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Neurodevelopmental disorders (NDDs) are multifaceted pathologic conditions

manifested with intellectual disability, autistic features, psychiatric problems, motor

dysfunction, and/or genetic/chromosomal abnormalities. They are associated with

skewed neurogenesis and brain development, in part through dysfunction of the

neural stem cells (NSCs) where abnormal transcriptional regulation on key genes play

significant roles. Recent accumulated evidence highlights C2H2-type zinc finger proteins

(C2H2-ZNFs), the largest transcription factor family in humans, as important targets

for the pathologic processes associated with NDDs. In this review, we identified their

significant accumulation (74 C2H2-ZNFs: ∼10% of all human member proteins) in

brain physiology and pathology. Specifically, we discuss their physiologic contribution

to brain development, particularly focusing on their actions in NSCs. We then explain

their pathologic implications in various forms of NDDs, such as morphological brain

abnormalities, intellectual disabilities, and psychiatric disorders. We found an important

tendency that poly-ZNFs and KRAB-ZNFs tend to be involved in the diseases

that compromise gross brain structure and human-specific higher-order functions,

respectively. This may be consistent with their characteristic appearance in the course

of species evolution and corresponding contribution to these brain activities.

Keywords: brain development, structural abnormality, KRAB domain, mutation, neural stem cells,

transcriptional regulation

INTRODUCTION

Neurodevelopmental disorders (NDDs) are multifaceted pathologic conditions caused by skewed
development of the central nervous system (CNS) and subsequent morphological and/or
functional abnormalities (1). Manifestations associated with NDDs include, but are not limited
to, neuropsychiatric problems, cognitive impairment, motor dysfunctions, language/speech
abnormalities, and affective deficits (2). Intellectual disability (ID), autism spectrum disorders
(ASDs), motor diseases including developmental coordination disorder, communication, speech
and language disorders, attention-deficit/hyperactivity disorder (ADHD), and various genetic
disorders, such as Down syndrome and fragile-X syndrome, all fall into the NDD entity (1).
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Neuropsychiatric disorders like schizophrenia, major depressive
disorder (MDD), and bipolar affective disorder (BAD) are also
considered as part of the NDDs (1). There are significantly
overlapping clinical symptoms between different types of
NDDs (3), suggesting the presence of commonalities shared
among them. The pathologic mechanisms developing NDDs
emerge during the early stage of brain development organized
in utero and in childhood, and this is largely due to
significant involvement of genome deficits in various key genes
required for normal brain development (2). Thus, identifying
causative mutations/genetic abnormalities greatly facilitates our
understanding of the overall pathogenesis and neuropathological
processes of NDDs.

One of the major requirements for normal brain development
is the precise coordination of neural stem cell (NSC) activity
throughout the embryonic period to early childhood (4). NSCs
are self-renewing multipotent cells that give rise to three distinct
types of CNS cells: neurons, astrocytes, and oligodendrocytes
(4). Differentiated neurons are critical for virtually all brain
activities including the coordination of sensory and motor
systems, cognitive functions, and mood maintenance (5). On the
other hand, astrocytes and oligodendrocytes, also known as glial
cells, support proper functioning of the differentiated neurons
(5). During the early stage of embryonic brain development,
NSCs originate from the neuroepithelial stem cells of the
embryonic neural tube (6). NSCs undergo three major stages:
(1) proliferation and renewal of the lineage, (2) migration to
appropriate brain areas, and (3) differentiation into neurons,
astrocytes, or oligodendrocytes; precise transitioning between
these stages is critical for normal brain development (7).
For example, transitioning from proliferation to differentiation
and subsequent induction of the programmed cell death are
crucial for the formation of normal anatomical structure of the
developing brain by maintaining appropriate cell numbers (8, 9).
Importantly, many of these NSCs activities are orchestrated and
driven by the spatio-temporal expression of the groups of genes
responsible for fine-tuning of transcriptional activity (10). Thus,
dysregulation in any processes supported by these key genes
impacts proper NSC activities, resulting in the development of
NDDs (11, 12).

Transcription factors (TFs) are a family of protein molecules
that drive gene transcription by binding directly/indirectly
to the upstream genome regulatory elements of protein-
coding genes (13). Accumulated evidence indicates that TFs
are pivotal for brain development by influencing the ability
of NSCs to differentiate into different neural cell lineages
and the subsequent formation of various brain areas and
substructures (14). Some TFs are also key for the precise
neural cell migration to their final brain destinations (14,
15). Among such TFs, the C2H2-type zinc finger proteins
(C2H2-ZNFs) are highlighted to play significant roles in the
regulation of NSCs activities and subsequent brain development
(16–19). Many of their family members also participate in
the pathogenesis and pathophysiology of NDDs (20). In this
article, we will discuss the biological activities of C2H2-
ZNFs in brain development and their pathologic contribution
to NDDs.

