independently using the average across all experiments as well
as the average within each experiment. QTL positions for all indolic
glucosinolate traits were then summed across experiments to identify
metabolite QTL ‘‘hotspots.’’
(C) The QTLs for the 11 derived summation aliphatic glucosinolate
metabolite traits were mapped independently using the average across
all experiments as well as the average within each experiment. QTL
positions for all indolic glucosinolate traits were then summed across
experiments to identify metabolite QTL ‘‘hotspots.’’
(D) The QTLs for the 39 derived ratio aliphatic glucosinolate metabolite
traits were mapped independently using the average across all experi-
ments as well as the average within each experiment. QTL positions for
all indolic glucosinolate traits were then summed across experiments to
identify metabolite QTL ‘‘hotspots.’’
doi:10.1371/journal.pgen.0030162.g003
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some other regulatory signature within the AOP2 transcript.
The association of both GSL.AOP and GSL.Elong with eQTLs
for the majority of aliphatic glucosinolate biosynthetic genes
and metabolites (Figure 4) suggests a regulatory interplay
between the metabolites directly synthesized by these
enzymes and transcript levels for the aliphatic glucosinolate
biosynthetic genes.

Epistasis for Transcripts versus Metabolites
We tested the identified QTLs for pairwise epistatic

interactions controlling metabolite accumulation, partition-
ing, or transcript levels. This analysis identified at least one
pairwise epistatic QTL interaction for all metabolites, with

variation in at least half of the metabolites controlled by
interactions between GSL.AOP, GSL.Elong, and GSL.V.66
(Figure 4). The most common pairwise interaction was
detected between GSL.AOP and GSL.Elong, controlling 7 of 9
aliphatic glucosinolate metabolites (Figure 4). In contrast to
the metabolites, most expression traits did not identify
epistatic eQTL interactions. The few transcripts traits that
identified epistatic eQTL interactions encode biosynthetic
enzymes functioning in the early steps of the elongation cycle:
MAM1, BCAT4, and an Aconitase. This suggests that genes in
the elongation cycle may be regulated differently from the
rest of the aliphatic glucosinolate pathway genes (Figures 1, 4,
and S1).

Figure 4. Pathway Summary of Aliphatic Glucosinolate QTLs

Results of ANOVA testing of all identified aliphatic glucosinolate QTLs for significant impact upon the accumulation of individual glucosinolate
metabolites, transcript level of all biosynthetic genes, total aliphatic glucosinolate content, and the average expression of the aliphatic glucosinolate
biosynthetic pathway is presented graphically. The genes and metabolites are shown with respect to the currently theorized biosynthetic pathway. Trait
abbreviations are as listed in Table S1. Gene names are as listed in Table S3, and TAIR locus identifiers are used for gene families where there is no
settled naming system.
Cells within boxes represent aliphatic glucosinolate QTLs. The legend at the bottom right contains the QTL name. Cells representing QTLs significantly
controlling the represented trait are colored to show the directionality of the allele substitution effect; a positive effect of the Bay-0 allele is blue, and a
positive effect of the Sha allele is red. Dark red and dark blue show that the allele substitution at the given QTL led to greater than 50% phenotypic
change in the trait, while the lighter colors represent QTLs of smaller phenotypic effect. Significant epistasis between the GSL.Aliph.AOP, GSL.Aliph.Elong,
and GSL.Aliph.V.66 QTLs are shown by black cross-hatching within the respectively labeled cell. For example, but-3-enyl is controlled by QTL at GSL.AOP,
GSL.Elong, and GSL.I.20 with epistasis between the GSL.AOP and GSL.Elong loci. QTLs for gene expression are shown in smaller font with a smaller
ANOVA box, while QTLs for metabolites are shown in bold larger font with a larger box.
(A) QTLs for the whole pathway broken down into individual metabolites and transcripts.
(B) QTLs for total aliphatic glucosinolate content and the mean z-score for the biosynthetic pathway.
doi:10.1371/journal.pgen.0030162.g004
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To investigate the nature of the epistatic interaction
between GSL.AOP and GSL.Elong, we calculated mean pheno-
typic values for the RILs containing each of the allelic
combinations at these two loci (Figure 6). GSL.AOP 3

GSL.Elong interaction had a negative epistatic effect on the
total content of both aliphatic and indolic glucosinolates,
with lines possessing the nonparental allelic combination of
GSL.AOPOHP from Bay-0 and GSL.ElongC4 from Sha exhibiting
significantly lower glucosinolate content than either parent
(Figure 6). Lines possessing Sha alleles at both loci had the
highest glucosinolate accumulation.

The GSL.AOP and GSL.Elong loci also control the network
expression mean z-score for the aliphatic biosynthetic gene
network, but did not exhibit a pairwise epistasis for this trait
(Figure 4). In contrast, the genes in the methionine
elongation cycle did identify an epistatic interaction between

GSL.AOP and GSL.Elong (Figure 6; BCAT4 is shown as an
example). This lack of an epistatic effect on aliphatic
glucosinolate network expression is not likely a statistical
artifact, as the pattern of the group means shows a striking
difference between aliphatic glucosinolate accumulation and
network expression of the aliphatic biosynthetic genes
(Figure 6). Substitution of the Bay-0 GSL.ElongC3 allele for
the Sha allele in a background containing the Sha GSL.AOPAlk

allele leads to increased accumulation of aliphatic glucosino-
late biosynthetic transcripts but lower aliphatic glucosinolate
content (Figure 6). This suggests that these two loci regulate
both transcript and metabolite accumulation via distinct
mechanisms.

