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Abstract
High-grade serous ovarian cancer (HGS-OvCa) is one of the most lethal gynaeco-
logical malignancies. Molecular classification identified an immunoreactive subtype 
of HGS-OvCa; however, the immunologic characteristics of immunoreactive HGS-
OvcA remain unclear. In this study, 121 immunoreactive HGS-OvCa samples were 
identified from a meta-analysis of 5 large transcriptome profiling data sets using a 
cross-platform immunoreactive HGS-OvCa subgroup-specific classifier. By compar-
ing the gene expression profiles of immunoreactive HGS-OvCa samples and normal 
tissues, 653 differentially expressed genes (DEGs) were identified. KEGG pathway 
analysis revealed that the leukocyte transendothelial migration pathways were sig-
nificantly enriched in the immunoreactive HGS-OvCa. Protein-protein interaction 
analysis identified a module that showed strong involvement of the immune-related 
chemokine signalling pathway. Moreover, the GSEA enrichment analysis showed a 
T-cell subgroup and M1 macrophages were significantly enriched in immunoreactive 
OvCa compared with normal samples. Macrophage infiltration levels were signifi-
cantly elevated in immunoreactive HGS-OvCa compared with other OvCa subtypes. 
In addition, expression of immune checkpoint molecules VTCN1 and IDO1 was sig-
nificantly increased in immunoreactive HGS-OvCa. In summary, our results suggest 
that the immunoreactive HGS-OvCa has unique molecular characteristics and a 
tumour-associated immune microenvironment featured by increased infiltration of 
macrophages, rather than lymphocytes. VTCN1 could be potential targets for the 
treatment of immunoreactive HGS-OvCa.
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1  | BACKGROUND

High-grade serous ovarian cancer (HGS-OvCa) is one of the most 
common malignancies of the female reproductive system, ranking 
third in morbidity among all gynaecological cancers.1 Although sur-
gery combined with chemotherapy is used as a standard of care, 
75% of treated patients may experience drug resistance, relapse and 
short survival times. Only a fraction of the treatment-sensitive pa-
tients have a long disease-free survival.2

The clinical application of immune checkpoint inhibitors is one 
of the great successes of anticancer treatment in recent years.3 The 
immune checkpoints mediate the balance between immune surveil-
lance and immune escape.4 Immune checkpoint inhibitors such as 
PD-1/PD-L1 inhibitors have shown promising antitumour activity 
and limited adverse effects in treating several types of cancers.5 
Although HGS-OvCa had a strong immune recognition susceptibil-
ity,6 the response of HGS-OvCa to anti-PD-1/PD-L1 monotherapy 
was minimal in some patients. The lack of therapeutic efficacy may 
be because of the insufficient and heterogeneous expression of 
PD-1 in the tumour-associated microenvironment of HGS-OvCa.7 
However, there still lacks an effective way to distinguish the immu-
notherapy-sensitive cohort in HGS-OvCa patients.

Cancer heterogeneity is directly related to disease progres-
sion and patient prognosis. Take breast cancer as an example—it 
was classified into five main subtypes: luminal A, luminal B, HER2-
overexpression, basal-like and normal-like. The prognosis of HER2-
positive breast cancer patients who use trastuzumab as a targeted 
treatment is significantly better than that of patients with basal-like 
breast cancers.8 HGS-OvCa also exhibits high heterogeneity among 
its molecular characteristics. Similar to breast cancer, the classifica-
tions of different subtypes of HGS-OvCa might be useful to predict 
the drug sensitivity and the treatment outcome of patients.9

The application of high-throughput gene expression profiling 
methods enables accurate identification of the molecular subtypes 
of HGS-OvCa. Tothill et al10 identified four distinct molecular sub-
types of HGS-OvCa. Among them, C1 (mesenchymal) subtype cor-
relates with the high stromal response, the C2 (immunoreactive) 
subgroup exhibits high expression of immune cell-related genes, the 
C4 (differentiated) subtype shares some common features with se-
rous borderline tumours, and the C5 (proliferative) subtype demon-
strates low expression levels of differentiation markers. The Cancer 
Genome Atlas (TCGA) Research Network showed that immunoreac-
tive HGS-OvCa exhibits high expression levels of the T-cell chemo-
kine ligands CXCL11 and CXCL10, and its receptor CXCR3. They 
suggested that the C2 subset has a unique immune microenviron-
ment. Thus, this subset may benefit from immune checkpoint-tar-
geted treatments.