FIGURE 1 | Protein structure of the representative human C2H2-ZNFs. Protein

structure of ZIC1 (Poly-ZF), ZBTB7C (POZ/BTB-ZNF), ZNF74, ZNF18

(KRAB-ZNFs), and ZSCAN10 (SCAN-ZNF) are shown as representatives of

respective subtypes. Some C2H2-ZNFs have multiples of the same or different

domains as indicated in ZNF18. Location and length of the respective domains

are based on the data from the UniProt (https://www.uniprot.org/) and/or the

National Center of Biotechnology Information (NCBI) Conserved Domain

(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Numbers in brackets

indicate amino acid numbers. ZF, C2H2-type zinc finger; KRAB, KRAB domain;

POZ/BTB, POZ/BTB domain; SCAN, SCAN domain.

C2H2-ZNFs

C2H2-ZNFs form the largest TF family in the animal kingdom
with significant expansion of their members through species
evolution (20). The family consists of ∼800 members in humans
(20, 21). In addition to C2H2-type zinc fingers (ZFs), these
proteins contain other functional domains, such as BTB (BR-
C, ttk, and bab)/POZ (Pox virus and Zinc finger), KRAB
(Krüppel-associated box), and/or SCAN (SRE-ZBP, CTfin51,
AW-1, and Number 18 cDNA), and are classified into four
subtypes depending on the possession of these domains: (1)
poly-ZNFs without any other domains, (2) BTB/POZ-ZNFs, (3)
KRAB-ZNFs, and (4) SCAN-ZNFs (20, 21) (Figure 1).

ZFs are small peptide domains forming a secondary structure
supported by a zinc ion, which makes ionic bonds to the
cysteine and/or histidine residues of the finger (22). The C2H2-
type ZF is composed of up to 30 amino acids with the
consensus sequence CX2−4CX12HX2−8H (X refers to any amino
acid), which forms one α-helix and two β-sheets, respectively,
in the carboxyl- and amino-terminal portions (23–25). These
secondary structures of the C2H2-type ZF fold into a stable
three-dimensional assembly through hydrophobic interactions
and enclosure of a zinc ion (26, 27). In C2H2-ZNFs, multiple
ZFs are usually present in tandem and are connected by linkers
with conserved amino acid sequences (28). C2H2-type ZNFs
bind genome DNA at their cognate recognition sequences
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located in the regulatory region of their target protein-coding
genes by forming various modes of contacts to target DNA
double helices with their ZFs. DNA-bound C2H2-type ZNFs
then recruit cofactors, chromatin remodeling proteins and the
RNA polymerase II together with other TFs, and modulate
the transcription rates of downstream coding sequences (29).
In addition to the primary role as DNA-binding factors, some
C2H2-type ZNFs use their ZFs for interacting with other
proteins or double-stranded RNAs, which may be important for
their communication with other proteins/RNAs also attracted
to the multi-molecule transcriptional complex formed on
DNA (28, 30, 31).

Among the functional domains of C2H2-type ZNFs,
BTB/POZ, and KRAB domains have transcriptional regulatory
activity (mainly repressive but sometimes enhancing) by
attracting various repressive cofactor molecules, such as the
histone deacetylases, corepressor complex, heterochromatin
protein 1 (HP1), and/or the KRAB-associated protein-1 (KAP1).
In contrast, the SCAN domain does not have such activities
(21, 32). About seven percent (%) of the human C2H2-type ZNFs
have a BTB/POZ domain, while 43% harbor a KRAB domain
and 7% contain a SCAN domain (33). Sixty-seven percent of
them have only ZFs without any of these domains (33). Some
C2H2-type ZNFs have multiples of the same or of different
domains (29) (Figure 1).

C2H2-ZNFs are highly expressed in the developing brain,
and control early patterning of the CNS (16). They significantly
contribute to the regulation of brain morphogenesis, influencing
the proliferation, migration, and cell fate of NSCs or one-
step committed neural progenitor cells (NPCs), and their
differentiation into neuronal cells (see below). Their implications
to brain disorders still remain elusive, but recent clinical studies
have identified various mutations in the coding sequences of
many C2H2-ZNF genes in patients with NDDs (20). Hence,
we will first discuss the physiologic roles of C2H2-ZNFs in
normal brain development by focusing on their involvement
in the actions of NSCs or NPCs (Table 1). We will then
describe their involvement in the formation of some structural
components of the CNS by introducing experimental and clinical
evidence. Further, we will discuss their pathologic contribution to
particular forms of NDDs.

ROLES OF C2H2-ZNFs IN NORMAL BRAIN
DEVELOPMENT AND THEIR
INVOLVEMENT IN BRAIN
MORPHOLOGICAL ABNORMALITIES

Embryonic brain development or morphogenesis begins with
neurulation, the invagination of the neural plate to form
the neural tube (4). Upon closure of the neural tube, the
neuroepithelial cells residing in the ventricular zone shift
from proliferative to neurogenic, and are committed into
the radial glial progenitor cells (RGCs), which serve as the
primary NPCs for generating neurons and glial cells (8).
Neocortical development relies on different NPCs depending
on their localization, such as apical progenitors (APs) and

basal progenitors (BPs: also known as intermediate progenitors:
IPs), which are, respectively localized in the apical surface
and the basal side of the ventricular zone (117). Neurogenesis
starts at E9-E13 in the mouse embryo in which RGCs go
into two modes of cell division: “symmetric” to produce
two daughter cells that retain the properties of RGCs, and
“asymmetric” dividing into one daughter cell with the property
of RGCs and one differentiated neural cell (8). The transition
from symmetric to asymmetric division of RGCs is extremely
critical for determining the numbers of residing neurons and
subsequent brain size, whereas intrinsically coordinated cell
cycle progression in these cells plays a role in balancing their
proliferating vs. differentiating properties (9). Disruption of these
processes thus leads to abnormal brain development (9).

