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The existing biclustering algorithms often depend on assumptions like monotonicity or linearity 
of feature relations for finding biclusters. Though a few algorithms overcome this problem using 
density-based methods, they tend to miss out many biclusters because they use global criteria for 
identifying dense regions. The proposed method, PF-RelDenBi, uses local variations in marginal 
and joint densities for each pair of features to find the subset of observations, forming the basis 
of the relation between them. It then finds the set of features connected by a common set of 
observations using a non-linear feature relation index, resulting in a bicluster. This approach 
allows us to find biclusters based on feature relations, even if the relations are non-linear or 
non-monotonous. Additionally, the proposed method does not require the user to provide any 
parameters, allowing its application to datasets from different domains.

To study the behaviour of PF-RelDenBi on datasets with different properties, experiments were 
carried out on sixteen simulated datasets and the performance has been compared with eleven 
state-of-the-art algorithms. The proposed method is seen to produce better results for most of 
the simulated datasets. Experiments were conducted with five benchmark datasets and biclusters 
were detected using PF-RelDenBi. For the first two datasets, the detected biclusters were used 
to generate additional features that improved classification performance. For the other three 
datasets, the performance of PF-RelDenBi was compared with the eleven state-of-the-art methods 
in terms of accuracy, NMI and ARI. The proposed method is seen to detect biclusters with greater 
accuracy. The proposed technique has also been applied to the COVID-19 dataset to identify some 
demographic features that are likely to affect the spread of COVID-19.

1. Introduction

Biclustering finds hidden patterns in the data by searching for paired subsets of features and observations. Each of these subsets 
is based on spatial proximity in space defined by selected features or similarity between features for selected observations. Most of 
the existing algorithms generally focus on the former, i.e., finding biclusters based on closeness in the selected subspace [1]. On the 
other hand, relation-based biclustering methods mostly search for biclusters based on linear relations between the features [2]. A 
few algorithms [3,4] exist for finding non-linear relation-based biclusters, where they search for biclusters with some constraints. 
For example, UniBic finds monotonous relations and CBSC [5] does not adjust for variations in marginal distributions, limiting their 
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ability to find various types of relation-based biclusters. As seen, UniBic will not be able to find a relation based on the sine wave. 
CBSC finds more general relations, but if marginal densities have sparse and dense regions, the actual biclusters in the data may not 
be obtained due to fragmentation. In this article, we have tried to overcome these problems.

The proposed algorithm finds biclusters based on non-linear continuous feature relations. By scrutinizing joint and marginal 
densities for each feature pair, we discern observations forming relationships, subsequently expanding these associations to identify 
dense regions of related features. Leveraging distances between features based on selected observations, the proposed method PF-

RelDenBi, efficiently clusters features, resulting in the identification of biclusters possessing desirable properties such as invariance 
to permutations, scaling, and translation. Notably, this invariance ensures the consistency of the proposed algorithm, regardless 
of changes in data representation. Additionally, it has been crafted to be entirely parameter-free, alleviating the user’s burden by 
requiring the user to only provide the dataset for analysis. Since the thresholds used in the algorithm are calculated automatically 
based on the dataset itself, the proposed method is not dataset-dependent. This makes the proposed method versatile enough to be 
applied to datasets across different domains.

Beyond its parameter-free nature, PF-RelDenBi distinguishes itself by incorporating a non-linear feature dependence index named 
MIDI (Mutual Information based Dependence Index [6]) for clustering features that share common dense regions. This combination of 
parameter-free operation and the use of MIDI not only enhances the efficiency of the method but also underlines its adaptability and 
robust performance in diverse datasets. PF-RelDenBi, therefore, stands as a pioneering advancement in biclustering methodologies, 
providing a powerful, accessible, and efficient tool for uncovering meaningful patterns in complex datasets.

The rest of the article is organized as follows. We have discussed some of the existing biclustering methods in Section 2. Section 3

discusses the objective of the proposed method. Section 4 presents the proposed method and the algorithm. PF-RelDenBi is applied 
to simulated datasets with different properties and their results are presented in Section 5. The results on real-world datasets are 
reported in Section 6. We conclude with Section 7.

2. Related work and contributions

As mentioned, the present article aims to develop a non-linear feature relation-based biclustering technique using joint and 
marginal densities of features. In this section, we are going to discuss the related state-of-the-art techniques.

2.1. Discussion on density-based and relationship-based biclustering methods

Hartigan [7] pioneered a biclustering method based on a constant value of elements. Subsequently, many biclustering algorithms 
[8] were proposed with varying objectives and approaches. These include linear algebra-based ones like non-negative matrix fac-

torization [9] and multibody factorization. Some algorithms find biclusters where the values of elements in a column are constant. 
This approach has been utilized for feature ranking and selection for classification [10]. BM-FM [11] finds biclusters with constant 
columns and utilizes them to forecast the trading points in the stock market. The method BIC-K-NN [12] also uses biclustering to 
study patterns in the stock market. Methods like spectral clustering by Luxburg [13] use linear algebra to find biclusters in trans-