However, controversy exists on whether the prognosis of pa-
tients could be affected by the molecular subtypes of HGS-OvCa. 
Zhang et al11 classified the survival pattern of four subtypes of 
HGS-OvCa using the data from TCGA. They concluded that it 
was the tumour-associated stroma, not HGS-OvCa subtypes, that 
was associated with the patient's prognosis.11 On the other hand, 

Shilpi et al12 developed a novel classification system using the 
exon array and RNA sequencing data of HGS-OvCa from TCGA. 
They showed that the molecular subtypes of HGS-OvCa could 
stratify patients into different survival patterns.12 More impor-
tantly, they revealed that the prognosis of the immunoreactive 
subtype was not the best, which was unexpected.12 Meanwhile, 
Fucikova et al13 emphasized that high expression levels of immune 
checkpoint molecules PD-L1 and TIM-3 were strong prognostic 
factors of HGS-OvCa. However, the prognostic impact of immune 
checkpoint molecules on each subtype of HGS-OvCa patients was 
not determined in previous studies.

The aim of the present study was to elucidate the unique mo-
lecular and immune characteristics of the immunoreactive HGS-
OvCa and to identify the potential immune checkpoint inhibitors 
for its treatment. Here, we established a cross-platform classifier 
to distinguish the immunoreactive subtypes based on gene ex-
pression profiles. We identified the differentially expressed genes 
(DEGs) between immunoreactive HGS-OvCa tissues and normal 
tissues according to the classifier. A series of bioinformatic analy-
ses were conducted to investigate the distinct molecular charac-
teristics of immunoreactive HGS-OvCa. After that, we compared 
the enrichment status of immune cells between immunoreactive 
OvCa tissue and the normal tissue. Then, the comparison of the 
immune cell abundance and fractions between subtypes was also 
performed. The immune checkpoints expression patterns in sub-
groups were evaluated and validated by multiple methods using 
varies datasets.14 Finally, we further explored the possible mech-
anism that maintains the immune-balanced microenvironment in 
immunoreactive HGS-OvCa.

2  | MATERIAL S AND METHODS

2.1 | Establishment of a cross-platform classifier of 
immunoreactive HGS-OvCa

The mRNA profile of ovarian cancer and related data (ovarian can-
cer, RNA Seq V2, Illumina GA-DNASeq) in the TCGA database was 
acquired from the UCSC cancer genome database (http://xena.ucsc.
edu/). The expression data of genes shared across multiple data 
sets including the TCGA dataset and 5 Gene Expression Omnibus 
(GEO) datasets (GSE06008, GSE18520, GSE26712, GSE27651, 
GSE9891) were extracted (Table 1). These gene expression values 
were normalized and scaled using the scikit-learn library in R. The 
299 HGS-OvCa samples from TCGA were sorted into four subtypes, 
including differential, immunoreactive, proliferative and mesenchy-
mal types, according to TCGA classification (Additional file S1).15 
The top 50 expressed genes were selected as feature genes based 
on the filter methods for feature selection16 and an expression ma-
trix was formed. Then, the 299 well-characterized samples from 
the TCGA mRNA expression data set were randomly divided into 
a 250-case training cohort and a 49-case validation cohort, respec-
tively. Samples in the training cohort were classified as either the 

http://xena.ucsc.edu/
http://xena.ucsc.edu/
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immunoreactive type or non-immunoreactive type by applying clus-
ter analysis using the BP neural network model in Python. The same 
method was applied to the validation cohort to verify the accuracy 
of the model.