Various C2H2-ZNFs are significantly involved in the above
indicated process of neurogenesis organized by RGCs. The
birth of cortical neurons is severely reduced or lost in Gli3-
mutated mice (9). Gli3 is a poly-ZNF functioning in the sonic
hedgehog (Shh) signaling and controls the cell cycle of RGCs
by changing the length of the G1 phase (9, 42). Inactivation
of Gli3 shortens the length of their entire cell cycle and causes
delays in the formation of cortical neurons and the process
of cortical lamination (9, 42). Several mutations in the GLI3
gene are reported in patients with Greig cephalopolysyndactyly
syndrome, Acrocallosal syndrome, and Pallister-Hall syndrome,
which develop various morphological abnormalities in CNS and
polydactyly (43).

The Zeb family of C2H2-ZNFs (Zeb1 and Zeb2), which are
poly-ZNFs with one atypical homeodomain, is essential for
normal brain development. Among them, Zeb1 is required for
neocortical development (81). Its peak expression reaches during
the period of neocortical development, persists at high levels
throughout the embryonic neurogenesis and then decreases
postnatally (81). Zeb1 acts as a transcriptional repressor and
regulates proliferation, migration, and differentiation of RGCs by
affecting the division mode of these cells (81). It promotes and
accelerates maturation of the generated neurons and their ability
to develop electrophysiological properties (81). Interestingly,
inactivation of Zeb1 significantly decreases trans-differentiation
from mouse embryonic fibroblasts into functional neurons in
an in vitro system (81). Zeb2 (also known as Smadip1, Aip1,
and Zfhxib) is essential for the transition of RGCs to Bergmann
glia cells and astrocytes in mouse cerebellum (118). In humans,
the ZEB2 mutation is associated with Mowat-Wilson syndrome,
a genetic disorder characterized by ID, epilepsy, and motor
defects (119–121).

The Zic-type poly-ZNFs (Zic1, Zic2, Zic3, Zic4, and Zic5)
are expressed in the specific regions of neuroectoderm during
the early embryonic phase in mice, and they have essential
roles in CNS development (18, 51, 54). Specifically, Zics are
pivotal for regulating the proliferation and the differentiation
of NPCs in the medial forebrain and cerebellum (122), and
are involved in the neurulation process and neural tissue
formation (63). They are essential for the neural tube formation,
particularly the neural plate closure (122). Zics expressed
in the neural tube seem to play a role in the formation
of the neural crests as well (122). They also contribute
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TABLE 1 | The C2H2-ZNFs involved in brain development, NDDs, and/or other neuropsychiatric disorders.

Name Additional domains Biologic activities Pathologic implications References

Poly-ZNFs

ADNP2 Homeobox Expressed in oligodendrocytes Schizophrenia (34, 35)

BCL11A

(ZNF858A)

Controls migration of cortical neurons ID, ASDs, seizures, dyspraxia, childhood

apraxia of speech, severe speech disorder,

brain malformation, and microcephaly

(17, 36, 37)

BCL11B

(ZNF858B)

Controls hippocampal neurogenesis and

development of corpus striatum

(38)

FEZF1 and

FEZF2

Involved in cortical development and promote

differentiation of neural stem cells

Specifically expressed in subcortical projection

neurons and regulates cell fate of residing neurons

Autism spectrum disorders and intellectual

disabilities

(39–41)

GLI3 Controls progression of cell cycle in RGS cells

through regulating the G1 phase length

Greig cephalopolysyndactyly syndrome,

acrocallosal syndrome and Pallister-Hall

syndrome

(9, 42, 43)

GLIS1 Promotes generation of the induced pluripotent stem

cells

ASDs and Parkinson disease (44, 45)

GLIS2 Regulates neuronal differentiation (46)

TSHZ3 Homeobox Influences synapse development by impairing

cortico-striatal connectivity

Autistic traits, intellectual disabilities and

speech disturbances

(47)

ZIC1 Controls cerebellar size Dany-Walker malformation (18)

ZIC2 Regulates migration of forebrain neurons, CR cells,

and pallial-derived neurons

Holoprosencephaly and schizophrenia (48–50)

ZIC3 Participates in neural crest formation, neurulation,

and maintenance of NPCs

Hydrocephalus (51–53)

ZIC4 Controls cerebellar size Dany-Walker malformation (18)

ZIC5 Mediates neural crest development and formation of

the neural tube

(54)