formed space. Several methods make use of evolutionary computing for biclustering. BP-EBA [14] finds biclusters using evolutionary 
computing in two phases. MVMC [15] is a method for multiview clustering where each bicluster uses a distinct dissimilarity matrix. 
Evolutionary computing based biclustering methods have been applied to genome analysis [16]. They have also been used to iden-

tify genes related to Cancer [17]. Other approaches used for biclustering are iterative methods [18] and graph-based methods [19]. 
Deep learning-based methods [20], aim to find a subspace in which observations lie close together. Detailed surveys on biclustering 
and subspace clustering have been done by Kriegel et al. [21], Prelić et al. [22], Parsons et al. [23], Madeira and Oliveira [8] and 
Vidal [1]. Density-based biclustering algorithms such as SubClu [24] and CLIQUE [25] find high-density regions in corresponding 
subspaces. These methods start by finding dense regions in one-dimensional space and grow biclusters using the apriori approach. 
Mean-shift methods [26] perform kernel density estimation, and iteratively locate the local maxima of the kernel mixture. The method 
CURLER [27] finds non-linear clusters by combining a density-based approach with the principal component method. CURLER finds 
high-density Gaussian regions using Expectation Maximization and combines them using the relation between directional informa-

tion of resultant biclusters. The density-based methods mentioned above, find biclusters based on the proximity of observations in a 
subspace.

Existing methods for finding biclusters based on feature relations include the algorithm proposed by Cheng and Church [28] and 
the multiplicative algorithm FABIA [29]. Here the values of a feature can be obtained by multiplying the values of another feature 
by a constant. These methods assume that the relation between features is linear or multiplicative.

More generalized biclustering methods based on an arbitrary relationship between features are available in existing literature. 
These include algorithms like UniBic [4], based on the longest common subsequence. UniBic can find biclusters based on monotonous 
relationships between features. OPSM [3] finds order-preserving submatrices.

A more recent algorithm named CBSC [5] identifies non-linear relationships between pairs of dimensions using a density-based 
approach. However, CBSC tends to produce fragmented biclusters when marginal densities are highly variable. Another method, 
ARBic [30] measures trend-preserving patterns between rows as the paths in directed acyclic graphs. It then combines them to find 
biclusters. ARBic has been compared to several algorithms like FABIA, OPSM, QUBIC [31] and QUBIC2 [32] and is seen to produce 
better results. However, like CBSC, the performance of ARBic suffers when non-linear relations occur in the presence of highly variable 
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An algorithm that overcomes the problem of fragmentation is a density-based algorithm named RelDenClu [33]. Although RelDen-

Clu has been successfully applied to find associations between demographic vaccine data and COVID-19 infection rates [34], it is 
difficult to use RelDenClu for datasets from diverse domains because it requires the users to provide several parameter values. The 
appropriate values of the parameters may change from one dataset to another, making its application to diverse real-world datasets 
difficult [35].

Some biclustering methods have been developed to overcome this problem. These include a biclustering method developed for 
recommender systems [36]. Work has been done to structure the data in coupled hierarchies of observations and features [37]. 
For spectral clustering, several researchers have analyzed the multiplicities of eigenvalues close to zero [13]. Recently a parameter-

free biclustering method based on k Nearest Neighbour distance has been developed [35]. The authors of this method, ROCCO, have 
shown that the method works well whenever k lies within a particular range. Another method named MESBC finds mutually exclusive 
biclusters and only requires the number of clusters in the dataset as an input [38].

The proposed algorithm, PF-RelDenBi, finds non-linear continuous relationship-based biclusters and does not make assumptions 
of monotonicity, linearity or fixed relationships between features. It overcomes the problem of fragmentation by adapting to local 
variations in density along each dimension. The proposed method does not require the user to provide any input apart from the 
dataset, greatly improving its usability. Being a parameter-free algorithm, it is not dataset-dependent and has wide applicability 
across domains. Further, the utilization of MIDI contributes to significantly reduced execution time compared to algorithms like 
RelDenClu which search for the feature sets iteratively.

2.2. Contributions

The proposed method, PF-RelDenBi finds biclusters based on continuous non-linear relationships using marginal and joint densities 
and, information derived from 2D spaces corresponding to each pair of features. The advantages of this approach are listed below.

1. The users do not need to provide any parameter values.

2. The algorithm does not assume that the relationship between features has a particular form like linear or multiplicative. Thus 
the proposed method finds biclusters with both linear and non-linear relations among features.

3. The algorithm does not assume that the relationship between features is monotonous. In other words, biclusters based on both 
monotonous and non-monotonous relations in the data can be found.

4. It avoids the fragmentation of biclusters by adapting for variations in marginal densities.

Briefly speaking, the main objective of the proposed method is to find relation-based biclusters. This includes relations which are 
linear, non-linear and non-monotonous. Finding the latter two is more challenging. The proposed method is able to find biclusters 
having feature relations even if they are non-linear or non-monotonous.

3. Definitions

In this section, we present the objective of PF-RelDenBi and provide relevant definitions. The biclusters obtained by PF-RelDenBi 
are submatrices in which features are related directly or indirectly. Let the dataset be denoted by a matrix 𝐷 containing 𝑁 rows 
each corresponding to observation and 𝑀 columns each corresponding to a feature. In this article, a direct relationship between 
two columns of a matrix means the following: dependence exists between the features corresponding to these two columns when 
the subset of observations contained in the bicluster is used as the base. Here dependence is estimated using MIDI [6] and is further 
discussed in Section 4.3. Two columns are connected indirectly if there exists a chain of columns connecting them, such that each 
consecutive pair of columns in this chain is directly connected. This has been stated in the definitions given below.