The model accuracy was optimized and computed by applying 
the set model to GSE9891 as external validation. The results were 
compared with the findings of Tothill.10 A receiver operating charac-
teristic (ROC) curve was constructed to identify the accuracy of the 
model by computing the area under the curve (AUC). Eventually, a 
cross-platform model was established and applied to the other four 
GEO datasets to classify them into immunoreactive and non-immu-
noreactive HGS-OvCa.

2.2 | A meta-analysis based on the cross-
platform model

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r) were used to 
computed the P-value, adjust. P value, t value, LogFC value and B 
value of each sequencing site of the corresponding probe. For the 
same gene, the most significant sequencing site remains and oth-
ers were excluded. Then, the commonly expressed genes among the 
four GEO data sets were obtained using Perl and the Merge pack-
age in R software. Two meta-analyses were performed on four GSE 
data sets, including cancer tissues, and the control group, using the 
MAMA and RankProd package. Z scores (which had |7| as a cut-off 
value) and the pval-test (which had |5| as a cut-off value) were used 
to filter the DEGs. Genes that met the above criteria were regarded 
as the final selected DEGs.

2.3 | GO annotations and KEGG pathway 
enrichment analysis

The Gene Ontology (GO)17 and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway18 are two powerful databases to explore 
the underlying activated or inhabited pathways in cancers. KEGG 
and GO pathway analyses were performed on DEGs in immuno-
reactive HGS-OvCa with a false discovery rate (FDR) of less than 
0.1 using the WEB-based GEne SeT AnaLysis Toolkit (http://www.
webge stalt.org/option.php).19

2.4 | Construction of the protein-protein interaction 
(PPI) network

To obtain a system-level understanding of the cellular function and 
biological activity in immunoreactive HGS-OvCa, we analysed the 
DEGs with the Search Tool for the Retrieval of Interacting Genes 
(STRING, http://strin g-db.org) database.20 PPI networks were con-
structed with confidence scores greater than 0.4 as the significance 
cut-off value. The acquired data were visualized using Cytoscape 
software.21TA
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2.5 | Identification of hub genes and 
significant modules

Hub genes were identified based on eigenvector centrality using 
CentiScaPe 2.1.22 Eigenvector centrality is a measurement to evalu-
ate the influence of a node in a certain network. The most signifi-
cant cluster gene module was chosen with the condition that the 
degree cut-off = 2, node score cut-off = 0.2, k-core = 2, and max. 
depth = 100 using Molecular Complex Detection (MCODE) soft-
ware. Moreover, the DEGs in each module with an FDR less than 
0.1 were subjected to the WEB-based GEne SeT AnaLysis Toolkit to 
perform GO and KEGG analyses.

2.6 | Kaplan-Meier (KM) survival analysis

KM plotter (http://kmplot.com/analy sis/) is an effective online pro-
gram that contains 1816 HGS-OvCa patients.23 The gene expression 
file of the hub genes and relative survival information was extracted 
from the GEO, European Genome-phenome Archive (EGA) and 
TCGA databases. Survival analysis was performed to explore the re-
lationships between the expression levels of selected genes and the 
prognosis of patients with HGS-OvCa.

2.7 | Analysis of enrichment and abundance of 
tumour-infiltrating immune cells in immunoreactive 
HGS-OvCa

Gene Set Enrichment Analysis (GSEA) was performed to evaluate 
the differential expression between immunoreactive HGS-OvCa 
and normal tissue based on a pre-defined leukocyte gene signature 
matrix using the WEB-based GEne SeT AnaLysis Toolkit.24

To investigate the immune cell abundance in immunoreac-
tive HGS-OvCa, we used the Tumor Immune Estimation Resource 
(TIMER; cistrome.shinyapps.io/timer) to estimate the abundance of 
immune cells (B cells, CD4 T cells, CD8 T cells, macrophages and 
dendritic cells) in TCGA samples. The abundance data were analysed 
and verified using pathological estimations.25

2.8 | Characterization of the expression 
patterns of the selected genes in bulk 
expression and single-cell RNA-sequencing (scRNA-
seq) data sets

The expression levels of specific genes in four subtypes of HGS-
OvCa were acquired from 5 GSE data sets. The comparison be-
tween subtypes was applied by using the beanplot package in R 
3.5.1.

