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Abstract: A series of alginate films was synthesised with several calcium chloride cross-linker contents
(from 3 to 18% w/w) with and without a very low amount (0.1% w/w) of carbon nanofibers (CNFs) in
order to reduce the production costs as much as possible. The results of this study showed a very
significant enhancement of liquid water diffusion and mechanical compressive modulus for high
calcium chloride contents when this minuscule amount of CNFs is incorporated into calcium alginate
hydrogels. These excellent results are attributed to a double cross-linking process, in which calcium
cations are capable of cross-linking both alginate chains and CNFs creating a reinforced structure
exhibiting ultrafast water diffusion through carbon nanochannels. Thus, these excellent results render
these new alginate composites very promising for many bioengineering fields in need of low-cost
advanced hydrogels with superior water diffusion and compression properties.

Keywords: carbon nanofibers; calcium alginate; composite hydrogels; water diffusion; compression
performance; Raman spectroscopy; electron microscopy

1. Introduction

Hydrogels are currently employed in a broad range of industrial applications due to their
excellent hydrophilic properties [1]. Alginate hydrogels are formed when divalent cations of calcium
bridge sodium alginate (SA) polymer chains composed of (1–4)-linked β-D-mannuronic acid (M)
and α-L-guluronic acid (G) blocks in different proportions and sequences depending on the source
of alginate [2,3]. This cross-linking of the calcium cations occurs through the G blocks arranged in
a block-wise fashion, thus forming the well-known egg-box structure [4]. Alginates have already
been approved by the US Food and Drug Administration (FDA) for human use as wound dressing
material in biomedical applications [5] due to their non-toxicity, biodegradability, biocompatibility and
relative economic cost in comparison with other biopolymers. Therefore, these hydrogels have a wide
range of applications in diverse fields, such as water decontamination [6], plastic packaging [7] and
bioengineering [8,9]. However, calcium alginate, like most hydrogels, is very brittle [10], and is thus
in need of reinforcing strategies to increase exponentially their potential applications. Thus, several
methods to enhance the mechanical properties of hydrogels have been developed so far: reinforcement
through copolymerisation with hydrophobic monomers [11], interpenetrating polymer networks
(IPNs) [12], rise of cross-linking degree [13,14], double cross-linked networks [15], incorporation of
nanofibre mats [16], self-sorting [17], plasma-induced polymerisation onto a hydrophobic porous
polymer [18–20]. More recently, seemingly even more successful methods include the reinforcement
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of hydrogels by incorporation of carbon materials such as graphene oxide (GO) [21,22] and carbon
nanofibers (CNFs) [23,24]. However, compared with GO, CNFs have much lower cost and much more
electrical conductivity, which can be exploited to fabricate conductive composite materials [25,26].
Carbon nanofibers consist of curved graphene layers in the form of quasi one-dimensional (1D)
filaments [27], promising to revolutionise several fields in material science [28] due to their excellent
chemical, mechanical and electrical properties [29–31]. Thus, these curved graphitic materials are
nowadays employed in industrial fields such as polymer additives, gas storage materials, and catalyst
supports [32]. Additionally, it has been demonstrated that composites with CNFs are able to promote
cardiomyocyte growth [33] and neural regeneration [34] in biomedicine.

Another conductive carbon material, chemically very similar to CNFs, carbon nanotubes (CNTs)
have also been used to reinforce hydrogels [35–37]. However, CNFs have lower cost and higher purity
level than CNTs, which can result in easier processing of nanocomposites [38].

On the other hand, enhancement of water diffusion in hydrogels is also very desirable in
regenerative medicine because it increases cell survival [39] and in bioprocess industries, in which
their production depends on the mass transport to the polymer biocatalysts with immobilised cells or
enzymes [9]. Since it has been reported that liquid water penetrates graphene-based nanochannels
with a diffusion coefficient 4–5 faster than in the bulk case [40], and water sorption studies in
carbon membranes composed of aligned carbon nanotubes [41,42] or GO [43,44] have shown ultrafast
diffusion of water through their hydrophobic graphitic nanochannels serving as pores, we assume
that a significant enhancement of water diffusion in calcium alginate could be achieved with the
incorporation of carbon nanofibers due to its similar chemical structure. However, only a very small
amount (0.1% w/w) of CNFs was utilised in the synthesis in order to reduce production costs as much
as possible and we hypothesize that this low nanofilling can enhance water diffusion and compression
performance of alginate hydrogels, depending on the amount of Ca2+ present in the reactive mixture.
Furthermore, diverse divalent cations have been shown to be capable of interconnecting or cross-linking
nanomaterials such as GO nanosheets [45–47] or CNTs [48], and even chemically modified graphene
(CMG) with CNTs [49] through their oxygen functional groups located at the edges and on the
basal planes.