Definition 1. For a matrix 𝐴 let the 𝑖𝑡ℎ column be denoted by 𝐴∗,𝑖. In this article, we call the 𝑖𝑡ℎ and the 𝑗𝑡ℎ columns of a matrix 
to be directly connected if there is a dependence between these two columns. Perfect dependence occurs when 𝐴∗,𝑖 can be used to 
determine 𝐴∗,𝑗 , or vice-versa.

Let us assume, each direct relationship between features to be an edge connecting two vertices, each representing a column. Two 
columns are said to be indirectly connected if they are connected by a path. It is to be noted that, the direct or indirect connection 
between the columns exists only on the base of rows contained in the submatrix.

Definition 2. We call the 𝑖𝑡ℎ and the 𝑗𝑡ℎ columns of a matrix 𝐴 to be connected if these two columns are directly connected or there 
exist columns 𝐴∗,𝑟1 , ⋯ , 𝐴∗,𝑟𝑘 , such that (1) Each column in this list is directly connected to the consecutive column in the list (e.g., 
𝐴∗,𝑟2 is directly connected to 𝐴∗,𝑟3 ), (2) 𝐴∗,𝑖 is directly connected to 𝐴∗,𝑟1 , and (3) 𝐴∗,𝑟𝑘 is directly connected to 𝐴∗,𝑗 .

Using the definition of connected features we now define a bicluster as follows:

Definition 3. A bicluster in the data matrix 𝐷 is a pair of two sets given by 𝑂 = {𝑜𝑖1, 𝑜𝑖2, ⋯ , 𝑜𝑖𝑛} and 𝐹 = {𝑓𝑖1, 𝑓𝑖2, ⋯ , 𝑓𝑖𝑚}. The 
3

matrix 𝐷, restricted to observations in 𝑂 and features in 𝐹 gives us a submatrix 𝐴 corresponding to the bicluster < 𝑂, 𝐹 >. More 



Heliyon 10 (2024) e34736N. Jain, S. Ghosh and A. Ghosh

specifically, the submatrix corresponding to < 𝑂, 𝐹 > is given by 𝐴 where the 𝑞𝑡ℎ element of the 𝑝𝑡ℎ row is given by, 𝐴[𝑝, 𝑞] =
𝐷[𝑜𝑖𝑝, 𝑓𝑖𝑞]. A bicluster is said to be relation-based if all the columns of the corresponding submatrix are connected, either directly or 
indirectly.

It may be noted that the proposed method finds biclusters based on the relation between feature pairs and so it can result in 
biclusters with disconnected regions. Thus, the proposed method can be seen as grouping related features based on observations.

4. Proposed method: PF-RelDenBi

We now present the procedure for finding dense sets for each pair of features and then combine them to obtain biclusters.

4.1. Finding the set of observations having dependence for a given feature pair

This section describes a method for identifying subsets of observations which show dependence between two features, by com-

paring joint distribution and marginal distributions using histograms. After normalizing the data to the range [0, 1], we take 3 log(𝑁)
equal intervals along each axis, where 𝑁 is the number of observations in the dataset.

Since, the data lies in the range [0, 1], taking 3 log(𝑁) cells along each axis in two-dimensional space leads to cell area 𝐴 =
1∕(3 log(𝑁))2. This leads to consistent density estimates [39] as we know that lim𝑁→∞𝐴 = lim𝑁→∞ 1∕(3 log(𝑁))2 = 0 and the product 
of the area of the cell and number of observations given by lim𝑁→∞𝑁𝐴 = lim𝑁→∞𝑁∕(3 log(𝑁))2 = ∞. We have taken 3 log(𝑁)
instead of log(𝑁) so that there is a sufficient number of cells even when 𝑁 is small. Using this scheme, the joint density and marginal 
density of each cell are estimated. Of course, any histogram scheme which leads to consistent density estimates can be used here. We 
however chose to use the simple scheme with 3 log(𝑁) cells since it leads to smaller execution times.

Thus, each cell obtained using the above-mentioned scheme can be represented as a region 𝐼𝑥 × 𝐼𝑦, where 𝐼𝑥 and 𝐼𝑦 are intervals 
of length 1∕(3 log(𝑁)), along 𝑋 and 𝑌 axes, respectively. The regions 𝐼𝑥 × [0, 1] and [0, 1] × 𝐼𝑦 can be used to calculate the marginal 
densities for the cell 𝐼𝑥 × 𝐼𝑦. We call these regions the marginal cells for convenience. We then decide whether a cell is dense if its 
density is greater than the densities of marginal cells as well as the average density of the entire space. The thought behind this step 
is that higher cell density compared to marginal density implies, a higher conditional probability of a point lying in a particular cell 
within a given marginal cell.