The raw data of scRNA-seq of HGS-OvCa were obtained from 
Shih et al26 (GSE118828). Seurat, another R package, was used to 
analyse the scRNA-seq data. The cell population that expressed the 

selected genes were identified after data normalization, scaling, lin-
ear dimensional reduction and visualization using UMAP.27

3  | RESULTS

3.1 | Establishment of a cross-platform classifier of 
HGS-OvCa subtypes

To build a comprehensive cross-platform classifier, we first ex-
tracted 10 411 commonly shared genes after screening the HGS-
OvCa mRNA expression profiling data in 5 GEO data sets (650 
HGS-OvCa samples) and the TCGA (299 HGS-OvCa samples) data 
set. Then, 299 well-characterized samples from the TCGA data set 
were randomly divided into a 250-case training cohort and a 49-case 
validation cohort, respectively. Samples in the training cohort were 
classified as the immunoreactive type or non-immunoreactive type 
by applying BP neural network model using the selected 50 feature 
genes. The accuracy of the model applied to the TCGA validation co-
hort was 85.6%, with a 95% confidential interval (CI) of 0.727-0.940 
(Figure 1A). The same method was applied to the external validation 
cohort to verify the accuracy of the model by applying the set model 
to GSE9891 and comparing the results with those of Tothill et al.10 
The ROC curve suggested that the accuracy of the model applied 
to GSE98981 was 80.2%, with a 95% CI of 0.718-0.870 (Figure 1B).

The expression profiles of marker genes selected by TCGA15 fur-
ther confirmed the accuracy of our classifier. As shown in Additional 
file S2, the expression levels of these genes among the different 
HGS-OvCa subtypes were consistent with the original conclusion. 
For example, CXCL11 and CXCR3 were highly expressed in immuno-
reactive HGS-OvCa, while the expression of CXCL12 was low.

3.2 | Exploration of the molecular characteristics of 
immunoreactive HGS-OvCa

We compared the expression levels of 12,818 genes in the 5 GEO 
data sets. Under the condition of |pval_test| > 5 and |Z-score| > 7, we 
identified 653 DEGs (Figure 2A), including 226 up-regulated genes 
(Additional file S3) and 427 down-regulated genes (Additional file 
S4) between immunoreactive and normal ovarian surface epithelium 
tissues. Some DEGs overlapped with the featured genes selected by 
the BP neural network.

To explore the molecular functio
ns of the DEGs, we used the WEB-based GEne SeT AnaLysis 

Toolkit to perform pathway enrichment analyses according to KEGG 
and GO annotation. The KEGG pathway analysis results showed that 
up-regulated DEGs were mostly enriched in cell cycle and leukocyte 
transendothelial migration (TEM) pathways (FDR < 0.1, Figure 2B, 
Additional fileS5). GO biological process analysis also indicated that 65 
up-regulated DEGs were enriched in cell cycle pathways (Additional 
file S6). In our previous work,28 we concluded that the most significant 
up-regulate-gene enrichment pathway between ovarian cancer tissues 

http://kmplot.com/analysis/
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and normal ovarian epithelium tissues was also the cell cycle pathway. 
This result confirmed that aberrant functions of the cell cycle still are 
the primary molecular characteristic in immunoreactive HGS-OvCa, 
which is the same as the general HGS-OvCa characteristics.

