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of Public Health, Peking University, Beijing, China

Background: Predicting birth weight and identifying its risk factors are clinically
important. This study aims to use interpretable machine learning to predict
birth weight and identity important predictors.
Methods: This prospective cohort study was conducted in Tongzhou Maternal
and Child Health Care Hospital of Beijing, China, recruiting pregnant women
between June 2018 and February 2019. We used 24 features to predict
infant birth weight, including gestational age, mother’s age, parity, history of
macrosomia delivery, pre-pregnancy body mass index (BMI), height, father’s
BMI, lifestyle (diet, physical activity, smoking), and biomarker (fasting glucose
and lipids) features. Study outcome was birth weight of infant. We used 8
supervised learning models including 4 individual [linear regression, ridge
regression, lasso regression, support vector machines regression (SVR)], and
4 ensemble estimators (random forest, AdaBoost, gradient boosted trees,
and voting ensemble for regression) to predict birth weight. Model accuracy
was measured by root mean squared error (RMSE) of 10-fold cross validation
on the training set and RMSE of prediction on the test set. We used
permutation importance algorithm to understand the prediction from the
models and what affected them.
Result: This study included 4,754 mother-child dyads. RMSEs were lower in
voting ensemble for regression, linear regression, and SVR than random
forest, AdaBoost, and gradient boosted tree. The 5 most important
predictors for infant birth weight were gestational age, fetal sex, preterm
birth, mother’s height, and pre-pregnancy BMI. After adding ultrasound-
measured indicators of fetal growth into predictors, mother’s height and
pre-pregnancy BMI remained the most important predictors in predicting the
outcome.
Conclusion: Mother’s height and pre-pregnancy BMI were identified as
important predictors for infant birth weight. Interpretable machine learning is
a promising tool in the prediction of birth weight.
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Introduction

Prediction of birth weight is clinically important. In the short

term, low birth weight increases the risk of stillbirth, preterm

birth, intrapartum-related events, and neonatal death (1); in the

long term, individuals with low birth weight have a higher risk

of developing cardiovascular disease and adult depression (2),

based on the Developmental Origins of Health and Disease

theory (3). Macrosomia, lying at the other end of birth weight,

is not only associated with an immediate risk of shoulder

dystocia, cesarean section, and neonatal hypoglycemia, but also

heightens the risk of obesity and diabetes in the period of

childhood and adolescence (4). If important predictors of birth

weight were identified, targeted interventions can be timely

implemented among high-risk subpopulations.

Genetic, environmental, and gestational factors can affect

the size of birth weight. Complex non-linear relationship or

interactions might exist in high-dimensional data, making it

difficult for conventional linear models to accurately predict

birth weight. Machine learning methods, widely used in

biomedical research (5), might be a promising tool in

predicting the birth weight. A recent systematic review

recommended researchers to use both linear regression and

other machine learning models to predict pregnancy

outcomes (6).

Machine learning is analogous to “a black box” due to its

unintuitive interpretability in early years. Recent progress in

methodology has made machine learning both predictable and

interpretable (7, 8). This study aims to predict birth weight

and examine its important predictors by using interpretable

machine learning methods.
Materials and methods

Study design and population

The Peking University Birth Cohort in Tongzhou (PKUBC-

T) was a prospective cohort study conducted in Tongzhou

Maternal and Child Health Hospital of Beijing, China. This

cohort was prospectively registered in ClinicalTrials.gov

(https://clinicaltrials.gov/, NCT03814395), and aimed to study

the health effects of pre-pregnancy and prenatal exposures on

mother-child dyads. Pregnant women were recruited between

June 2018 and February 2019 at baseline. Eligibility criteria

were: (1) aged 18–45 years; (2) <14 weeks of gestation; (3)

living in Tongzhou District during the past half year and not

planning to move out of Tongzhou District after delivery; (4)

planning to receive prenatal care and give birth in Tongzhou

Maternal and Child Health Hospital. A total of 5,426 eligible

pregnancy women were recruited into the cohort. Ethical

approval of the study was granted by the Peking University
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Institution Review Board (IRB00001052-18003). Written

informed consent was obtained from all participants.