Therefore, we assume that 3D networks of CNFs can be cross-linked by metal ion coordination
chemistry, as has been reported for the other nanomaterials, inside the alginate matrix when the amount
of calcium atoms is high. We believe that when using high calcium chloride contents, the liquid water
diffusion and compression properties of calcium alginate hydrogel films must be enhanced because of
this double cross-linking process, which can achieve significant reinforcement due to the high degree
of connection between the carbon nanofibers inside the cross-linked alginate polymer matrix with
carbon nanochannels available for ultrafast water diffusion.

2. Materials and Methods

2.1. Materials

The sodium alginate (Panreac AppliChem, Darmstadt, Germany) was analysed by 1H-NMR
and Gel Permeation Chromatography (GPC). The results of this characterisation showed an average
molar mass of 142.000 g/mol and a mannuronate/guluronate ratio of 1.56. Calcium chloride (≥93.0%,
Sigma-Aldrich, Saint Louis, MO, USA) and CNFs (Graphenano, Yecla, Spain) were utilised as received.

2.2. Synthesis

A series of alginates with several calcium chloride cross-linker contents (3, 6, 12 or 18% w/w with
respect to the mass of SA) and 0.1% w/w of CNFs were synthesised using a procedure based on the
direct mixing method [50]. Thus, 0.25 grams of SA were dissolved into 22 mL of an aqueous dispersion
with 0.001% w/v of CNFs and was magnetically stirred for 1 h at 24 ± 0.5 ◦C. The required amount of
calcium chloride was separately dissolved in 10 mL of distilled water and then mixed thoroughly with
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the former CNFs/SA mixture under magnetic stirring. Subsequently, the final solution was cast onto a
Petri dish and left in an oven at 37 ◦C for 24 h to form a thin film. Finally, the film was peeled off from
the mould and vacuum dry at 60 ◦C.

Another series of alginates with the same calcium chloride cross-linker contents (3, 6, 12, and 18%
w/w) without CNFs, hereafter referred to as A3, A6, A12 and A18, was prepared following the same
procedure, but directly solving only 0.25 grams of SA in 22 mL of distilled water. The composite
hydrogels will be named hereafter by adding -CNFs to the corresponding alginate sample name (A3,
A6, A12 or A18).

2.3. Characterisation

2.3.1. Water Sorption and Diffusion

Water immersion experiments were performed in triplicate to study, in a reproducible manner,
water sorption and diffusion at 24 ± 0.5 ◦C. Thus, the samples were vacuum-dried at 60 ◦C and then
immersed in liquid water to be weighted at selected time intervals after drying with filter paper the
water drops present on their surfaces.

2.3.2. Electron Microscopy

A FEI Tecnai G2 F20 (Hillsboro, OR, USA) 200 kV high-resolution transmission electron microscope
(HR-TEM) was employed to observe the CNFs dispersed in ethanol placing one drop on a TEM grid
with 300 mesh coated in carbon film for five minutes. This electron microscope is equipped with
energy-disperse X-ray spectroscopy (EDS) and was used for the elemental analysis of the CNFs at 20 kV.
The alginate composite hydrogels with 0.1% w/w of CNFs were observed in a JEM-1010 (JEOL, Tokyo,
Japan) 100 kV transmission electron microscope (TEM). Ultrathin sections (60 nm) were prepared
using a Leica Ultracut UC6 ultramicrotome (Leica Mikrosysteme GmbH, Wien, Austria) and a Diatome
diamond knife (Diatome Ltd., Bienne, Switzerland). The specimens were placed on TEM grids with
300 mesh coated in carbon film.

2.3.3. Raman Spectroscopy

A Renishaw inVia (Wotton-under-Edge, UK) confocal micro-Raman spectrometer with an argon
ion laser at 633 nm was utilised to perform Raman scans from 1000 to 3000 cm−1 with ×20 lens at
600 L·mm−1 grating. Sample preparation consisted of depositing the samples onto a glass substrate.

2.3.4. Compression Testing

A texture analyser (Stable Micro System, TA-XT plus, Surrey, UK) with a 50 N load cell was used
to conduct compression testing at 0.06 mm·s−1 from 0% to 100% strain at 24 ± 0.5 ◦C. Cylindrical
samples 10 mm in diameter were vacuum-dried at 60 ◦C for 24 h before starting the tests. Six specimens
were tested for each kind of sample, and their thickness and diameter were measured with a digital
electronic calliper (ACHA, Éibar, Spain).

3. Results and Discussion

3.1. Water Sorption and Diffusion

Water sorption experiments exhibited a significant reduction of water sorption in the calcium
alginate hydrogels with increasing cross-linker content as expected and surprisingly also by the small
addition of 0.1% w/w of CNFs (see Figure 1).