Indolic Glucosinolate QTLs
We analyzed the indolic glucosinolate pathway as a second

test of our ability to link eQTLs altering transcript levels for

Figure 5. AOP2 Transcript Alters Metabolic Profiles, Content, and Gene Expression

Wild-type Col-0 that is null for AOP2 and AOP3 was modified through the introduction of a functional AOP2 transcript from B. oleracea. All glucosinolate
abbreviations are as described in Table S1.
(A) HPLC profile of aliphatic glucosinolates detected in foliar tissue of wild-type Col-0.
(B) HPLC profile of aliphatic glucosinolates detected in foliar tissue of Col-0 containing the functional AOP2 transcript.
(C) Average total foliar aliphatic glucosinolate content in Col-0 and Col-0::AOP2 is shown with standard error bars. Six plants per genotype were
measured for total aliphatic glucosinolate content within an experiment, and the experiment was conducted twice to provide 32 total measurements.
**p , 0.0001 as determined by ANOVA.
(D) Percentage increase in transcript levels in Col-0::AOP2 as compared with Col-0 is presented. RNA from 3 plants per genotype were individually
hybridized to ATH1 Affymetrix arrays to obtain transcript levels for the aliphatic glucosinolate genes. ANOVA was used to test for significant differences
between the two genotypes for the glucosinolate biosynthetic and regulatory genes via ANOVA with a false discovery rate of 0.05. Gray bars show
transcripts significantly increased by the introduction of the AOP2 transcript. Nonsignificant changes are shown in white bars.
doi:10.1371/journal.pgen.0030162.g005
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biosynthetic genes with metabolite accumulation QTLs. A
total of 13 QTLs were identified that control the accumu-
lation of indolic glucosinolates, their partitioning into
particular structures, or both (Figure 7 and Table S8). These
loci affect one or more of the indolic glucosinolate traits in
this population, with the directionality of allelic effects
mixed, so that Bay-0 alleles at some loci increase trait values

while the Bay-0 alleles at other loci decrease the metabolite
trait values (Table S8). Interestingly, the GSL.INDOLIC.IV.8
and GSL.INDOLIC.V.20 QTLs map to the same genomic
locations as the previously known GSL.AOP and GSL.ELONG
loci, which control aliphatic glucosinolate variation. Trans-
genic analysis confirmed that simulating the Sha GSL.AOP
allele by introducing the AOP2 gene into a null background
increases total indolic glucosinolate content by about 30% (p
¼ 0.035). This shows that variation at GSL.AOP affects indolic
glucosinolate metabolism and that there is cross-talk between
the pathways for indolic and aliphatic glucosinolate produc-
tion.
Testing the identified indolic metabolite QTLs for pairwise

epistatic interactions identified numerous epistatic interac-
tions affecting indolic glucosinolate accumulation. Notably,
the GSL.INDOLIC.II.15 QTL was detected as epistatically
interacting with five other QTLs (GSL.INDOLIC.III.7, GSL.IN-
DOLIC.III3.60, GSL.INDOLIC.IV4.36, GSL.INDOLIC.V.45, and
GSL.INDOLIC.V.59; Table S8). These epistatic interactions
affect the partitioning of the indolic glucosinolates into two
distinct methoxylated derivatives without significantly alter-
ing the total indolic glucosinolate content. GSL.INDOLIC.II.15
might encode or regulate enzymes responsible for this
methoxylation (Table S8). A regulation hypothesis is sup-
ported by the fact that the GSL.INDOLIC.II.15 region contains
a massive trans-acting eQTL that influences transcript levels
for more than 5,000 genes [17].
Analysis of eQTLs controlling transcript levels of individ-

ual indolic glucosinolate biosynthetic genes identified four
eQTL clusters (GSL.INDOLIC.III.60, GSL.INDOLIC.IV.8,
GSL.INDOLIC.V.45, and GSL.INDOLIC.V.59; Figure 7 and
Tables S6 and S7). Because the indolic glucosinolate
biosynthetic genes are also believed to be coregulated, we
estimated pathway expression mean z-value to map network
QTLs. This identified the same four loci, plus three additional
QTLs affecting expression of the indolic gene network
(GSL.INDOLIC.II.15, GSL.INDOLIC.III.7, and GSL.INDO-
LIC.V.5). All three of these network-specific eQTLs colocal-
ized with metabolite QTLs, supporting the ability of the z-
scale network approach to derive biological information. All
seven eQTLs colocalize with loci that control either the
accumulation or partitioning of the indolic glucosinolates
produced by these genes. This suggests that the eQTLs
controlling transcript levels for the indolic glucosinolate
biosynthetic genes also affect variation in their metabolite
products. Again, it remains to be tested whether the QTLs
primarily affect transcript levels, causing downstream metab-
olite effects, or if the polymorphisms first affect the
metabolites, influencing transcript levels through some form
of feedback. There are also indolic metabolite QTLs, such as
GSL.INDOLIC.IV.36, with no detectable impact on gene
expression traits.