ZNF148 Crucial for the development of corpus callosum Underdevelopment of corpus callosum and

aberrant neuron proliferation, microcephaly,

and intellectual disabilities

(19)

ZNF292 Coiled coil ID and ASDs (55, 56)

ZNF385B Mediates neuronal apoptosis ASDs and ID (57)

ZNF407 ID, ASDs and cognitive impairment. (58)

ZNF462 Expressed in the ventricular zone and hippocampus

Essential for hippocampal formation

ASDs (59)

ZNF507 Schizophrenia (60)

ZNF521 Promotes early neuronal differentiation Anxiety and schizophrenic behavior (61, 62)

ZNF536 Highly expressed in the developing CNS

Promotes neural differentiation

MDD and BD (63)

ZNF711 Zfx/Zfy transcription

activation region

Activates the genes essential for brain development ID (64, 65)

ZNF774 ASDs (66)

ZNF804A* Implicates in brain connectivity (in the hippocampus

and the dorsolateral prefrontal cortex)

Implicates in episodic and working memory

Schizophrenia, ID, and ASDs (67, 68)

ZNF865 ID and cerebral ataxia (69)

POZ/BTB-ZNFs

ZBTB7C Highly expressed in the granular layers of the dentate

gyrus and the pyramidal layer of the hippocampal

gyrus

ID (70)

ZBTB16 ASDs (71)

ZBTB20 Highly expressed in the forebrain

Involved in hippocampal neurogenesis, neuronal

differentiation and neuronal connectivity

Promotes astrocytogenesis

Macrocephaly (autistic features)

Intellectual disabilities and autism

(72)

(Continued)

Frontiers in Neurology | www.frontiersin.org 4 February 2020 | Volume 11 | Article 32

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Al-Naama et al. C2H2-ZNFs in Brain Development and Associated Diseases

TABLE 1 | Continued

Name Additional domains Biologic activities Pathologic implications References

ZBTB21 Down syndrome (73)

ZBTB32 MDD (74)

ZBTB45 Highly expressed in the developing brain

Regulates differentiation of glial progenitor cells, glial

cells and oligodendrocyte precursors

(75)

ZmC2H2-1 Stress intolerance (76)

KRAB-ZNFs

PRDM15

(ZNF298)

SET Acts in neural cell fate decision Down syndrome and BD (77, 78)

ZBTB11 Integrase H2C2 ID (79)

ZBTB18 Coordinates corticogenesis and promotes radial cell

migration

ID, microcephaly and corpus callosum

anomalies.

(80)

ZEB1 Homeobox Controls neuron differentiation

Maintains integrity of the blood brain barrier

Schizophrenia (81, 82)

ZEB2 Homeobox Regulates the transition of radial glia to Bergmann

glia

Mowar-Wilson syndrome (83)

ZKSCAN4 SCAN Schizophrenia (67)

ZNF8 Transcriptional regulation ASDs (84)

ZNF18 SCAN Regulates neuronal activity and/or development Congenital form of ASDs (85)

ZNF30 Microcephaly, intellectual disabilities, and

poor speech development

(86)

ZNF34 MDD (87)

ZNF41 XLMR and cognitive defects (88)

ZNF74 Regulates of synaptic transmission Schizophrenia and intellectual disabilities (89, 90)

ZNF81 XLMR and autistic symptoms (91)

ZNF181 Microcephaly, intellectual disabilities, and

poor speech development

(86)

ZNF182 XLMR and autistic symptoms (91)

ZNF302 Developmental delay, microcephaly, and

intellectual disabilities

(86)

ZNF354C Regulates gene expression during early embryonic

brain development

Schizophrenia and depression (92, 93)

ZNF439 Amyotrophic lateral sclerosis

ZNF496 SCAN Upregulated during the differentiation of P19 neural

precursor cells

Epilepsy and hyperactivity

Microcephaly and abnormal corpus callosum

(94, 95)

ZNF517 ASDs (96)

ZNF519 Microcephaly, lissencephaly, and ID (97)

ZNF528 ID (98)

ZNF534 Epilepsy and ID (99)

ZNF541 ID (100)

ZNF546 ID (101)

ZNF559 ASDs (102, 103)

ZNF568 Maintains neuron stem cells and regulate

neurogenesis

Microcephaly (104)

ZNF589 ID (105, 106)

ZNF599 Microcephaly, ID, and poor speech

development

(86, 107)

ZNF673 ID and learning disabilities (108)

ZNF674 ID and the X-linked cognitive disabilities (108, 109)

ZNF713 ASDs and frontotemporal dementia (110)

ZNF717 ID and polymicrogyria (101, 111)

ZNF746 Coiled coil Regulates neuronal death Parkinson disease

(Continued)
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TABLE 1 | Continued

Name Additional domains Biologic activities Pathologic implications References

ZNF778 ASDs and cognitive impairment (112)

ZNF780B ID (101)

ZNF860 Schizophrenia (113)

ZNF862 HATC-C, RNase H-like ID, language development, and information

processing

(114)