The alginate hydrogels with lower cross-linker content, A3 and A6, shows the highest differences
between the maximum and the last water uptake (see Figure 1a) due to the fact that they have
more uncross-linked alginate chains available for dissolution during the water immersion experiment.
The same phenomenon occurs with the A3-CNFs composite sample (see Figure 1b). However, this effect
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is attenuated in the A6-CNFs composite hydrogel, indicating some kind of additional cross-linking.
In good agreement with these results, the sample A12-CNFs, which possess higher cross-linker content,
exhibits almost no difference between the maximum and the last water uptake in comparison to
A12. Furthermore, the pronounced reduction of equilibrium water sorption observed in A18-CNFs
in comparison with A18 is remarkable, and reinforces the hypothesis of much higher cross-linking
occurring in these composite samples with 0.1% w/w of CNFs.

According to the Fick’s law, water diffusion in hydrogels can be analysed with Equation (1).

∆m1,t

∆m1,∞
≈ 4

(
Dt

π·l2

) 1
2

(1)

where ∆m1,t and ∆m1,∞ are the weight increments at time t and at equilibrium, l is the sample
thickness and D the diffusion coefficient. The maximum water contents of Figure 1 were taken as
equilibrium values to calculate ∆m1,∞. The representation of all the ∆m1,t/∆m1,∞ vs. t1/2/l plots showed
a non-Fickian sorption mechanism [51] in these alginate hydrogels with and without CNFs, which is
in good agreement with earlier studies carried out with liquid and vapour water in alginate-based
hydrogels [52–55] and in alginate composites hydrogels with other carbon materials [21,56]. However,
an apparent diffusion coefficient can be determining by linear regression fitting of Equation (1) for low
values of time t or ∆m1,t/∆m1,∞ < 0.5 to compare liquid water diffusion behaviour in all these similar
polymeric systems.

Figure 1. Water contents (grams of absorbed water per grams of dry sample) at 24 ± 0.5 ◦C represented
as mean ± standard deviation for alginate hydrogels synthesised with several calcium chloride contents
(a) and with also the addition of 0.1% w/w of CNFs (b).
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The results of this study showed a significant enhancement of water diffusion in calcium alginate
composite hydrogels with 0.1% w/w of CNFs as compared with the corresponding alginate hydrogels
with a similar cross-linker content (see Figure 2). However, this enhancement of water diffusion is
attenuated for the lowest cross-linker content. The increase of cross-linker content also produced a
significant increase of the water diffusion coefficient probably due to fact that cross-linking between
L-guluronic acid (G) blocks must form some kind of discontinuities in the dry state through which
water can penetrate faster.

Figure 2. Apparent diffusion coefficients (D) of liquid water in the alginate hydrogels (grey columns)
and in the composite alginate hydrogels with 0.1% w/w of CNFs (black columns) with the indicated
cross-linker contents (3, 6, 12 and 18% w/w). Data are represented as mean ± standard deviation.

3.2. Electron Microscopy and Raman Spectroscopy

The CNFs employed in this study exhibit a morphology of carbon nanofibres with irregular diameters
of approximately 10–150 nm and lengths varying from a few nm to some µm (see Figure 3a,b).

Figure 3. HR-TEM of the CNFs at two magnifications (a,b) and TEM of A18-CNFs (c).

It is of note that some black spots are present in the HR-TEM micrograph (Figure 3a). Thus, in
order to confirm that these spots are only carbon atoms, the atom-atom length was measured in these
black points, and the results showed an atom-atom distance of 3.42 Å, which corresponds to that of the
van der Waals radius of carbon [57]. Furthermore, the EDS analysis supported these results because it
showed that the elementary composition of CNFs is composed mostly of carbon atoms and a low %
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w/w of oxygen atoms (Figure 4). Figure 3c shows the morphology of the A18-CNFs composite hydrogel
composed of alginate (light phase) and carbon nanofibers (dark phase) randomly distributed. It is
remarkable that only the large CNFs or cross-linked CNF networks can be appreciated by electron
microscopy because they are embedded in the alginate polymer matrix. The TEM morphology of
this sample is not very different from those of the other composite hydrogels synthesised with less
cross-linker content (images not shown). These connected structures of carbon nanofibers do not allow
the A18-CNFs sample to close all of its porosity in the drying process, and some nanochannels are
formed in some parts of the sample (see the dark phase of Figure 3c), similar to that which we have
recently reported occurs with cross-linked graphene oxide nanosheets in alginate [21]. Thus, water
can penetrate very fast through carbon nanochannels [58], increasing the water diffusion coefficient
(Figure 2). However, it is much more difficult for water to diffuse in sample A18, because it is
non-porous in the dry state.