Two dense regions are merged if they are adjacent to each other horizontally or vertically or diagonally. A dense region can have 
at most 8 dense regions connected to it. After finding dense regions in 2D space, noise is removed by using the overlap between three 
two-dimensional spaces for every set of three features. Thus, redundancy introduced by using three features is used to weed out the 
noise. Up to this point, the procedure for finding the dense cells used by RelDenClu and the proposed method are the same. But in 
the next step, RelDenClu needs user-defined parameters for pruning the noise while the proposed method calculates the thresholds 
required for pruning automatically. A detailed description of this step is given below.

4.2. Finding the pruned set of observations for biclusters

To identify the set of observations related to each other, we find relative density-based subsets in two-dimensional Euclidean 
space given by each pair of features. However, because the background noise can be distributed in arbitrary ways, this procedure of 
finding relations can result in a lot of noise. Therefore, to weed out noise, we search for a set of three features, for which a given set 
of observations forms dense regions for each pair of features belonging to the set. Thus for a set of features {𝑓1 , 𝑓2, 𝑓3}, we find dense 
regions for pairs < 𝑓1, 𝑓2 >, < 𝑓2, 𝑓3 >, and < 𝑓3, 𝑓1 >. The intersection of observations forming dense regions for these three pairs 
is found. This observation set is retained only if it contains a significant number of observations. Let us call this significant number 
𝑂𝑏𝑠𝑀𝑖𝑛. The value of 𝑂𝑏𝑠𝑀𝑖𝑛 is calculated using the dense regions calculated earlier as discussed in Section 4.1. The method of 
calculating 𝑂𝑏𝑠𝑀𝑖𝑛 is discussed in the following paragraphs.

In Section 4.1, we calculated dense regions for each feature pair. A dataset having 𝑀 features will have 𝑀(𝑀 − 1)∕2 feature 
pairs. The number of points lying in dense regions, for each feature pair may vary between 0 and 𝑁 (number of observations in the 
dataset). Thus 𝑀(𝑀 − 1)∕2 values (number of observations lying in dense regions for each feature pair) are distributed over the 
range [0, 𝑁]. This distribution can give us an idea about the size of biclusters in the dataset. This is because the distribution will 
tend to peak around the actual size of biclusters, as many dense regions of this size will exist. This distribution can be examined 
using histograms. As already discussed, the number or size of histogram bins plays an important role. Since 𝑀(𝑀 − 1)∕2 values are 
distributed over [0, 𝑁], according to the discussion in Section 4.1, we can divide this range to 3𝑙𝑜𝑔2(𝑀(𝑀 − 1)∕2) bins to obtain 
consistent density estimates.

Since many of the feature pairs will have no dense regions or might have a very small number of points in dense regions caused 
by noise, we will ignore the first bin of the histogram. We then find the first bin 𝑏𝑙𝑖𝑚 such that the next two consecutive bins are 
populated (i.e. one or more feature pairs have dense regions such that ‘the number of observations in the regions’ lies in the bin 
range). The lower edge of 𝑏𝑙𝑖𝑚 denoted by 𝑙𝐸𝑑𝑔𝑒𝐵, can be taken as the lower limit of the minimum number of observations in any 
bicluster. However, we do not want the lower limit to be too large; so, we take it to be min(𝑙𝐸𝑑𝑔𝑒𝐵, 𝑁∕2). We denote this value 
as 𝑂𝑏𝑠𝑚𝑖𝑛 = min(𝑙𝐸𝑑𝑔𝑒𝐵, 𝑁∕2). The reason for considering two consecutive bins is that we want to identify the place where the 
4

distribution starts to increase.



Heliyon 10 (2024) e34736N. Jain, S. Ghosh and A. Ghosh

For each set of three features, we can now retain the observation sets containing greater than 𝑂𝑏𝑠𝑀𝑖𝑛 observations and discard 
the rest. Let us refer to the retained observation sets as the “Triplet observation sets” for convenience. Each of these sets is now 
represented as a binary array. The presence of observation is indicated by 1 and absence by 0. However many of the sets may be 
very similar to each other. To combine these similar sets we perform single-linkage clustering on the binary arrays representing 
observation sets. Cosine similarity is used for this clustering. Thus we obtain several clusters of sets of observations.

The hierarchical clustering mentioned above requires a parameter that indicates the maximum number of clusters to be found by 
the algorithm. Let us say that PF-RelDenBi sets this value automatically to 𝑁𝑐𝑙𝑢𝑠𝑂𝑏𝑠𝑀𝑎𝑥. We will now discuss how the value of 
𝑁𝑐𝑙𝑢𝑠𝑂𝑏𝑠𝑀𝑎𝑥 is calculated.

The maximum number of clusters that any clustering algorithm can find should be greater than 2. Thus 𝑁𝑐𝑙𝑢𝑠𝑂𝑏𝑠𝑀𝑎𝑥 should be 
at least 3. Further, we note that if 𝑂𝑏𝑠𝑀𝑖𝑛 (minimum number of observations in “Triplet observation sets”) is larger, we would have 
a greater variety of observation sets. This is because a larger value of 𝑂𝑏𝑠𝑀𝑖𝑛 leads to a greater number of possible combinations.