Discussion

We used the Arabidopsis aliphatic and indolic glucosinolate
biosynthetic pathways to test our ability to link QTLs
controlling metabolic and expression polymorphisms. These
metabolic pathways are well characterized with near com-
plete identification of most biosynthetic enzymes and genes,
as well as detailed quantitative genetic analysis [25,27]. A
direct comparison of metabolite QTL and eQTL maps reveals

Figure 6. AOP and Elong Epistasis

The Bay-0 3 Sha RILs were grouped by their GSL.AOP and GSL.Elong
genotypes. The mean (6 standard error) for each group is presented for:
(A) Mean z-score for the aliphatic glucosinolate biosynthetic pathway.
(B) Transcript level for the BCAT4 gene.
(C) Total aliphatic glucosinolate content.
(D) Total indolic glucosinolate content.
doi:10.1371/journal.pgen.0030162.g006
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that for both pathways, all eQTLs collocate with metabolite
QTLs (Table 2, Figures 2 and 7). This suggests that expression
differences for genes comprising these two pathways are
predictive of phenotypic differences. However, the predictive
capacity of eQTLs is not perfect, as indicated by the presence
of metabolite-specific QTL clusters that do not associate with
eQTL clusters.

Metabolite-specific QTL clusters cannot be explained by
the superior power of the metabolite QTL analysis, which
used 403 RILs versus the 211 phenotyped for transcript level,
as restriction of the metabolite analysis to the set of 211 RILs
included in the expression QTL analysis did not alter this
result (unpublished data). In addition, higher heritability of
transcript levels versus metabolite traits creates a higher
statistical likelihood of failure to detect metabolite QTLs
than eQTLs (Figure 2). Although the eQTL and metabolite
QTL analysis were done at different times, all experiments

used seed from the same mothers, and were grown in the
same growth chamber under similar growth conditions. As
such, environmental variance was minimized and is unlikely
to explain this result.
We therefore feel that biological processes, rather than

statistical or experimental considerations, explain these
metabolite-specific QTLs. Metabolite-specific QTLs could be
caused by metabolic feedback mechanisms, whereby a
product is responsible for fine-tuning the activity of a rate-
limiting enzyme in the biosynthetic pathway. Alternatively,
metabolite-specific QTLs may identify loci controlling flux of
substrates into the pathway. In addition, polymorphisms that
affect post-translational regulation or structural variation in
enzymes could lead to metabolite QTLs independent of loci
controlling transcript levels. A similar result would be
observed if the metabolite QTLs were caused by variation
in other biosynthetic pathways that affect substrate avail-
ability, or by eQTLs affecting an unknown biosynthetic gene.
Segregating variation in pathways responsible for the
catabolic turnover of glucosinolates would also affect
metabolite accumulation without affecting biosynthetic gene
expression. The presence of QTLs that exclusively affect
metabolites and not expression traits illustrates the complex-
ity involved in extrapolating variation in gene expression to
changes in metabolite content.

Network eQTL Identity
The three most consistently detected QTLs for aliphatic

glucosinolate content and transcript variation were GSL.AOP,
GSL.Elong, and GSL.V.66. Two of these network QTLs, AOP
and Elong, contain cis-eQTLs controlling variation in tran-
script levels for enzymes located at the beginning and end of
the aliphatic glucosinolate pathway. Neither AOP nor Elong
has previously been associated with regulation of other
glucosinolate biosynthetic or regulatory genes. This suggests
that the accumulation of aliphatic glucosinolates is regulated
by multiple mechanisms functioning such that enzyme
variation can feed back to alter transcript accumulation
(Figure 1). The GSL.AOP QTL is likely controlling glucosino-
late content and expression through natural variation in the
AOP2 gene (Figure 5). Altering the expression of the AOP2
transcript, the enzyme at the end of the aliphatic glucosino-
late pathway might pull carbon into aliphatic glucosinolate
production (Figures 4–6). In addition, introducing the tran-

Table 2. Shared and Unique QTLs

QTL Aliphatic Indolic

Met Exp Met Exp

I.0 Yes Yes Yes –

I.20 Yes – Yes –

I.73 Yes Yes – –

I.80 – – Yes –

II.15 Yes Yes Yes Yes

II.40 Yes – Yes –

III.10 Yes Yes Yes Yes

III.43 Yes – – –

III.60 – – Yes Yes

AOP Yes Yes Yes Yes

IV.36 – – Yes –

IV.48 Yes – – –

V.5 – – Yes Yes

Elong Yes Yes Yes –

V.45 – – Yes Yes

V.59 – – Yes Yes

V.66 Yes Yes – –

The identified and named QTL are listed in chromosomal order.
A ‘‘Yes’’ indicates if a metabolic QTL (Met) or network eQTL or eQTL cluster (Exp) was
identified for the given glucosinolate class. A dash indicates no evidence for a QTL for this
glucosinolate class in this region. AOP and Elong refer to GSL.Indolic.IV.8 and
GSL.Indolic.V.20, respectively, as these map to the same location.
doi:10.1371/journal.pgen.0030162.t002