Figure 4. Elementary composition of the carbon nanofibers with and without cross-linking with Ca2+

measured by EDS at 20 kV.

In order to ensure that there is a chemical coordination reaction between divalent calcium cations
and carbon nanofibers, EDS analysis (Figure 4) and Raman spectroscopy (Figure 5) was performed after
dispersing CNF powder in distilled water and subsequent mixing with a 10% w/v calcium chloride
solution with continuous magnetic stirring at 37 ◦C following the same procedure described in [45] for
graphene oxide nanosheets. Thus, Figure 4 shows that the carbon nanofibers after cross-linking with
calcium chloride present an elementary composition with 3.4 weight % or 1.1 atomic % of calcium
atoms, which is in good agreement with our hypothesis that 3D networks of CNFs can be cross-linked
by metal ion coordination chemistry, as has been reported for other nanomaterials also possessing
oxygen-containing functional groups [45–49].

Raman spectroscopy is commonly utilised to obtain structural information about defects and
ordered/disordered of carbon nanomaterials. The Raman spectrum of CNFs exhibits a strong D band
at ~1350 cm−1 and a broad G band at ~1580 cm−1 [59]. The D band is attributed to a disordered
band due to structural defects, edge effects and dangling sp2 carbon bonds breaking symmetry.
The defect/disordered carbon structure is usually measured with the D band/G band intensity ratio
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(ID/IG) [60,61]. Thus, Figure 5 shows that after the cross-linking reaction of CNFs with divalent
cations of Ca2+, the ID/IG ratio decreases from 1471 to 1271 confirming a significant increase of order
of the carbon structures due the cross-linking obtained with the calcium cations by coordination
chemistry. In addition, the increase of intensity of the 2D band at ~2690 cm−1, supports these results,
demonstrating higher degrees of order [59] achieved after the coordination reaction.

Figure 5. Raman spectra of CNFs and CNFs cross-linked with calcium cations.

3.3. Compression Performance

The effect of the addition of 0.1% w/w of CNFs into the alginate polymer hydrogels became
more and more pronounced with increased weight percentage of calcium chloride (see Figure 6).
Hence, the composite sample A18-CNFs exhibited a compressive modulus almost 3 times higher
than that of sample A18. This excellent result can also be attributed to the formation of reinforcing
cross-linked CNFs networks by coordination chemistry with divalent cations of Ca2+ inside the
cross-linked alginate polymer structure. For this reason, the alginate composite synthesised with lower
amounts of calcium chloride such as A3-CNFs showed lower reinforcement with respect to A3 because
there was a smaller number of divalent cations to connect alginate chains and carbon nanofibers.

Figure 6. Mechanical compressive modulus (mean ± standard deviation) of alginate hydrogels (grey
columns) and alginate composite hydrogels with 0.1% w/w of CNFs (black columns) cross-linked with
increasing amounts of calcium chloride (3, 6, 12 and 18% w/w).
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The reinforcement of calcium alginate achieved with the use of CNFs in this study is lower than
that obtained in a previous study utilising the same amount of GO and calcium chloride [21]. This fact
occurs because GO possess more oxygen functional groups than CNFs, and thus more cross-linking
points. In that study, the enhancement of water diffusion achieved with the addition of 0.1% w/w of
GO was also higher than that obtained here with 0.1% w/w of CNFs due to the presence of more carbon
nanochannels in the dry state produced by the higher cross-linking between GO nanosheets.

Nevertheless, CNFs have much lower cost than GO (e.g., approximately 21 times more economical
than GO when obtained from Sigma-Aldrich) and have attracted great interest in the field of
regeneration medicine due to their excellent mechanical, magnetic and electrical properties [34], which
renders these advanced composite materials very promising for certain biomedical and industrial
applications in need of low-cost hydrogels with these required physical properties.

4. Conclusions

The effect of cross-linker content on water diffusion and compression performance was studied
in carbon nanofibers/calcium alginate composite hydrogels synthesised with a very low amount of
nanomaterial (0.1% w/w). The results of this study showed that a minuscule amount of CNFs can
significantly enhance liquid water diffusion and compression in calcium alginate hydrogels due to
the formation of connected CNFs networks by coordination chemistry inside the cross-linked alginate
polymer matrix. This enhancement of properties increases with increasing cross-linker content due to
the formation of cross-linked carbon nanochannels able to improve water diffusion and mechanical
compression at the same time. These achievements demonstrate the potential utilisation of these new
alginate composite hydrogels in many industrial applications currently in need of low-cost advanced
hydrogels with enhanced compression and water diffusion properties.
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