SCAN-ZNFs

ZNF24/ZNF191 Controls the transition stage from proliferation to

differentiation in NPCs

(115)

ZSCAN10 Controls pluripotency of embryonic stem cells Schizophrenia (92)

ZSCAN31

(ZNF323)

Involves in early stages of brain development Schizophrenia (116)

*ZNF804A has only one ZF.

significantly in forebrain development, as mutations in Zic1,
Zic2, and Zic3 result in an inadequate division of forebrain,
which fails to develop into two hemispheres (123). Indeed,
Zic1, Zic2, and Zic3 are expressed in the NPCs residing
in the septum and cortical hem, the sites of generation of
the Cajal-Retzius (CR) cells. Mice defective in these Zics
demonstrate a reduction in the number of CR cells in the
rostral cortex and develop altered localization of the CR cells
and cortical lamination defects that resemble the changes
noted in type II (cobblestone) lissencephaly (124). Zic1 and
Zic4 are also involved in cerebellar morphogenesis (123).
Simultaneous deletion of the ZIC1 and ZIC4 genes due to
their close proximity in chromosome 3 results in a congenital
brain anomaly called Dany-Walker malformation (DWM) in
humans, which is characterized by hypoplasia of the cerebellar
vermis and other brain abnormalities, and develops delayed
motor development and cognitive problems in the affected
individuals (18).

Several C2H2-ZNFs are implicated in the etiology of
microcephaly as well. Microcephaly refers to a reduction in
brain circumference and diminution in brain volume (125). The
majority of cases with microcephaly are congenital forms in
which the processes of neuronal proliferation, migration and/or
death are affected (125).De novo deletions in the 19q13.11 region
encompassing four KRAB-ZNFs (ZNF30, ZNF81, ZNF302, and
ZNF599) are identified in two unrelated cases of microcephaly
(86). Both patients demonstrated mild to severe ID and speech
disturbances (86) and, inmice, microcephaly developed when the
Znf568 gene was knocked out (104). Znf568 is the KRAB-ZNF
essential for NSC maintenance and brain size regulation (104).
Znf568 is expressed in NSCs of fetal mouse brain (104). It is also
expressed in the adult NSCs residing in two neurogenic niches,
the subgranular zone (SGZ) and the subventricular zone (SVZ)
of the hippocampal dentate gyrus (104). Mice defective in Znf568
develop a significantly smaller brain compared to wild type
mice (104). Reduction of the brain size in these mice is mainly
due to defective neuronal migration and subsequent abnormal
cortical layering (104). Further, particular single nucleotide
variants in the ZNF568 gene are associated with the head size in
humans (104).

ZNF519 is a poly-ZNF highly expressed in brain and is
involved in the etiology of microcephaly and lissencephaly
(126). The latter is a developmental malformation of the
brain cortex (smooth brain without normal convolutions)
caused by improper neuronal migration (126). Investigation
on a four-generation Pakistani consanguineous family
exhibiting congenital microcephaly (Jawad syndrome) and
remarkable learning deficits mapped the causative gene(s) to the
chromosome 18p11.22-q11.2, which harbors six candidate genes
including ZNF519 (97). The potential contribution of ZNF519
to the development of lissencephaly is also supported by the
evidence that its expression is downregulated in mice with Lis1,
Dcx, or Ywhae knockouts, whose gene mutations are causative
for lissencephaly in humans (126). Zfp462, a poly-ZNF involved
in the pluripotency and differentiation of embryonic stem cells
by regulating the expression of Sox2, Oct4, and Nanog TFs in
mice (127), modulates the expression of the genes specific to
neuronal differentiation (59). It is predominantly expressed in
the embryonic cerebral cortex particularly in the ventricular zone
and hippocampus (59). Homozygotic Zfp462 knockout is lethal
in mice, whereas the heterozygotic mice exhibit developmental
delay with low brain weight and anxiety-like behavior with
excessive self-grooming (59). ZNF148 is a poly-ZNF associated
with congenital brain structural defects in humans. ZNF148
is highly expressed in the developing fetal brain in humans
and is crucial for the development of the corpus callosum
(19). Four patients harboring de novo truncating mutations
in the ZNF148 gene shared core syndromic features including
abnormal development of corpus callosum, microcephaly, ID,
short stature, and facial dimorphisms (19).

ZNF521 is the KRAB-ZNF acting as one of the intrinsic factors
for driving commitment of NSCs to NPCs (61). It also promotes
proliferation of these cells and delays their differentiation
(61). ZNF24/ZNF191 is a KRAB-ZNF also harboring one
SCAN domain (128). ZNF24/ZNF191 is expressed in NPCs,
and is required for the maintenance of their proliferation
potency by promoting cell cycle progression (115). Accordingly,
ZNF24/ZNF191 expression is pronounced during early brain
development and its expression decreases after all differentiation
occurs (115).
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INVOLVEMENT OF C2H2-ZNFs IN ID