Figure 7. QTL Summary for Indolic Glucosinolates

QTL positions for indolic glucosinolate biosynthetic gene expression estimates and indolic glucosinolate metabolite accumulation were determined
within QTL Cartographer. The position is shown on the x-axis, with the Roman numeral representing the chromosome number (I–V) while the Arabic
numeral shows the cM position on that chromosome. All five chromosomes are represented contiguously. Names of the QTL positions that were shown
by ANOVA to be statistically significant are shown within the figure for reference.
(A) The left-hand y-axis and the dotted line show the number of genes in the indolic glucosinolate biosynthetic pathway (six total) that have an eQTL at
a given position as determined within QTL Cartographer. The right-hand y-axis and solid line shows the likelihood ratio (LR) trace for direct QTL analysis
of the average transcript level across the genes for the indolic glucosinolate biosynthetic pathway as estimated using the z-score approach. The dashed
and solid horizontal lines show significance thresholds (a¼ 0.05) as estimated by 1,000 permutations for eQTL hotspots and the pathway expression
QTLs, respectively.
(B) The QTLs for the three indolic glucosinolate metabolites were mapped independently using the average across all experiments as well as the
average within each experiment. QTL positions for all indolic glucosinolate traits were then summed across experiments to identify metabolite QTL
‘‘hotspots.’’
(C) The QTLs for the two derived summation indolic glucosinolate metabolite traits were mapped independently using the average across all
experiments as well as the average within each experiment. QTL positions for all indolic glucosinolate traits were then summed across experiments to
identify metabolite QTL ‘‘hotspots.’’
(D) The QTLs for the six derived ratio indolic glucosinolate metabolite traits were mapped independently using the average across all experiments as
well as the average within each experiment. QTL positions for all indolic glucosinolate traits were then summed across experiments to identify
metabolite QTL ‘‘hotspots.’’
doi:10.1371/journal.pgen.0030162.g007
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script for AOP2 increases transcript level for the aliphatic
biosynthetic pathway, suggesting that regulation also occurs
by control of gene expression and potentially metabolic
fluxes through the beginning of the aliphatic glucosinolate
pathway (Figures 5 and 6). It is possible that a metabolite
produced by or used by the AOP2 enzyme may have the
capacity to regulate transcript accumulation for the rest of
the biosynthetic network through feedback. Direct regulation
of transcript accumulation by metabolites has been noted for
a variety of riboswitches [42–45].

For the GSL.Elong network QTLs, the comparison of eQTLs
to metabolite QTLs suggests that variation in transcript levels
for at least two biosynthetic genes (MAM1 and MAM3) at
GSL.Elong directly causes metabolic variation, and that this
biosynthetic variation may alter transcript regulation for
nearly the entire biosynthetic pathway. Specifically, lines that
contain 4C glucosinolates have lower transcript levels for
almost all biosynthetic genes. One possibility is that a
metabolic intermediate produced in the GSL.Elong4C back-
ground negatively regulates gene expression. Alternatively,
both the GSL.AOP and GSL.Elong loci could possess tightly
linked second loci that cause the observed transcriptional
polymorphisms and also interact epistatically. Testing the
interaction between biosynthetic loci and transcript levels
will require careful genetic manipulation with full tran-
scriptome analysis.

Comparing the remaining network eQTLs to candidate
glucosinolate transcriptional regulators shows that the
GSL.ALIPH.V.66 QTL overlaps the physical position of the
MYB28 transcription factor, which has a large-effect cis-eQTL
[17,39]. Likewise, the GSL.INDOLIC.V.45 and GSL.INDO-
LIC.V.59 QTLs overlap the physical position of the indolic
transcription factors, ATR1 and ATR2, and both genes have
cis-eQTLs [17,29,46]. This suggests that these three QTLs may
be explained by variation in the expression of these known
regulatory genes. In addition, the GSL.ALIPH.I.0 and GSL.A-
LIPH.III.10 QTLs overlap with the physical position for the
aliphatic glucosinolate transcriptional regulators AtDOF1.1
and IQD1, respectively [28,47]. Neither gene exhibits a cis-
eQTL, suggesting that if these genes are responsible for
GSL.ALIPH.I.0 and GSL.ALIPH.III.10 QTLs, it is potentially
due to an activity polymorphism. Alternatively, small changes
in transcript levels for these transcription factors might lead
to large changes in network regulation (Figure S1).

The GSL.ALIPH.II.15 QTL, a major network eQTL for
transcript levels for both aliphatic and indolic glucosinolate
pathways, does not overlap any known biosynthetic or
regulatory genes. This locus does colocalize with a massive
eQTL cluster controlling the expression of several thousand
genes [17]. This suggests that this region may be highly
pleiotropic and its effects on glucosinolate content may be
indirect. These results suggest that eQTLs can control
metabolite production through a variety of direct and
indirect regulatory mechanisms.

cis-eQTLs and QTLs for Specific Metabolites
While most eQTLs co-located with QTL clusters control-

ling several metabolites, there were also instances in which a
statistically significant association between expression and
metabolic phenotypes was limited to one or few metabolic
traits. For example, SGT74B1 catalyzes glycosylation of the
characteristic glucosinolate backbone structure, and its

expression is controlled by a single eQTL at GSL.ALIPH.I20
[48]. This large-effect cis-eQTL maps to a 100-kb interval that
includes the physical position of SGT74B1. While we might
predict that variation in the expression of SGT74B1 would
influence production of multiple aliphatic glucosinolates, this
locus was only identified as controlling one metabolic trait,
the accumulation of but-3-enyl glucosinolate. This gene is not
specific to the synthesis of but-3-enyl glucosinolate, as
previous work has demonstrated that SGT74B1 has a broad
biochemical capacity to glucosylate glucosinolates [48].
Instead, the lack of detected effects in this study for this
eQTL on the accumulation of other glucosinolates is likely
because genotypes accumulating but-3-enyl glucosinolate also
exhibit the highest level of total aliphatic glucosinolates
within this population (Table 1). This suggests that the
SGT74B1 expression polymorphism is only limiting when flux
across the biosynthetic pathway is maximized. Consequently,
unexpected factors directly related to biochemical pathway
connectivity and flux can interfere with our ability to directly
associate eQTLs for biosynthetic genes with specific metab-
olite QTLs. As such, eQTLs are not predictive in all contexts.