For the present study, we included pregnant women with

singleton live births (n = 4,798), excluded those with diabetes

or hypertension prior to pregnancy (n = 44), and finally

included 4,754 mother-child dyads.
Predictors

We selected predictors (features) based on literature review

of studies on this topic (6, 9). We finally included 24 predictors

with available data and satisfactory completeness (missing

<20%) in our cohort. Information of 11 predictors were

collected from face-to-face questionnaire investigation at the

first prenatal visit, including age (year), parity (0, ≥1), history
of macrosomia delivery (yes, no), pre-pregnancy body mass

index (BMI = body weight/square of height; kg/m2), height

(cm), father’s BMI (kg/m2), family income last year (yuan),

smoking in the last 3 months (yes, no), dietary energy intake

per day (kcal; recording dietary intake for 2 non-consecutive

days and calculating the average energy intake), alcohol

consumption (yes, no), number of days performing moderate

to vigorous physical activity (MVPA) per week. Information

of 6 predictors were collected from the hospital information

system with vigorous quality control: gestational diabetes (yes,

no), gestational hypertension (yes, no), eclampsia/

preeclampsia (yes, no), preterm birth (yes, no), gestational

age, and fetal sex (male, female). Information of the other 7

predictors were collected from blood samples, including

fasting plasma glucose concentrations (mmol/L) and 25(OH)

D3 (ng/mL) measured between 24 and 28 gestational weeks,

fasting concentrations of triglyceride (mmol/L), cholesterol

(mmol/L), hemoglobin (g/L), thyroid-stimulating hormone

(TSH; mIU/l), and free thyroxine (FT4; pmol/L) measured in

the first trimester (<14 gestational weeks). In the sensitivity

analyses, we added ultrasound-measured indicators of fetal

growth (abdominal circumference, head circumference, femur

length, and biparietal diameter) collected before 14 gestational

weeks as the predictors.
Outcome

Study outcome was infant birth weight. We obtained it from

the hospital information system in Tongzhou Maternal and

Child Health Care Hospital of Beijing.
Machine learning

We used a tool of scikit-learn 0.24 (10) to conduct machine

learning in Python 3.8.5.
frontiersin.org

https://clinicaltrials.gov/
https://doi.org/10.3389/fped.2022.899954
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Liu et al. 10.3389/fped.2022.899954
We first preprocessed data (e.g., imputation, transformation,

standardization; Figure 1) and randomly divided it into a

training set and a test set according to 4 : 1. Then we used the

training set to train 8 supervised learning models including

individual and ensemble estimators (11). Individual estimators

included linear regression, ridge regression, lasso regression

and support vector machines for regression (SVR). Ensemble

estimators, aggregating a group of several base estimators by

bagging or boosting methods, aimed to improve

generalizability of robustness over a single estimator. We used

random forests (bagging method), AdaBoost (boosting

method), and gradient boosted trees (boosting method) that

were trained based on a group of decision trees (base

estimators). Except for linear regression, we used a

combination of grid search and cross validation to select

model hyperparameters when training other machine learning

models. For each model, we tried more than 500

hyperparameter combinations to select the best

hyperparameter combination and trained the final regressors.

We also trained a voting ensemble for regression by

combining the 7 final regressors (linear regression, ridge

regression, lasso regression, SVR, random forest, AdaBoost,

gradient boosted trees) and obtaining the average predicted

values.

Root mean squared error (RMSE) was used to measure the

accuracy of the model. Lower value of RMSE indicated better

performance of the model.