ID is one type of the generalized NDDs characterized by
significant impairment of intellectual (such as learning and
reasoning) and adaptive functioning (activities for daily living,
such as communication and independent living) (129). It
is a heterogeneous disorder with regard to its clinical and
genetic characteristics (130). Some C2H2-ZNFs are involved
in the development of ID, particularly the form called X-
linked intellectual disability (XLID) (131). This genetic disease
is inherited in an X-linked repressive fashion, and thus, affected
boys demonstrate more obvious phenotypes than girls (131).
Several KRAB-ZNF genes, such as ZNF41, ZNF81, ZNF148,
ZNF673, and ZNF674, residing on chromosome X are reported
as novel causative genes for XLID with strong association
to particular phenotypes among the other ∼200 candidate
genes (109, 132). Several unrelated ID patients displaying
similar manifestations and developmental delays shared the
same mutations in the ZNF674 and ZNF673 genes (108, 109).
Four patients harboring de novo truncation mutations in the
ZNF148 gene demonstrated overlapping clinical manifestations
including ID, microcephaly, and mal-development of the corpus
callosum (19). Two mutations in the ZNF711 gene, which is
also located on chromosome X and encodes a poly-ZNF protein,
were identified in 11 XLID patients from two families, some of
whom additionally demonstrated autistic features (64). ZNF711
has a role in brain development by binding to the PHD finger
protein 8 (PHF8) that is the histone demethylase highly expressed
in neurons, and failure of ZNF711 to bind to PHF8 affects
normal neuronal migration (64, 65). Mutations in the PHF8 gene,
which is also located on chromosome X, cause Siderius-type
XLID, characterized by facial dysmorphism, cleft lip/palate, and
occasionally microcephaly and ID (133, 134).

INVOLVEMENT OF C2H2-ZNFs IN ASDs
AND DOWN SYNDROME

ASDs are a group of pervasive NDDs demonstrating
heterogeneous manifestations mainly characterized by deficits in
social cognition, communication, and restricted behavior with
repetitive phenotypes (135). They can range from mild social
cognitive impairment to debilitating cognitive abilities (135).
Accumulating evidence indicates the significant contribution
of C2H2-ZNFs in the pathogenesis and pathophysiology of
ASDs and autistic features. These include BCLLA, FEZF1,
FEZF2, GLIS1, POGZ, TSHZ3, ZBTB16, ZBTB20, ZNF8,
ZNF18, ZNF81, ZNF182, ZNF292, ZNF385B, ZNF407, ZNF462,
ZNF517, ZNF548, ZNF559, ZNF626, ZNF713, ZNF774, ZNF778,
ZNF804A, ZNF827, and many of them are KRAB-ZNFs
(Table 1). Below, we explain the contributions of some of these
C2H2-ZNFs in the development of ASDs and autistic features.

A 335.4 Kb-size microduplication located in the Xp11.2p11.3
segment of chromosome X, which includes KRAB-ZNF-
expressing ZNF81 and ZNF182, was identified in a patient
demonstrating developmental retardation, autistic features, and
delayed growth and speech (91). Elevated ZNF182 expression

was identified in another ASD case displaying hyperactivity,
learning and visual-spatial difficulties, and microcephaly (136).
The latter patient harbored a 1.3 Mb-size micro-duplication
in Xp11.23p11.3 that includes ZNF182 (136). These two cases
suggest that elevated expression of ZNF182 with the dosage
nature of its encoding gene contributes to the development of
their ASD phenotypes. ZNF292 is also a potential target gene
for ASDs (55, 56). One study employing a large cohort of the
ASD probands obtained from the Autism Clinical and Genetic
Resourced in China (ACGC) indicated ZNF292 as a novel
autism risk gene, as the patients harboring various mutations
in this gene demonstrated ID and severe language impairment
(55). Another study using a large ASD cohort collected from
several countries identified four unrelated individuals who had
deletions of the ZNF292 gene (56). Homozygotic and compound
heterozygotic mutations in the ZNF18 gene were identified
in the Autism Genetic Research Exchange (AGRE) cohort
consisting of ∼1,000 multiplex ASD families (85). ZNF18 is a
KRAB-ZNF with one SCAN domain, and is upregulated upon
depolarization in mouse neuronal cells, suggesting its potential
activity-dependent roles (85). The ZBTB20 gene is also involved
in the development of ASDs in addition to other types of
NDDs including 3q13.31 microdeletion and microduplication
syndrome, Primrose syndrome and ID (72, 137–139). ZBTB20
is a BTB/POZ-ZNF mainly expressed in the developing
forebrain neocortex and is involved in cortical neurogenesis,
hippocampal neuronal differentiation and connectivity, and
promotes astrocytogenesis (140). Four unrelated individuals with
de novo inactivating mutations in the Krüppel-like factor 7
(KLF7) gene exhibited autistic features along with ID (141). KLF7
is a poly-ZNF, and is essential for neurogenesis and is involved
in neuronal differentiation and morphogenesis (141, 142). Klf7-
knockout mice showed impaired axon projection in several brain
regions including the cerebral cortex and hippocampus, and
exhibited reduced dendritic branching in hippocampus (142).
The pogo transposable element with ZNF domain (POGZ) gene
is also a plausible candidate for ASDs, as de novo missense or
nonsense mutations in this gene were identified in at least eight
independent ASD patients (143–145). POGZ, a unique poly-ZNF
harboring the transposase domain at its C-terminus in addition
to nine ZFs (145), is highly expressed in the human fetal brain
and is involved in mitosis and regulation of neural proliferation
(145). POGZ is also implicated in the development of NDDs
and microcephaly, as several de novo loss-of-function mutations
in this gene were identified in seven patients showing these
manifestations (146).