QTL Causality
This comparative analysis of eQTLs to metabolic QTLs has

provided novel insights, including the identification of the
enzymes AOP2 and MAM1 as well as the transcription factor
MYB28 as potential regulators of transcript accumulation for
the complete aliphatic glucosinolate biosynthetic pathway. In
addition, differential expression of the ATR1 and ATR2
transcription factors have been implicated as the underlying
cause of QTLs controlling the indolic glucosinolate pathway.
Data presented in this study validate the potential of the
enzyme AOP2 to control aliphatic glucosinolate gene ex-
pression. The other regulatory roles hypothesized above
remain to be verified. Identification and validation of the
molecular causes of the 17 different QTLs identified in this
study will require a complex mixture of experiments ranging
from transgenic complementation to validate the gene,
promoter swaps to validate the difference in gene expression,
and recombination mapping to more precisely identify the
causal polymorphism [49].

Trait Heritability and Epistasis
For glucosinolates and their biosynthetic genes, we

observed significant differences between the estimated
heritability of metabolite accumulation and transcript levels,
respectively (Figure 2). Expression traits had consistently
higher broad sense heritability than the accumulation of
individual metabolites or metabolite summation traits.
Because genetically identical individuals were used for both
experiments, there is no difference in the amount of
genotype variation available to transcript and metabolite
traits. Thus, environmental inputs may affect metabolic traits
more strongly than transcripts. The mechanistic link between
sequence polymorphism and variation in transcript levels
may have fewer intervening processes than a causal sequence
polymorphism and metabolic variation. The presence of
additional regulatory processes, both metabolic and post-
transcriptional, may allow greater environmental heteroge-
neity effects on metabolite accumulation. It is also possible
that the results obtained for the glucosinolate pathway are
not indicative of typical transcript or metabolite heritability.
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There is evidence that glucosinolate production is under
diverse selection pressures, favoring high levels of plasticity in
glucosinolate accumulation mediated by environmental
stimuli such as nutrient and water availability and wounding
[50–52]. This would require that metabolite traits be
influenced by subtle environmental heterogeneity, leading
to reduced estimates of their heritability. It is therefore
important to expand this analysis to other metabolic path-
ways to determine the extent to which these conclusions are
generalizable.

We also observed that metabolic traits identified signifi-
cantly more epistasic interactions than the corresponding
transcripts. Regulatory processes that occur between tran-
script accumulation and metabolite accumulation, e.g.,
metabolic feedback, post-transcriptional regulation, and
enzyme activity regulation, may increase regulatory interac-
tions between loci, leading to metabolite traits showing higher
levels of epistasis. The constant adjustment of metabolite flux
through complex networks may also enhance the potential for
epistasis. This finding may be specific to the glucosinolate
system. A broader metabolomics analysis in comparison to
eQTLs for all known enzymatic loci will be required to test
whether these differences in heritability and epistasis are a
general feature of transcriptomic and metabolomic networks.
If this is the case, a detailed modeling approach may
contribute to understanding differences in genetic architec-
ture between metabolic and transcript networks.

Conclusion
In this report, we show that it is possible to relate natural

variation at the transcript and metabolite levels for two
glucosinolate biosynthetic networks. Furthermore, this anal-
ysis shows that the comparison of eQTLs to metabolite QTLs
within an a priori–defined framework can identify complex
regulatory mechanisms whereby variation in enzymes or
metabolites may feed back to alter transcript accumulation.
For aliphatic glucosinolates, the beginning and end of the
biosynthetic pathway interact to control the whole pathway.
These feedback associations can lead to the rapid generation
of new hypotheses about the regulation of biosynthetic
networks, but also show that the de novo reconstruction of
biosynthetic relationships from metabolite data will require
great care. In all cases, variation in gene expression also
affected the resultant metabolites, although extrapolating the
effects of gene expression on metabolism requires caution
due to interplay of biochemical mechanisms. Combining
different genomics datasets will greatly expand our ability to
understand both the regulation of metabolism and the
relationship between transcription and metabolism.

Materials and Methods

Mapping populations. The Bay 3 Sha population of 403 A. thaliana
RILs [53] was used to map QTLs controlling individual and total
glucosinolate content for both the aliphatic and indolic glucosino-
lates. The QTL on Chromosome V for total content of aliphatic
glucosinolates in the August 2005 experiment is also presented
elsewhere for clarity (Sonderby, Hansen, Halkier, and Kliebenstein,
unpublished data). Further, 211 of these lines have been analyzed for
variation in gene expression and used to map QTLs controlling
transcript levels [17,18], allowing comparison of QTLs controlling
metabolite accumulation with transcript levels for the underlying
biosynthetic genes.