RMSE y; ŷð Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nsamples

Xnsamples�1

i¼0

yi � byið Þ2
vuut

(byi is the predicted value of the i-th sample, and yi is the

corresponding true value).
FIGURE 1

Pipeline of preprocessing data (*Log transformation was conducted
for predictors with skew distribution; #Standardization: transforming
data into normal transformation with zero mean and unit variance.).
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We evaluated model performance on both training and test

datasets. On the training set, model performance was evaluated

by using the 10-fold cross validation. First, the training dataset

was split into 10 smaller sets. Second, a model was trained using

9 of the folds as training data. Third, the resulting model was

validated on the remaining part of the data and RMSE was

calculated. Last, the average of the 10 RMSE values was

calculated to evaluate model performance. On the test set, we

used the final regressors obtained from the training set to

predict the birth weight and calculate the RMSE.

To increase the interpretability of machine learning models,

we further evaluated how much the model depended on the

feature (i.e., feature importance) by the permutation-based

method in two steps. First, a baseline score (RMSE) was

calculated for the final model. Second, a feature is permutated

(randomly shuffled) from the dataset to break the association

of the feature with the target, and the model evaluation score

was calculated again to obtain the permutation score. The

second step was repeated for 50 times. The permutation-based

feature importance was calculated as the mean difference

between the baseline score and the permutation score; that is,

a larger difference indicates the higher importance of the

feature in the model. We also used partial dependence plots

to visualize the direction and size of associations (i.e., positive

or negative) between the outcome and the inputted features,

marginalizing over the values of all other input features. The

interpretability methods used above were all carried out on

the test datasets.
Results

The average infant birth weight was 3362.0 g [standard

deviation (SD): 471.8]. The description of study sample is

shown in Table 1.

As shown in Table 2, among the 8 machine learning

models, the voting ensemble regression had the highest

accuracy, followed by linear regression (simple linear

regression, ridge regression and lasso regression), support

vector machine regression, random forest, AdaBoost, and

gradient boosted trees. The 5 most important predictors were

gestational age, fetal sex, preterm birth, mother’s height, and

pre-pregnancy BMI. Results of permutation importance of

predictors based on voting ensemble for regression, support

vector machine regression, and linear regression models are

shown in Figure 2; results of permutation importance based

on other models are shown in Supplementary Figure S1. The

5 most important predictors for birth weight remained similar

in the sensitivity analyses of excluding preterm-birth and/or

small-for-gestational-age infants (n = 275), except that the

predictor of preterm birth was replaced by the history of

macrosomia (Supplementary Figure S2).
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TABLE 1 Description of 4,754 mother-child dyads.

Variables Description

Continuous variablesa

Age, year 29.3 ± 3.8

Height, cm 160.1 ± 5.1

Pre-pregnancy BMI, kg/m2 22.5 ± 3.4

Father’s BMI, kg/m2 22.5 ± 5.5

Family income, 10,000 yuan/year 15 (10–20)

Energy intake, kcal/day 1,262.4 (967.5–1,655.2)

Glucose, mmol/l 4.8 ± 0.4

Triglyceride, mmol/l 1.1 (0.8–1.4)

Cholesterol, mmol/l 4.0 ± 0.7

Infant birth weight, g 3,362.0 ± 471.8

Infant birth weight Z-score 0.3 ± 1.0

Categorical variables, n (%)

Energy intake > 1,800 kcal/day 840 (17.7%)

Weekly MVPA 944 (18.1%)

Primipara 2,892 (60.8%)

History of macrosomia delivery 125 (2.6%)

Smoking 467 (9.9%)

Alcohol consumption 172 (3.6%)

Gestational diabetes 1,522 (32.0%)

Gestational hypertension 141 (3.0%)

Eclampsia/preeclampsia 209 (4.4%)

Preterm birth 229 (4.8%)

Female fetuses 2,307 (48.5%)

BMI, body mass index; MVPA, moderate to vigorous physical activity.
aDescribed as mean ± standard deviation, for variables with normal distribution;

described as median (inter-quartile), for variables with skew distribution.