Several C2H2-ZNFs have etiologic roles in the manifestations
associated with Down syndrome. Down syndrome is a common
chromosomal disease caused by the chromosome 21 trisomy or
its various rearrangements, and develops ID and constellations
of morphological abnormalities (147). Some patients also
demonstrate the manifestations reminiscent of ASDs (148).
The Tc1 mouse model of Down syndrome shows elevated
expression of Znf295 (also known as Zbtb21) in the brain cortex,
and its human ortholog is located on chromosome 21, thus
dosage abnormality in this BTB/POZ-ZNF may contribute to
the development of some neurological manifestations associated
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with Down syndrome (149). Since ZNF298 is located on
chromosome 21q22.3 and duplication of this segment is strongly
associated with the development of Down syndrome (150,
151), dosage abnormality in ZNF298 appears to contribute to
the development of some manifestations of this disease (152).
ZNF298 is a poly-ZNF and has a SET [Su(var)3-9, Enhancer-of-
zeste, Trithorax] domain in its N-terminal portion (152).

INVOLVEMENT OF C2H2-ZNFs IN
NEUROPSYCHITARIC DISEASES
INCLUDING SCHIZOPHRENIA, MDD, AND
BAD

Schizophrenia is a complex NDD characterized by psychotic
symptoms, such as hallucinations and delusions, accompanied
by variable degrees of loss of insight (153). Interplay between
genetic, biological, environmental, and psychological factors are
supposed to play roles in the development of thesemanifestations
(89, 153). ZNF74was identified as a candidate gene for modifying
the development of schizophrenia in particular patient groups
(89). ZNF74 encodes a KRAB-ZNF, is highly expressed in the
developing brain and is located on chromosome 22q11, a gene
segment previously identified as a positional candidate locus
for the susceptibility to schizophrenia as part of the 22q11
deletion syndrome (154). ZNF74 is highly expressed in the
developing fetal brain in humans (19). Several polymorphisms
identified in ZNF74 are significantly associated with age-
at-onset of schizophrenia, although no statistical difference
was detected for their frequencies between the patients and
control subjects (89). Systematic meta-analysis on the psychotic
diseases including schizophrenia, BAD, and ADHD identified
several gene variants in ZNF804A, the zinc finger DHHC-type-
containing 8 (ZDHHC8) and the zinc finger with KRAB and
SCAN domain 4 (ZKSCAN4) genes (67). The ZNF804A variants,
particularly rs1344706, located in the intronic sequence of this
gene are highly associated with the development of schizophrenia
and its various manifestations (155). ZNF804A expresses a
poly-ZNF harboring just one ZF, and its reduced expression
is likely important for the development of schizophrenia in
part by changing the expression of the genes involved in
neural cell adhesion, neurite outgrowth, and synapse formation
(155). Although ZDHHC8 is located on chromosome 22q11
and was initially identified as a potential candidate gene for
schizophrenia, it turned out not to be involved in this disease
in later studies (156, 157). The ZKSCAN4 gene, also known
as ZNF307 or ZNF427, expresses a KRAB-ZNF that harbors
a SCAN domain in its amino-terminus (158). This gene
is located on chromosome 6p21p22.1, which was previously
identified as one of the schizophrenia-associated gene loci (159).
Several ZKSCAN4 polymorphisms were strongly associated with
schizophrenia in the Chinese Han population (160), although
underlying molecular mechanisms are not known.

Mood disorders, such as MDD and BAD, are among the
most common brain disorders caused by various abnormalities
in the brain (e.g., imbalance of neurotransmitters), and particular
genetic backgrounds precipitate these diseases (161). Several
C2H2-ZNFs are involved in their pathogenesis. A novel point

mutation in the ZNF34 gene that replaces proline at the
amino acid position 17 to arginine (P17R) was identified in
a multi-generationally affected family with early-onset MDD
(87). The mutation P17R is located in the KRAB-A domain
of ZNF34, which is required for the repressive transcriptional
activity of this protein, suggesting defective transcriptional
regulation by the mutant protein appears to contribute to the
development of MDD. ZNF34 is also associated with BAD;
ZNF34 mRNA was differentially expressed in the postmortem
brain samples obtained from patients with BAD (162). ZNF34
also contains common variants precipitated in this disease (163).
Further, ZNF34 is located on chromosome 8p24.3, which is
included in the region shown to be associated with BAD (164,
165). One ZNF536 polymorphism (rs77554113) is correlated
with remission rates of MDD patients who are under anti-
depressant treatment, indicating its potential roles in MDD-
related pathophysiologic processes (166). ZNF536 is a poly-
ZNF highly expressed in neuronal cells and known to suppress
neuronal differentiation (21, 63).