On the other hand, if the sum of the number of rows in different biclusters in a dataset is fixed, we tend to have a greater number 
of “Triplet observation sets” if the number of biclusters is less and vice versa. This can be understood as follows. Suppose a dataset 
has 𝑖 biclusters with 𝑚1, 𝑚2, ⋯ , 𝑚𝑖 rows each while another dataset has single bicluster having 𝑚 rows where 𝑚 =

∑𝑖

𝑘=1𝑚𝑘. Let us 
assume that all the rows are connected to each other. We know that 𝑚3 ≥

∑𝑖

𝑘=1𝑚
3
𝑘
. So the dataset with a smaller number of biclusters 

will have a larger number of “Triplet observation sets”.

Thus we want 𝑁𝑐𝑙𝑢𝑠𝑂𝑏𝑠𝑀𝑎𝑥 to increase with 𝑂𝑏𝑠𝑀𝑖𝑛 but decrease with the number of “Triplet observation sets” denoted by 
𝑁𝑡𝑟𝑖𝑝𝑙𝑒𝑆𝑒𝑡𝑠. So we set 𝑁𝑐𝑙𝑢𝑠𝑂𝑏𝑠𝑀𝑎𝑥 = 𝑐𝑒𝑖𝑙(3 +𝑂𝑏𝑠𝑀𝑖𝑛∕𝑁𝑡𝑟𝑖𝑝𝑙𝑒𝑆𝑒𝑡𝑠), where the function 𝑐𝑒𝑖𝑙(𝑥) gives the smallest integer greater 
than or equal to 𝑥.

Thus, using hierarchical clustering, we may obtain many (less than or equal to 𝑁𝑐𝑙𝑢𝑠𝑂𝑏𝑠𝑀𝑎𝑥) clusters of “Triplet observa-

tion sets”. From each of these clusters, we obtain a single set of observations, by finding the observations that appear in many 
“Triplet observation sets” lying in the cluster. We say that observations lie in many “Triplet observation sets” if they lie in more than 
1∕𝑁𝑐𝑙𝑢𝑠𝑂𝑏𝑠𝑀𝑎𝑥 of all the “Triplet observation sets” forming the cluster. This is because, a smaller number of biclusters means a 
greater number of “Triplet observation sets” in each, thus even if a smaller proportion of the “Triplet observation sets” contain an 
observation, we still have sufficient redundancy. At this stage, only the set of observations having greater than 𝑂𝑏𝑠𝑀𝑖𝑛 elements 
should be retained and the rest should be ignored. Note that the same observation may be present in several clusters.

4.3. Finding feature sets for each bicluster

In the previous step, we found several sets of observations. We now need to find corresponding feature sets. For each set of 
observations, we perform single-linkage clustering and choose the largest feature cluster. The maximum number of clusters is taken 
to be 𝑀∕2, where 𝑀 is the number of features in the dataset. Note that this is an upper limit and a smaller number of feature clusters 
can be obtained, thus a high value for the upper limit is chosen.

The distance between features 𝑓1 and 𝑓2 is taken as 1 −𝑀𝐼𝐷𝐼(𝑓1, 𝑓2), where MIDI is a feature dependence index [6]. 𝑀𝐼𝐷𝐼

uses normalized mutual information as feature dependence and is capable of finding non-linear dependence.

4.3.1. Feature dependence index MIDI used for finding feature sets
Since the Mutual Information based Dependence Index (MIDI) is used to find related features in the proposed method, we present 

the mathematical notion of feature dependence as defined for the index MIDI.

For two discrete random variables 𝑋, 𝑌 , the probability mass functions are denoted by 𝑃𝑋 (𝑥) and 𝑃𝑌 (𝑦), and their joint probability 
mass function is denoted by 𝑃 (𝑥, 𝑦). The entropy, 𝐻(𝑋), is defined by Equation (1) as:

𝐻(𝑥) =
∑
𝑥

𝑃𝑋 (𝑥)𝑙𝑜𝑔(
1

𝑃𝑋 (𝑥)
). (1)

For two discrete random variables 𝑋, 𝑌 , conditional entropy, 𝐻(𝑋|𝑌 ) and joint entropy 𝐻(𝑋, 𝑌 ) are defined by Equations (2) and 
(3) as:

𝐻(𝑋|𝑌 ) =∑
𝑦

∑
𝑥

𝑃 (𝑥, 𝑦)𝑙𝑜𝑔(
𝑃𝑌 (𝑦)
𝑃 (𝑥, 𝑦)

); (2)

𝐻(𝑋,𝑌 ) =
∑
𝑦

∑
𝑥

𝑃 (𝑥, 𝑦)𝑙𝑜𝑔( 1
𝑃 (𝑥, 𝑦)

). (3)

Using these notations mutual information 𝑀𝐼 is defined by Equations (4) and (5) as:

𝑀𝐼(𝑋,𝑌 ) =𝐻(𝑋) −𝐻(𝑋|𝑌 ) =𝐻(𝑌 ) −𝐻(𝑌 |𝑋) (4)

=𝐻(𝑋) +𝐻(𝑌 ) −𝐻(𝑋,𝑌 ). (5)

Finally, 𝑀𝐼𝐷𝐼 is defined by Equation (6) as:

𝑀𝐼𝐷𝐼(𝑋,𝑌 ) = 𝑀𝐼(𝑋,𝑌 )
. (6)
5

min(𝐻(𝑋),𝐻(𝑌 ))
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Normalized mutual information can be calculated easily for discrete variables. However, in the case of continuous variables, we 
need to estimate probability density before calculating mutual information and entropy. MIDI uses a histogram scheme that leads to 
consistent and fast density estimation for calculating the normalized mutual information leading to a smaller execution time.