TABLE 2 Root mean squared error and the 5 most important predictors for

LR Ridge Lasso

RMSE of cross-validationa 372.49 ±
13.64

372.47 ±
13.76

372.40 ±
13.69

RMSEb 377.11 377.16 377.22

Predictors

Gestational age √ √ √

Mother’s height √ √ √

Fetal sex √ √ √

Pre-pregnancy BMI √ √

Preterm birth √ √ √

History of macrosomia
delivery

√

Father’s BMI

Eclampsia/preeclampsia √

BMI, body mass index; GBT, gradient boosted trees; LR, linear regression; RMSE,

regression; VER, voting ensemble for regression.
aObtained by cross-validation in the training set (n= 3,803) during model training (m
bRMSE of the final model when making predictions on the test set (n= 951).
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As shown in partial dependence plots (Figure 3,

Supplementary Figures S3–S8), mother’s height and pre-

pregnancy BMI were positively associated with birth weight.

And logically, birth weight is positively correlated with

gestational age, with preterm babies having lower birth

weights. Pattern of associations between these predictors and

birth weight was approximately linear in the nonlinear models

of voting ensemble for regression (Figure 3), random forests

(Supplementary Figure S6), AdaBoost trees (Supplementary

Figure S7), and gradient boosted trees (Supplementary

Figure S8).

Accuracy of all 8 models was improved after adding

ultrasound-measured indicators of fetal growth into predictors

(Table 3). The 5 most important predictors were gestational

age, preterm birth, ultrasound-measured fetal abdominal

circumference, mother’s height, and pre-pregnancy BMI

(Table 3).
Discussion

Summary of study findings

This prospective cohort study predicted birth weight by

using 8 interpretable machine learning models. A total of 24

predictors including socio-demographic, lifestyle, and

biomarker features were used to fit the models. Prediction

accuracy was better in voting ensemble for regression, linear

regression, and SVR. Across all models, gestational age, fetal

sex, preterm birth, mother’s height, and pre-pregnancy BMI

were the 5 most important predictors for infant birth weight.
the prediction of infant birth weight using 8 machine learning models.

RF AdaBoost GBT SVR VER

377.05 ±
13.78

379.05 ±
14.96

383.50 ±
12.53

372.71 ±
14.43

369.99 ±
13.46

381.69 385.33 383.14 373.83 374.89

√ √ √ √ √

√ √ √ √ √

√ √ √ √ √

√ √ √ √ √

√ √ √

√ √

√

√

root mean squared error; RF, random forest; SVR, support vector machines

ean ± standard deviation).
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FIGURE 2

Permutation importance of predictors in the voting ensemble for
regression (top figure), linear regression (middle figure), and SVR
(bottom figure) models (calculation of permutation importance
score was repeated for 50 times, and the box-plot for each
predictor showed the distribution of 50 permutation scores).

FIGURE 3

Partial dependence plots of gestational age, preterm birth, mother’s
height, and pre-pregnancy BMI, in the prediction of birth weight in
the voting ensemble for regression model (gestational age,
mother’s height, and pre-pregnancy BMI were standardized; other
models in the Supplementary File).

Liu et al. 10.3389/fped.2022.899954
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After adding ultrasound-measured indicators of fetal growth

into predictors, mother’s height, and pre-pregnancy BMI

remained important in predicting the outcome.
Comparison with other studies

Accurate prediction of birth weight is challenging. On one

hand, many factors play a role in determining birth weight.

Factors included, but are not limited to, genetic,

environmental, and gestational factors. On the other hand,

complex relationship beyond the linear relationship between

the predictors and outcome might exist. Based on a very

recent systematic review, only 35.2% studies applied a
frontiersin.org
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TABLE 3 Root mean squared error and the 5 most important predictors for the prediction of infant birth weight using 8 machine learning methods
after considering ultrasound-measured fetal growth.