Plant growth conditions. Seeds were imbibed and cold-stratified at
4 8C for 3 d to break dormancy. Two complete plantings were grown

simultaneously in neighboring growth chambers to provide inde-
pendent biological replicates for each experiment. The full experi-
ment was replicated three times between March of 2004 and August
of 2005, providing six glucosinolate measurements for most lines,
totaling nearly 2,600 measurements. The replicates were labeled May
2004, May 2005, and August 2005. For the May 2005 and August 2005
experiments, plants were grown in flats with 36 cells per flat, and
maintained under short-day conditions in controlled environment
growth chambers. For the May 2004 experiment, plants were grown
in flats with 96 cells per flat, and maintained under short-day
conditions in controlled environment growth chambers. Using the
same growth chambers, similar growth conditions, and assaying
glucosinolate content at the same developmental stage analyzed in
the eQTL mapping experiment maximizes our ability to compare the
metabolic QTL results with eQTLs for the biosynthetic genes [17,18].
At 35 days after germination, a fully expanded mature leaf was
harvested, digitally photographed, and analyzed for glucosinolate
content as described below at the same age as the plants used for
eQTL analysis [17,18].

Analysis of glucosinolate content. The glucosinolate content of
excised leaves was measured using a previously described high-
throughput analytical system [30,54]. Briefly, one leaf was removed
from each plant, digitally photographed, and placed in a 96-well
microtiter plate with 500 lL of 90% methanol and one 3.8-mm
stainless steel ball-bearing. Tissue was homogenized for 5 min in a
paint shaker, centrifuged, and the supernatant was then transferred
to a 96-well filter plate with 50 lL of DEAE sephadex. The sephadex-
bound glucosinolates were eluted by incubation with sulfatase.
Individual desulfo-glucosinolates within each sample were separated
and detected by high-performance liquid chromatography (HPLC)–
diode-array detection, and identified and quantified by comparison
to purified standards. Tissue area for each leaf was digitally measured
using Image J with scale objects included in each digital image [55].
The glucosinolate traits are reported per square centimeter of leaf
area. There was no significant variation detected for leaf density
within these lines (unpublished data).

In addition to the content of individual glucosinolates, we
developed a series of summation and ratio traits based on prior
knowledge of the glucosinolate pathways (Table S1) [56]. For instance,
the content of 3-MT, 3-MSO, 3-OHP, and allyl glucosinolates were
summed (sum3C) to provide an estimate of the content of 3C
aliphatic glucosinolates within these lines (Figure 1C and Table S1).
This enables the detection of QTLs that specifically alter 3C
glucosinolate accumulation irrespective of specific side-chain mod-
ification. The ratio traits were created to measure the efficiency of
partitioning a class of glucosinolates into particular structures. For
example, the ratio allyl glucosinolate to total 3C aliphatic glucosino-
lates (all_r3) allows discrimination of the efficiency of production of
3C alkenyl glucosinolates independent of the accumulation of 3C
glucosinolates (Figure 1C and Table S1). These ratios and summation
traits allow us to isolate the effects of variation at individual steps of
glucosinolate biosynthesis from variation affecting the rest of the
biosynthetic pathway [56].

For each glucosinolate trait, we determined the average value per
RIL per experiment for QTL mapping. Because there was no
significant difference in the variance of the traits between the
experiments, we also calculated the average value per RIL across all
three experiments for all traits (Table S2). Heritability of each
glucosinolate trait was estimated using the general linear model
procedure within SAS (http://www.sas.com) where broad sense
heritability was defined as r2

g/r
2
p (Table S1), where r2

g is the
estimated genetic variance for the metabolite among different
genotypes in this sample of RILs, and r2

p is the estimated phenotypic
variance for the metabolite [2].

Analysis of gene expression QTL. We used previously published
biochemical and coexpression data to identify all known or predicted
genes encoding glucosinolate biosynthetic enzymes [27,31,38,57,58].
For these purposes, the indolic and aliphatic glucosinolate pathways
are considered to be independent biosynthetic processes. This
appears to reflect the biological reality, as the two pathways use
different genes and amino acid precursors [25,27]. Gene families were
separated into genes involved in aliphatic or indolic glucosinolate
pathways based on biochemical or phenotypic data where possible
[59–61]. Where this was not possible, coexpression with the known
indolic or aliphatic glucosinolate genes was combined with published
biochemistry to separate gene family members into their respective
pathways [38]. This generated a list of genes involved in aliphatic and
indolic glucosinolate biosynthesis (Table S3).

Heritability, eQTL position, eQTL effect, and transcript levels for
individual transcripts were obtained using the RMA estimated
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expression values from the previously published analysis of gene
expression in the Bay 3 Sha population [17]. To conduct network
expression analysis, transcript levels for each biosynthetic gene
within each RIL were standardized as z-scores. This is done by taking
the transcript level for a gene within a RIL, subtracting the mean
transcript level for that gene among the RILs, then dividing the
resulting value by the standard deviation for that transcript among
the RILs [18]. The mean z-score for the aliphatic and indolic
glucosinolate biosynthetic genes was calculated within each RIL for
each replicate [18]. This pathway mean z-score per RIL per replicate
was then used to estimate heritability of the aliphatic and indolic
glucosinolate pathway gene expression as described for the metab-
olites. The mean z-score per RIL across replicates was calculated and
used to map QTLs controlling transcript levels of the aliphatic and
indolic glucosinolate biosynthetic pathways (Table S4). Because these
global transcription studies were conducted in the same mapping
population grown under the similar conditions and in the same
growth chambers, it was possible to compare the expression and
metabolite data.