Ideally, the value of a relation index between two variables should lie in the range [0, 1]. Mutual information between two variables 
is always positive but is not bounded above. Therefore it needs to be normalized. Normalization is often done using entropies of the 
variable or the cardinality of the partitions used for calculating mutual information. For example, MINE [40] uses the cardinality of 
partitions to normalize mutual information.

Some indices use the maximum or average of the entropies of the variables [41]. However, normalization by maximum or average 
entropy results in a low value of the calculated index for non-monotonous relations between variables.

Unlike these indices, MIDI normalizes the mutual information using the minimum of the entropies and can easily identify non-

monotonous relations. It attains a value close to 1 if one of the variables is completely determined by the other.

For example, consider the relation 𝑦 = sin(3𝜋𝑥), where 𝑥 is drawn from the uniform distribution on range (0, 1). For a set of 104
observations drawn from this distribution, MIDI attains a value of 1.0. On the other hand, mutual information normalized by maximum 
entropy [42] attains a value of 0.2 for this relation and normalization by average entropy leads to the value 0.3 [43]. Another method 
MINE [40] achieves the value of 1.0 for the example given above by dynamically choosing the partitions for estimating the mutual 
information and normalizing the estimated value using the number of partitions used for the estimation. However, its execution time 
is much higher. In the case of the example given above, the execution time for MIDI is 0.005 seconds while MINE takes 5.83 seconds. 
While finding biclusters these calculations have to be repeated several times making MIDI a better choice for this purpose. The use 
of MIDI allows us to find biclusters with non-linear and non-monotonous relations.

Algorithm 1: DenseRegions().

/* Finding dense regions in 2-dim space */

/* 𝑁 is the total number of observations */

1 Find histogram cells, where the number of cells along each axis is given by 3 log(𝑁)
2 for each cell in the grid do

3 if density(cell) is greater than marginal densities then

4 Mark as dense

5 for each region marked as dense do

6 if At least one adjoining cell is marked dense then

7 Mark the observations in the cell as True

8 Return state of all observations

Algorithm 2: GetBiClusters().

/* This algorithm discusses the process of obtaining biclusters from dense regions obtained by Algorithm 1 */

/* 𝑀 is the total number of features */

1 Normalize data using the procedure given in Section 4.4

/* Each pair of dimensions may contain several sets representing dense regions */

2 for each pair of features do

3 Find observations forming dense regions using Algorithm 1

4 Find the number of observations in dense regions for each feature pair

/* There are 𝑀(𝑀 − 1)∕2 values */

5 Plot a histogram for these values with the number of bins given by 3 log2(𝑀(𝑀 − 1)∕2). Ignore first bin

6 Find the first bin 𝑏𝑙𝑖𝑚 such that two consecutive bins after 𝑏𝑙𝑖𝑚 are populated. 𝑂𝑏𝑠𝑀𝑖𝑛=lower edge of the bin 𝑏𝑙𝑖𝑚
7 for each set of 3 features < 𝑓1, 𝑓2 , 𝑓3 > do

8 Find the intersection of observations forming dense regions for all 3 pairs < 𝑓1, 𝑓2 >< 𝑓2, 𝑓3 >< 𝑓3 , 𝑓1 >
9 if resulting set is larger than 𝑂𝑏𝑠𝑀𝑖𝑛 then

10 Store observation set as binary array

11 Let the number of observation sets be 𝑁𝑡𝑟𝑖𝑝𝑙𝑒𝑆𝑒𝑡𝑠
/* The function 𝑐𝑒𝑖𝑙(𝑥) returns the smallest integer greater than or equal to 𝑥 */

12 Perform single-linkage clustering of observation sets with the maximum number of clusters given by 𝑁𝑐𝑙𝑢𝑠𝑂𝑏𝑠𝑀𝑎𝑥 = 𝑐𝑒𝑖𝑙(3 +𝑂𝑏𝑠𝑀𝑖𝑛∕𝑁𝑡𝑟𝑖𝑝𝑙𝑒𝑆𝑒𝑡𝑠)
13 for each cluster obtained do

14 Calculate the bicluster observation set given by observations occurring in more than 1∕𝑁𝑐𝑙𝑢𝑠𝑂𝑏𝑠𝑀𝑎𝑥 of the ‘Triplet observation sets’ in the cluster

15 for each bicluster observation set found in the previous step do

16 Calculate feature dependence (MIDI) using all features in the dataset and selected observations Perform single-linkage clustering using distance 
1 −𝑀𝐼𝐷𝐼 between features, and select the largest feature cluster as the feature set for the bicluster