DISCUSSION

Brain development is organized by the sophisticated
coordination of the proliferation, differentiation, migration,
and cell death of its component neural cells (4). This is
accomplished, mainly, by the intrinsic program of the self-
renewing cell lineages, NSCs, and NPCs, through coordinated
regulation of their transcriptional network by numerous TFs
and transcriptional regulatory molecules (4). Importantly, these
processes are under the influence of the individual’s genetic
background as well as the vulnerability to extrinsic factors, such
as infectious agents, toxic substances, and various maternal
conditions including immunity (2). Skewing any part of this
regulatory network causes NDDs, leading to the development
of various degrees of social, emotional, cognitive, and motor
deficits (2).

Our literature-based analysis on the brain development
and NDDs revealed that numerous C2H2-ZNF proteins
(74, ∼10% of all human member proteins) are essential
or involved in these conditions (Table 1). Indeed, many of
them play critical roles in the proper functioning of NSCs,
such as their potencies of proliferation and commitment
into differentiated neural cell lineages. We found that
different C2H2-ZNFs act on specific functions of these self-
renewing cells at the particular developmental stages and
their residing brain areas, and defective actions of C2H2-
ZNFs develop characteristic morphological and/or functional
abnormalities depending on their actions, expressed timing and
residing cells.

Although there are substantial numbers of exceptions,
defective poly-ZNFs (e.g., BLI3, ZEBs, and ZICs) tend to be
associated with the NDDs with gross abnormality in brain
morphology and/or structure, whereas dysfunction of the C2H2-
ZNFs harboring additional domains, such as KRAB and SCAN
(e.g., ZNF18, ZNF34, ZNF81, ZNF427, ZNF673, ZNF804A,
and ZBTB20) are linked to the development of NDDs with
abnormality in higher-order brain functions, such as cognitive
deficit, memory loss, and emotional changes, represented by
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ID, ASDs, schizophrenia, MDD, and/or BAD. C2H2-ZNFs are
found throughout the organisms from yeasts to humans, whereas
their numbers have exponentially expanded following the species
evolution, particularly in vertebrates including humans (33).
Poly-ZNFs tend to present from lower to higher organisms
and mediate the fundamental functions shared by most of
them, such as embryonic/fetal development, organogenesis, and
limb formation (21). On the other hand, KRAB-ZNFs and
SCAN-ZNFs, which appeared in the animal kingdom from
vertebrates and mammals, respectively, show their numbers
have significantly expanded in higher organisms, with the
former demonstrating this trend more obviously (33). It is
likely that the addition of these domains to C2H2-ZNFs,
particularly the KRAB domain, appears to be required for
supporting the functions specific to higher organisms, for
example, sophisticated cognitive functions unique to humans
(21). These pieces of evolutionary evidence on C2H2-ZNFs
may explain our successful identification of specific C2H2-
ZNF subtypes in particular forms of NDDs. For example,
we found high accumulation of KRAB-ZNFs in ID, ASDs,
and psychotic diseases that are associated with dysfunctions
in higher-order brain functions, whereas defective poly-
ZNFs appears to be linked to gross morphological brain
abnormalities, including microcephaly, lissencephaly, and local
hypoplasia/anomaly. This is also consistent with the previous
finding that the characteristic expression of KRAB-ZNFs in the
human brain compared to other primates including chimpanzees
appears to be required for driving human-specific brain
functions (16).

About two thirds of the KRAB-ZNF proteins are reported
to bind retrotransposon sequences incorporated in the genome
DNA, and act as protecting agents against reactivation and
subsequent genome migration of these mobile elements
(167). Retrotransposons cause various genetic diseases with
their property of genome mutagenesis and chromosomal
rearrangement (168). On the other hand, they are major driving
forces for species evolution, participating in the development of
a sophisticated gene regulatory network characteristic found in

higher organisms by providing new regulatory elements and/or
TF-binding sites through insertion of their long terminal repeat
promoters (169). Thus, dense involvement of KRAB-ZNFs in
neurobiology and neurogenesis might have been established in
part through insertion of the regulatory elements originated
from retrotransposons that harbor binding sites for KRAB-ZNFs
into relevant key genes. Because retrotransposons facilitate
the development of non-inherited gene regulatory diversity in
brain neurons through their genome migration and subsequent
mutagenic property in these non-dividing cells (170, 171), it is
possible that dysfunction of the KRAB-ZNFs might influence
this unique process mediated by retrotransposons by impacting
their reactivation and further increase phenotypic variation of
the NDD patients.

In conclusion, we performed the literature-based
analysis on the roles of C2H2-ZNFs in brain development
and pathogenesis of NDDs. We found that numerous
C2H2-ZNFs play important roles in these physiologic and
pathologic processes. We hope that this literature assessment
will encourage the researchers’ focus on C2H2-ZNFs in
helping us extend our understanding of brain physiology
and pathophysiology.
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