QTL analysis. The Bay 3 Sha RIL population has been previously
genotyped [53], and additional markers were obtained from the
expression QTL analysis [62] as well as markers specific for the
GSL.AOP and GSL.Elong loci [6,30]. To maximize our ability to detect
all possible QTLs, we used the averages from each experiment, May
2004, May 2005, and August 2005, as well as the average across all
experiments to conduct four QTL mapping tests. This was done for
all individual glucosinolate traits, summation traits, and ratio traits
(Table S1).

The four averages for each trait were independently used for QTL
mapping within Windows QTL Cartographer v2.5 (http://statgen.ncsu.
edu/qtlcart/WQTLCart.htm) [63–65]. Composite interval mapping
was implemented using Zmap (Model 6 within Windows QTL
Cartographer v2.5) with a 10-cM window and an interval mapping
increment of 2 cM. Forward regression was used to identify five
cofactors per quantitative trait. The declaration of statistically
significant QTLs is based on permutation-derived empirical thresh-
olds using 1,000 permutations for each trait mapped [66,67]. The Eqtl
module of QTL Cartographer was used to automatically identify the
location of each significant QTL for each trait from each experiment
and the whole experiment average (Tables S5–S7) [65]. Composite
interval mapping with permutations to assign significance using the
underlying trait distribution is fairly robust at handling normal or
near-normal traits as found for most of our traits [68]. In addition, all
data from the three different experiments were used in the multi-
trait composite interval algorithm within QTL Cartographer v2.5.

QTL clusters were identified by using the QTL summation
approach, where the position of each QTL for each trait for each
experiment is indicated by a 1, and the number of traits controlled by
a QTL at a given position is totaled [18]. This summation was
conducted using four groups: Group I, all aliphatic glucosinolate
metabolite traits; Group II, all eQTLs for aliphatic glucosinolate
biosynthetic genes; Group III, all indolic glucosinolate metabolite
traits; and Group IV, all eQTLs for indolic glucosinolate biosynthetic
genes. These QTL clusters identified a set of defined genetic positions
that were then named respective to their position and whether they
affected aliphatic or indolic glucosinolate content (Tables S5–S7).
The QTLs at the previously characterized and cloned AOP and Elong
loci were named as such [30–32,69].

To further validate each QTL identified and query for potential
epistasis, we conducted an analysis of variance (ANOVA) using all
experiments. For each trait, the markers most closely associated with
each significant main-effect QTL for that trait were used as main
effect cofactors. In addition, experiment (May 2004, May 2005, and
August 2005) was used as a main effect cofactor. An automated SAS
script was then developed to directly test all main effects as well as all
possible pairwise interactions, including experiment 3 marker(QTL)
and marker(QTL) 3 marker(QTL) interactions. Significance values
were corrected for multiple testing within a model using false
discovery rate (, 0.05) in the automated script. The script returned
all significance values as well as QTL main-effect estimates in terms of
allelic substitution values (Tables S5–S7). No significant three-way
interactions were identified.

AOP2 analysis. Two independent homozygous lines containing
functionally expressed AOP2 transcript from B. oleracea expressed
from a 35S promoter were obtained in the Col-0 background that is
null for AOP2 and AOP3 [31,40]. These two lines were grown in a
randomized block design with wild-type Col-0 and tested by HPLC
for glucosinolate content and by ATH1 Affymetrix microarrays
(http://www.affymetrix.com) for altered transcript levels [17,18]. For
total aliphatic glucosinolate content, six individual plants per line

were measured and ANOVA used to test for altered glucosinolate
accumulation. The complete experiment was conducted twice. As
there was no difference between the independent transgenic lines,
this factor was removed from the model. From each experiment, two
independent RNA samples from Col-0 and two independent RNA
samples from Col-0::AOP2 were obtained and hybridized with ATH1
Affymetrix microarrays as described [17,18]. Transcript levels for the
genes involved in aliphatic glucosinolate biosynthesis (Table S3) were
obtained and used in a targeted ANOVA testing the effect of the
AOP2 transgene. p-values were tested for significance against a false
discovery rate of 0.05 using this subset of genes [70].

Supporting Information

Figure S1. Gene Family and Transcription Factor eQTLs for the
Aliphatic Glucosinolates

QTL position information for the FMOs, aconitases, and putative
glucosinolate regulatory factors are presented as described in Figure 3.

Found at doi:10.1371/journal.pgen.0030162.sg001 (1.2 M TIF).

Table S1.Heritability of Glucosinolate Variation within the Bay3Sha
RILs

For all traits, ANOVA was conducted to test for the effect of variation
between the RILs (Line), Experiment, Flat within an Experiment
(Rep(Exp)) and an interaction between Line and Experiment. The p-
values, sums of squares, and percent of total variance are presented.

Found at doi:10.1371/journal.pgen.0030162.st001 (38 KB XLS).

Table S2. Mean Values for Glucosinolate Traits in Each RIL

The mean value and standard deviation for each trait as measured
within the described experiments is provided. Trait abbreviations are
as listed in Table S1. All glucosinolate values are in lmol mg�1. Line
represents the specific Bay 3 Sha RIL and N is the number of
measurements obtained for this RIL.