17 Return biclusters obtained
6
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4.4. Algorithm

This section presents the algorithm and some details required for the implementation of PF-RelDenBi. For finding dense regions, 
we need to normalize the data to [0, 1] × [0, 1]. We use a common procedure to normalize the data, which has also been used in CBSC 
[5]. It is to be mentioned that the data may come from a distribution with an unbounded base or a bounded base with an unknown 
range. As mentioned in Section 3, let the data be represented by matrix 𝐷. The element in the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ column is denoted 
by 𝑒𝑖,𝑗 . To normalize data from different distributions to the range [0, 1] we have applied one of the following two transformations, 
presented in Equations (7) and (8):

𝑛𝑜𝑟𝑚1(𝑒𝑖,𝑗 ) =
𝑒𝑖,𝑗 − min

1≤𝑘≤𝑛
(𝑒𝑘,𝑗 )

max
1≤𝑘≤𝑛

(𝑒𝑘,𝑗 ) − min
1≤𝑘≤𝑛

(𝑒𝑘,𝑗 )
; (7)

𝑛𝑜𝑟𝑚2(𝑒𝑖,𝑗 ) = 𝑛𝑜𝑟𝑚1(tan−1(𝑒𝑖,𝑗 )∕𝜋 + 0.5). (8)

The transformation 𝑛𝑜𝑟𝑚1(𝑥) (𝑥 represents elements of input data matrix) is commonly used for mapping data from a bounded 
base to [0, 1] interval while, transformation 𝑛𝑜𝑟𝑚2(𝑥) maps the interval (−∞, ∞) to interval (0, 1), which is a subset of [0, 1]. The 
latter transformation is capable of mapping points from an unbounded region to a bounded interval. Thus it can be applied preferably 
if data follows distributions like Gaussian, which have a non-compact base.

The next step is to find the dense regions using the procedure described in Section 4.1. The pseudo-code is given as Algorithm 1. 
Once we have obtained dense regions in two-dimensional spaces, this information is used to obtain biclusters in higher dimensions. 
The details for the procedure are given in Sections 4.2 and 4.3, and the pseudo-code is given as Algorithm 2.

5. Results on simulated datasets

To test the efficacy of the proposed method we have conducted experiments on both simulated and real-world datasets. Experi-

ments with simulated datasets allow us to study the behaviour of the proposed method on datasets with known characteristics. To 
check whether the proposed biclustering algorithm can detect biclusters based on linear and non-linear relationships, we have exper-

imented with several simulated datasets. We also wanted to see the effect of applying different data transforms on the performance 
of the proposed algorithm.

Each column in Tables 1, 2, 3 and 4, corresponds to datasets with particular characteristics. For each column, ten simulated dataset 
instances are generated by the method given in Appendix A and the average accuracy and standard deviation obtained by different 
algorithms are reported.

5.1. Methods used for comparison with the proposed method

The performance of the proposed algorithm is compared with eleven other algorithms namely, CLIQUE [25], Proclus [44], ITL 
[45], Subclu [24], P3C [46], UniBic [4], CBSC [5], ROCCO [35], RelDenClu [34], MESBC [38] and ARBic [30]. CLIQUE, P3C and 
Subclu are density-based methods. ITL is an information-theoretic method, while Proclus is known to provide stable results. ROCCO 
is a parameter-free co-clustering method. ARBic is a recent biclustering method for finding feature relation biclusters which is shown 
to have better results in comparison with several established methods like FABIA, OPSM and UniBic. It also shows better results 
in comparison with other recent methods like Qubic2 [32]. Comparison with UniBic, CBSC, RelDenClu and ARBic is important as 
they specifically aim at finding biclusters based on non-linear dependence. MESBC is a recent biclustering method that uses spectral 
analysis to find biclusters. The single parameter it requires from the user is the number of clusters in the dataset. This parameter is 
set to the minimum value of 2 for MSBEC as we know that each of the simulated datasets, contains a single embedded bicluster. For 
ARBic, the implementation provided by the author [30] is used and the default parameters are used.

Some of the parameters used by RelDenClu and CBSC are similar. The authors of these methods have provided a range of param-

eters that can be used. We have conducted our experiments with several different values for these methods and reported the average 
performance. The parameter 𝑀𝑖𝑛𝑆𝑒𝑒𝑑𝑆𝑖𝑧𝑒 for RelDenClu should be smaller than the number of observations in the biclusters. For 
this parameter, we have taken the values {𝑁∕8, 𝑁∕16} where 𝑁 is the number of observations in the dataset. The author recom-

mends that the value of 𝑂𝑏𝑠𝐼𝑛𝑀𝑖𝑛𝐵𝑎𝑠𝑒 can be 3 or more. We have experimented with the values {3, 5}. The author recommends 
a range (0.6, 0.98) for the parameter 𝑆𝑖𝑚2𝑆𝑒𝑒𝑑 and we have taken the values {0.65, 0.8, 0.95}. The parameter 𝑅𝑒𝑢𝑠𝑒𝐴𝑙𝑙𝑆𝑒𝑒𝑑𝑠 can 
be set to 𝑇 𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒. We have experimented with both of these values. When this parameter is set to 𝐹𝑎𝑙𝑠𝑒, another parameter 
𝑅𝑒𝑢𝑠𝑒𝑆𝑒𝑒𝑑𝑆𝑖𝑚 is required. The author recommends its range as (0, 1). We have experimented with the values {0.25, 0.5, 0.75}. The 
parameter 𝐶𝑙𝑢𝑠𝑆𝑖𝑚 is used to filter similar biclusters. Its value can lie in the range [0, 1]. We have experimented with values {0.5, 1}. 
We have used all the combinations of the parameter values mentioned above and reported the average performance.