A PPI network that included 509 nodes and 2542 edges was built 
with the STRING database (the confidence score was higher than 0.4). 
We screened 10 hub genes (PRKCA, FGF13, MYH14, UBE2I, MELK, 
AKT3, FAS, KDR, PAX8 and CXCR4) based on eigenvector centrality. 
Additionally, the top 2 significant modules were acquired from the 
PPI network using MCODE (Figure 2C). Functional annotation indi-
cated that Module 1 was associated with the cell cycle, which is con-
sistent with the molecular features of general HGS-OvCa.28 Module 
2 is a distinctive module in immunoreactive HGS-OvCa and is related 
to the chemokine signalling pathway (P = 1.32 × 10−6, Additional file 
S7) according to KEGG analysis. The chemokine signalling pathway is 
responsible for attracting leukocytes or other immune cells to the in-
flammatory location to activate the immune response. It is essential 
for leukocyte TEM process, which was found activated in the immu-
noreactive HGS-OvCa. In conclusion, the results of KEGG analysis in 
DEGs and module genes showed that immunoreactive HGS-OvCa 
has distinct immune-related molecular characteristics.

To further explore the molecular characteristics of immunoreac-
tive HGS-OvCa, the up-regulated and down-regulated DEGs of im-
munoreactive HGS-OvCa were compared with the DEGs between 
tumour and normal control in the general HGS-OvCa samples.28 104 

immunoreactive-subtype-specific up-regulated and 249 immuno-
reactive-subtype-specific down-regulated DEGs were determined 
among the 653 immunoreactive HGS-OvCa DEGs (Additional file 
S8, Additional file S9). It shows that the up-regulated cell cycle path-
way is commonly shared by both immunoreactive HGS-OvCa and 
general HGS-OvCa. The immune-related genes found by KEGG and 
PPI analysis in the immunoreactive HGS-OvCa were mainly up-regu-
lated. The expression patterns of these genes in the immunoreactive 
HGS-OvCa are different from the general HGS-OvCa (Figure 3A).

In addition, we re-calculated the DEGs between immunoreactive 
type and non-immunoreactive type based on a cut-off of FDR < 0.01, 
28 significant up-regulated genes and 26 significant down-regulated 
genes were identified (Figure 3B,C). Two immune checkpoint mole-
cules, VTCN1 and IDO1, were found to be distinctly up-regulated when 
compared with normal tissue. Both genes are up-regulated compared 
with other subgroups of HGS-OvCa. The Kaplan-Meier survival anal-
ysis showed that three immune checkpoint molecules IDO1, VTCN1 
and CX3CL1 were associated with prognosis (Additional file S10).

3.3 | Investigation of the immune characteristics in 
immunoreactive HGS-OvCa

To understand the involvement of immune cell subsets in immu-
noreactive HGS-OvCa, GSEA was performed to investigate the 

F I G U R E  1   The construction and validation of the OvCa classifier. A, The accuracy when the classifier is applied to samples in TCGA 
validate cohort (Left). The heatmap of the expression status of the classifier-adopted feature genes in the TCGA cohort (Right). B, The 
accuracy when the classifier is applied to samples in the GSE9891 validate cohort (Left). The heatmap of the expression status of the 
classifier-adopted feature genes in GSE9891 cohort (Right)
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enrichment of several immune cell subtypes in immunoreactive 
HGS-OvCa compared with normal tissues using a leukocyte sig-
nature matrix,24 which was constructed by applying CIBERSORT 
(cell-type identification by estimating relative subsets of RNA tran-
scripts).24 The GSEA result shows the immunoreactive HGS-OvCa 
DEGs have significantly enriched T-cell follicular helper cells, CD4 
memory T cells and M1 macrophages (Figure 4), activated dendritic 
cells and CD8 T cells.