Found at doi:10.1371/journal.pgen.0030162.st002 (841 KB XLS).

Table S3. Gene lists for Glucosinolate Pathway Genes

The genes defined as being involved in glucosinolate biosynthesis are
presented along with their pathway. Functional Proof indicates
whether the gene has been experimentally validated as playing a role
in glucosinolate production or if the function is predicted.

Found at doi:10.1371/journal.pgen.0030162.st003 (29 KB XLS).

Table S4. Metabolic QTLs for Aliphatic Glucosinolate Traits

The average trait value per RIL across experiments along with the
trait value per RIL for each individual experiment was used for QTL
mapping; the presence of a QTL in a specific experiment is shown
under ‘‘QTL Detection in Given Experiment.’’ The MT QTL column
shows the complete results from the multitrait composite interval
mapping within QTL Cartographer. M means that the QTL was
identified as a main effect, while I means that it had an experiment
specific interaction, and MI shows that it was found with both main
and interaction effects using multitrait composite interval mapping.
The data from each experiment were used to conduct ANOVA to test
each QTL using the nearest marker as the main effect, with
significance presented under ‘‘Main Effect’’ column. For each
marker/QTL, the model tested for a QTL 3 Experiment interaction,
‘‘Exp Interaction.’’ The model tested all pairwise marker 3 marker
interactions for evidence of epistasis. The significance of each
pairwise test is presented under the columns marked ‘‘Pairwise
assessment of Epistasis.’’ Finally, the model was used to estimate the
allele substitution effect of each locus as shown. NS represents
nonsignificant results within this model.

Found at doi:10.1371/journal.pgen.0030162.st004 (53 KB XLS).

Table S5. QTLs for Aliphatic Glucosinolate Summation Traits

QTLs detected for each aliphatic summation glucosinolate trait are
presented as a separate table. The average trait value per RIL across
experiments along with the trait value per RIL for each individual
experiment was used for QTL mapping; the presence of a QTL in a
specific experiment is shown under ‘‘QTL Detection in Given
Experiment.’’ The MT QTL column shows the complete results from
the multitrait composite interval mapping within QTL Cartographer.
M means that the QTL was identified as a main effect, while I means
that it had an experiment specific interaction, and MI shows that it
was found with both main and interaction effects using multitrait
composite interval mapping. The data from each experiment were
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used to test each QTL using the nearest marker as main effect, with
significance determined by this ANOVA presented under the ‘‘Main
Effect’’ column. For each marker/QTL, the same model tested for a
QTL 3 Experiment interaction, ‘‘Exp Interaction.’’ This model also
tested all pairwise marker 3 marker interactions for evidence of
epistasis. The significance of each pairwise test is presented under the
columns marked ‘‘Pairwise assessment of Epistasis.’’ Finally, the
model estimated the allele substitution effect of each locus. For all
cells, NS represents nonsignificance within the model.

Found at doi:10.1371/journal.pgen.0030162.st005 (50 KB XLS).

Table S6. eQTL for Glucosinolate Biosynthetic Genes

Significant eQTLs previously detected for each glucosinolate bio-
synthetic gene. The genetic position in chromosome and cM is
presented along with the genes’ identities. In addition, the additive
effect of the Bay-0 allele at each eQTL is provided.

Found at doi:10.1371/journal.pgen.0030162.st006 (31 KB XLS).

Table S7. Average Gene Network Expression (z-Score)
The mean z-score for each RIL for the aliphatic glucosinolate and
indolic glucosinolate biosynthetic pathways are presented for the 211
RILs where there are available data.

Found at doi:10.1371/journal.pgen.0030162.st007 (27 KB XLS).

Table S8. Metabolic QTLs for Indolic Glucosinolate Traits

QTLs detected for each indolic glucosinolate trait are presented as a
separate table. The average trait value per RIL across experiments
along with the trait value per RIL for each individual experiment was
used for QTL mapping, and the presence of a QTL in a specific
experiment is shown under ‘‘QTL Detection in Given Experiment.’’
The MT QTL column shows the complete results from the multitrait
composite interval mapping within QTL Cartographer. M means that
the QTL was identified as a main effect, while I means that it had an
experiment specific interaction, and MI shows that it was found with
both main and interaction effects using multitrait composite interval
mapping. The data from each experiment were used within an

ANOVA to test each QTL using the nearest marker as main effect;
significance is presented under the ‘‘Main Effect’’ column. For each
marker/QTL, the same model tested for a QTL 3 Experiment
interaction, ‘‘Exp Interaction.’’ Finally, the same model tested all
pairwise marker 3 marker interactions for evidence of epistasis. The
significance of each pairwise test is presented under the columns
marked ‘‘Pairwise assessment of Epistasis.’’ Finally, the model was
used to estimate the allele substitution effect of each locus as shown.
For all cells, NS represents nonsignificance within the model.

Found at doi:10.1371/journal.pgen.0030162.st008 (32 KB XLS).

Accession Numbers

The microarray dataset used in this study has been deposited at
European Bioinformatics Institute ArrayExpress (http://www.ebi.ac.
uk/arrayexpress) under numbers E-TABM-126 and E-TABM-224. All
gene identifiers are listed in Table S3.
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