LR Ridge Lasso RF AdaBoost GBT SVR VER

RMSE of cross-validationa 353.64 ±
13.51

353.62 ±
13.62

353.51 ±
13.63

361.79 ±
15.71

361.20 ±
14.08

367.24 ±
12.86

353.53 ±
15.01

352.05 ±
14.85

RMSEb 351.90 351.95 352.06 363.16 364.63 369.04 350.86 352.49

Predictors

Gestational age √ √ √ √ √ √ √ √

Abdominal circumference √ √ √ √ √ √ √ √

Pre-pregnancy BMI √ √ √ √ √

Mother’s height √ √ √ √ √ √ √ √

Preterm birth √ √ √ √ √

Head circumference √ √ √ √ √

History of macrosomia
delivery

√

BMI, body mass index; GBT, gradient boosted trees; LR, linear regression; RMSE, root mean squared error; RF, random forest; SVR, support vector machines

regression; VER, voting ensemble for regression.
aObtained by cross-validation in the training set (n= 3,803) during model training (mean ± standard deviation).
bRMSE of the final model when making predictions on the test set (n= 951).
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machine learning model beyond linear regression in the

prediction of pregnancy outcomes (6).

To our knowledge, only 3 very recent studies have applied

machine learning algorithms in the prediction of birth weight

or related outcomes (e.g., low birth weight (12), macrosomia

(13), small and large for gestational age (13, 14)). However,

2 studies (12, 13) of them had modest sample size (n = 175

and 1,115 respectively), and more importantly, the studies

did not interpret results from machine learning models by

calculating feature importance or plotting partial dependence

plots. Another study (14), in line with ours, has found that

delivery history of infant size and pre-pregnancy BMI were

among the important predictors for birth weight related

outcomes, but this study (14) only compared feature

importance qualitatively.

The three important predictors (mother’s height, pre-

pregnancy BMI, and history of macrosomia delivery)

identified in this study have been validated in other studies in

the independent study samples, thereby supporting the

validity of the models. First, a cross-sectional study involving

1,511 children (<10 years) in Brazil found that low maternal

stature was associated with low birth weight (15). Second,

higher mother’s pre-pregnancy BMI has been identified as a

strong predictor for large for gestational age at birth, based on

a meta-analysis of 265,270 individual participant data from 39

cohorts (16). The mechanisms underlying the association of

maternal BMI and infant birth weight may include shared

genes between mother and fetuses (17), and an increased

placental transfer of nutrients (e.g., glucose, lipids). Third,

history of macrosomia delivery has been found to be

associated with macrosomia or large for gestational age in a

cross-sectional study (18) and a retrospective cohort study (14).
Frontiers in Pediatrics 06
Strengths and limitations

The study had several strengths. First, this is a prospective

cohort study, making the association between predictors and

birth weight less likely to be inversely causal. Second, this

study included many predictors covering not only maternal

demographic features, but also father’s BMI, and important

biomarkers such as hemoglobin, lipids, and glucose, et al.

Third, the study used feature importance algorithms and

partial dependence plots, increasing the interpretability of

machine learning models.

Nevertheless, the study also had some limitations. Sample

size of this study was not large enough to accurately fit more

parameters in machine learning models as compared to

conventional regression models. This might at least partly

interpret the unsatisfactory accuracy of the model measured

by RMSE (≈370), which means the mean difference between

predicted and true values is 370 gram (accounts for 11% of

the mean birth weight). Additionally, findings from this pilot

study should be interpreted cautiously, and the results will be

tested in an external independent dataset in the future.
Research implications

Considering complex relationship inherent in pregnancy

predictors, researchers have called for using both linear

regression and other machine learning algorithms in the

prediction of pregnancy outcomes. Our study stands for a first

step towards the application of machine learning algorithms

into prediction of birth weight. Findings of our study indicate
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that machine learning algorithms are feasible in the present

prediction task. Using more features and trying more

combinations of hyperparameters in a larger sample can

establish a more accurate prediction model in the future. This

method may have important practical significance in

predicting fetal growth during pregnancy.
Conclusion

Mother’s height and pre-pregnancy BMI were identified as

important predictors for infant birth weight. Interpretable

machine learning is a promising tool in the prediction of

birth weight.
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