After comparing the immune cell enrichment status between 
immunoreactive HGS-OvCa and normal tissues, we analysed the 
relative abundance of 22 immune cells among the four HGS-OvCa 
subgroups. The immune cells fractions of each patient in TCGA have 
been estimated previously.14 Compared with the other three sub-
types of HGS-OvCa, the macrophage fractions were significantly 
up-regulated, while the lymphocyte fractions showed no statistically 
significant changes in immunoreactive HGS-OvCa (Figure 5A). In ad-
dition, analysis of the Tumor Immune Estimation Resource (TIMER; 
cistrome.shinyapps.io/timer) further confirmed that the abundance 
of macrophages in HGS-OvCa was higher than other subtypes of 
immune cells in the tumour-associated microenvironment, while 
lymphocyte abundance was not significantly different (Figure 5B). 
To conclude, the results show that macrophage infiltration, instead 
of lymphocyte infiltration, maybe one of the key characteristics of 
immunoreactive HGS-OvCa. It is worth noting that, different from 

the GSEA results, the abundance of T cells in immunoreactive HGS-
OvCa was similar to other subtypes of HGS-OvCa.

3.4 | The exploration of the relationships of 
macrophages and VTCN1 expression based on single-
cell analysis

A previous study revealed that VTCN1 was mainly expressed in 
tumour-associated macrophages, which had negative effects on 
the T-cell response.29 Our analysis above found that immunoreac-
tive HGS-OvCa presents high abundant macrophage infiltration 
and up-regulated expression of VTCN1. We analysed a published 
single-cell RNA-seq data set to explore the relationship between 
VTCN1 and tumour-infiltrating macrophages. Macrophage sig-
nature CD68 was used to locate the macrophage cluster in the 
GESE118828 single-cell data set (Figure 6A,B).26 The results 
confirmed that the VTCN1 is indeed mainly expressed in the 
tumour-infiltrating macrophages (Figure 6C), but not in tumour 
cells. Finally, we reported the overall survival based on VTCN1 
expression in each subgroup of HGS-OvCa based on the TCGA 
cohort. It should be mentioned that although it did not reach the 
statistical significance, the high expression level of VTCN1 has 
the potential to be the risk factor (Figure 6D). This result suggests 

F I G U R E  2   The characteristics and enrichment status of DEGs identified from immunoreactive HGS-OvCa. A, The 653 overlapped DEGs 
selected based on the standard of | pval_test |> 6 and | Z |> 7 using Venny 2.1.0. B, The visualization of KEGG analysis for up-regulated DEGs 
and down-regulated DEGs in immunoreactive HGS-OvCa. C, The top 2 most significant modules in the PPI network. DEGs were related to 
the cell cycle pathway in Module 1 and were related to the chemokine signalling pathway in Module 2
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VTCN1 up-regulated patients may have a distinct prognosis pat-
tern compared with other patients.

4  | DISCUSSION

HGS-OvCa exhibits high levels of heterogeneity in its molecular 
and histological characteristics. The immunoreactive subgroup has 
a distinct immune cell-infiltrated microenvironment and a generally 
favourable outcome.30 The aim of the present study was to gain a 
deeper understanding of the underlying mechanism and to iden-
tify potential therapeutic targets for HGS-OvCa. We established 
a cross-platform statistical classifier, which allows us to accurately 
classify 121 samples from 5 independent HGS-OvCa gene expres-
sion dataset into immunoreactive and non-immunoreactive cases. 
The classification of a large number of immunoreactive HGS-OvCa 
provides sufficient power for us to identify true DEGs in immuno-
reactive HGS-OvCa compared normal control samples. After re-
moving genes also differentially up- and down-regulated in general 
HGS-OvCa samples.28 A total of 104 distinctly up-regulated and 249 
down-regulated DEGs were identified as unique for immunoreactive 
HGS-OvCa. Among these DEGs, immune-related genes were mostly 
up-regulated in immunoreactive HGS-OvCa, while in general HGS-
OvCa, they were equally distributed among down-regulated and up-
regulated genes.

KEGG analysis and GO analysis of the list of DEGs fur-
ther revealed activation of the leukocyte TEM pathway in 

immunoreactive HGS-OvCa, while the cell-cycle-related genes 
are commonly up-regulated DEGs in general HGS-OvCa and im-
munoreactive HGS-OvCa. TEM refers to the process of leukocyte 
locomotion along with endothelial cells and across the border from 
the blood to the location of the inflammation. Thus, our analy-
sis suggests that the phenotype of immunoreactive HGS-OvCa 
is largely driven by immune cell infiltration. The PPI network 
analysis similarly identified significant module and hub genes re-
lated to immune response, and proteins significantly associated 
with the chemokine signalling pathway in immunoreactive HGS-
OvCa. Among them, proteins in Module 2 are significantly associ-
ated with the chemokine signalling pathway such as CXCL13 and 
CXCR4. CXCL13 serves as a chemoattractant that migration of B 
lymphocytes and chemotaxis of cells expressing CXCR5. CXCR4 is 
a chemokine receptor commonly expressed on most hematopoi-
etic cell types including macrophages, monocytes, T and B lym-
phocytes, as well as ovarian cancer cells. Previous studies have 
shown that CXCL13 and CXCR4 expressions are associated with 
better prognosis in TP53 mutant ovarian cancer patients.31

Given that not merely the number of tumour-infiltrating im-
mune cells, but the type of infiltrating immune cells are important 
for proper immune surveillance and control of tumour cells, we ap-
plied the recently developed computation approach to quantify the 
abundance of infiltrating immune cells in HGS-OvCa sample based 
on the bulk RNA-seq and gene expression array data. We found the 
macrophages significantly enriched and infiltrated in the microenvi-
ronment compared with the other 3 subgroups and normal tissues 

F I G U R E  3   The unique genetic characteristics of immunoreactive HGS-OvCa compared with the general HGS-OvCa and other subtypes. 
A, The scatter diagram of specificity of DEGs in immunoreactive HGS-OvCa (IR-OvCa) compared with the general HGS-OvCa. Both Z for 
combined pVAL-test and Z score are proportional to the gene expression level. the grey dots showed the expression status of genes in OvCa 
according to previous research.28 The red, yellow and green dots showed the expression status of the different gene sets (that identified 
from IR-OvCa) in general OvCa. B, The heatmap of the 28 significantly up-regulated gene (FDR < 0.01) in the TCGA HGS-OvCa cohort 
between immunoreactive type and non-immunoreactive type. C, The heatmap of the 26 significantly down-regulated genes (FDR < 0.01) in 
the TCGA HGS-OvCa cohort between immunoreactive subtype and non-immunoreactive subtype
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based on the results from GSEA and TIMER analysis. The results 
could partly explain why the prognosis of this subtype is still rela-
tively poor in HGS-OvCa.10

Among the immune-related genes overexpressed in immunoreac-
tive HGS-OvCa, we identified three candidate immunotherapy targets 
including IDO1, CX3CL1 and VTCN1. IDO1 is the first key rate-limiting 
enzyme in the tryptophan metabolic oxidation pathway.32 This en-
zyme is known as an ‘immune checkpoint’ because high expression 
could result in the suppression of the immune response and poor pa-
tient prognosis.33 IDO1-mediating tumour immune escape is a result 
of two major effects of IDO1. First, the high expression level of IDO1 
protein could lead to a reduction in Trp, and the lack of Trp inhibits the 
activation of responding T cells through the mTORC1 and GCN2 path-
ways.34 Second, the accumulation of the downstream kynurenines 
(Kyn) could promote the expression of IL-10, followed by the trans-
formation of CD4+ T cells to FOCP3-expressing regulatory T cells, and 
eventually inhibit the normal immune response.35 Thus, although im-
mune cells are recruited to the tumour microenvironment, IDO1 could 
suppress the immune response by inhibiting the responding T cells 
and converting the CD4+ T cells to regulatory T cells.

Several IDO1 inhibitors have been investigated in pre-clinical 
analyses, and the data have shown that targeting IDO1 protein is 
safe and well-tolerated. Although the response rate of single-agent 
treatment of IDO1 is only 10%-18%,36 combined chemotherapy or 
other immunotherapy could yield a promising objective response 
rate (ORR, up to 57%).37 A previous trial showed that the disease 

control rate (DCR) of the selective IDO1 inhibitor epacadostat plus 
pembrolizumab reached 35% (n = 13) in HGS-OvCa patients and 
that the ORR was 8% (n = 3).38 The variations in ORR and DCR 
might be because of the complexity of the IDO1 mechanisms. 
Thus, given these results, IDO1 might be a very promising target 
for HGS-OvCa.

VTCN1, also called B7-H4, is a negative regulator of the T-cell 
response and shows an 18% amino acid identity with human 
PD-L1.39 This protein is mainly expressed on the cell surface of 
antigen-presenting cells. Moreover, it can significantly inhibit TAA-
specific T-cell proliferation and promote the proliferation of Treg 
cells. Macrophages are the most common antigen-presenting cells 
in tumour stroma.29 Macrophages are classified as M1 and M2. M1 
plays an antitumour role by producing IL12 and TNF-a to induce the 
immune response, while M2 promotes tumour growth and angio-
genesis by tumour promoters.40 A previous study suggested that 
macrophages expressed in the HGS-OvCa microenvironment could 
activate B7-H4 expression by autocrine mechanisms. B7-H4+ mac-
rophages spontaneously expressed IL10 and IL6 protein. Treg cells 
also produced high levels of IL6 and IL10 in ovarian tumours. These 
autocrine factors convert macrophages from the M1 stage to the 
M2 stage. The expression level of B7-H4 protein in tumour-associ-
ated macrophages is significantly related to the poor prognosis of 
HGS-OvCa patients.41 Our results confirmed that VTCN1 was sig-
nificantly up-regulated in the macrophages in immunoreactive HGS-
OvCa (Figure 6).

F I G U R E  4   GSEA analysis of the enrichment of DEGs in immune cells. A, based on the results of the Pvalue test. B, based on the results of 
the Zscore test
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Interestingly, IDO1, VTCN1 and CX3CL1 are protective factors 
in HGS-OvCa, indicating that high expression levels of these fac-
tors are associated with prolonged survival time. However, we 
found that although it did not reach the statistical significance, 
the high expression level of VTCN1 has the potential to be the risk 
factor.

In the present study, we built a cross-platform HGS-OvCa 
subgroup classifier and applied a set of integrated bioinformatic 
tools to systematically analyse the characteristics of immuno-
reactive HGS-OvCa. We clarified that TEM and the chemokine 
signalling pathway were specifically involved in the formation 
of the tumour-associated microenvironment. Moreover, mac-
rophages showed significantly high expression levels in 

immunoreactive HGS-OvCa either compared with normal tissue 
or other subtypes. Two immune checkpoints were up-regulated 
in immunoreactive HGS-OvCa. Their differential expression con-
tributes to the distinct immunoreactive HGS-OvCa tumour-asso-
ciated microenvironment.

5  | CONCLUSIONS

In conclusion, the present study built an effective HGS-OvCa 
subtype classifier to sort immunoreactive HGS-OvCa samples 
in TCGA and GEO data sets. The unique molecular and immune 
characteristics of immunoreactive HGS-OvCa are revealed. 

F I G U R E  5   The estimation of cell fractions and abundance in immunoreactive HGS-OvCa in the TCGA cohort, compared with other 
subgroups. A, The estimated fractions of M1 macrophages and lymphocytes according to the PanTCGA analysis. It showed the lymphocytes 
are slightly up-regulated while M1 macrophages are significantly up-regulated in immunoreactive HGS-OvCa. B, The abundance of 
macrophages and lymphocytes in HGS-OvCa tumour-associated microenvironment according to TIMER
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The immunoreactive HGS-OvCa exhibit an aberrant activated 
chemokine signalling and the leukocyte TEM pathway. Its tumour-
associated microenvironment is main infiltrated by macrophages, 
rather than lymphocytes. Furthermore, VTCN1 might be the key 
gene to explain the immune resistance development of immunore-
active HGS-OvCa.
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