For CBSC, the parameter 𝑀𝑖𝑛𝐶𝑜𝑚𝑝𝑡𝑠 should be smaller than the number of observations in the biclusters. For this parameter, we 
have taken the values {𝑁∕8, 𝑁∕16} where 𝑁 is the number of observations in the dataset. For 𝑅𝑎𝑡𝑖𝑜𝑀𝑒𝑟𝑔𝑒, the author recommends 
a range of (0.75, 0.99), we have taken the values {0.75, 0.85, 0.95}. The parameter 𝑅𝑒𝑢𝑠𝑒_𝐴𝑙𝑙_𝐵𝑎𝑠𝑒𝑠 can be set to 𝑇 𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒. We 
have experimented with both of these values. When this parameter is set to 𝐹𝑎𝑙𝑠𝑒, another parameter 𝑅𝑒𝑢𝑠𝑒_𝐵𝑎𝑠𝑒_𝑅𝑎𝑡𝑖𝑜 is required. 
The author recommends its range as (0, 1). We have experimented with the values {0.25, 0.5, 0.75} when 𝑅𝑒𝑢𝑠𝑒_𝐴𝑙𝑙_𝐵𝑎𝑠𝑒𝑠 = 𝐹𝑎𝑙𝑠𝑒. 
The parameter 𝐶𝑙𝑢𝑠_𝑂𝑣𝑒𝑟𝑙𝑎𝑝 is used to filter similar biclusters. Its value can lie in the range [0, 1]. We have experimented with 
7

values {0.5, 1}. For density estimates, CBSC requires two more parameters 𝑐 and 𝑛𝑔 . The author recommends the value 𝑛𝑔 = 10 and 
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Table 1

Accuracy for Non-Linear simulated datasets (Mean and Standard Deviation for 10 
datasets of each type).

Method Accuracy Datasets

Non-Monotonous Non-Linear 1 Non-Linear 2

Proposed Mean 0.973 0.939 0.927

Std. Dev. 0.025 0.034 0.005

MSBEC Mean 0.671 0.767 0.704

Std. Dev. 0.023 0.001 0.043

ARBic Mean 0.76 0.848 0.867

Std. Dev. 0.022 0.029 0.040

RelDenClu Mean 0.786 0.912 0.913

Std. Dev. 0.069 0.077 0.031

ROCCO Mean 0.751 0.82 0.836

Std. Dev. 0.020 0.015 0.020

CBSC Mean 0.79 0.827 0.892

Std. Dev. 0.086 0.049 0.022

UniBic Mean 0.764 0.804 0.839

Std. Dev. 0.004 0.142 0.107

P3C Mean 0.75 0.765 0.764

Std. Dev. 0.001 0.004 0.003

Subclu Mean 0.746 0.785 0.793

Std. Dev. 0.005 0.017 0.016

ITL Mean 0.75 0.75 0.75

Std. Dev. 0.009 0.004 0.002

Proclus Mean 0.752 0.781 0.792

Std. Dev. 0.009 0.014 0.007

CLIQUE Mean 0.75 0.784 0.782

Std. Dev. 0.000 0.002 0.002

the value for 𝑐 in the range (0.75, 0.99). We have taken 𝑛𝑔 = 10 as suggested by the author. For 𝑐 we have considered the values 
{0.75, 0.85, 0.95}. With CBSC too we have experimented with all combinations of above mentioned parameter values.

For ROCCO the parameter 𝑘 is required for finding the 𝑘 nearest neighbours adjacency matrix for spectral analysis. The authors 
have shown that the performance of ROCCO is consistent for any of the values of 𝑘 from 8, 9 or 10, making it a hyperparameter-free 
algorithm [35]. Thus, we have chosen 𝑘 = 9 for our experiments.

For UniBic, P3C, SubClu, ProClus and CLIQUE the R packages ‘runibic’ and ‘subspace’ have been used for the experiments with 
default parameters [47,48]. For ITL, the Matlab Toolbox for Biclustering Analysis has been used with default parameters [49].

5.2. Evaluation of performance on simulated datasets

For the simulated datasets, the evaluation is done in the following manner. For data represented as an 𝑁 ×𝑀 matrix, accuracy 
is calculated as follows: For each element in the dataset let 𝑒𝑗

𝑖
= 1 if the element in row 𝑖 and column 𝑗 is selected, otherwise 𝑒𝑗

𝑖
= 0. 

Similarly, for each element in the dataset let 𝑎𝑗
𝑖
= 1 if the element belongs to the actual bicluster and 𝑎𝑗

𝑖
= 0 otherwise. The accuracy 

is calculated as 𝑠𝑢𝑚(𝑋𝑁𝑂𝑅(𝑒𝑗
𝑖
, 𝑎𝑗
𝑖
))∕(𝑁𝑀). In other words, an element is said to be correctly identified if it is either present in 

the actual bicluster and also in the bicluster found by the algorithm or if the element is absent in both of them. The expectation of 
correctness over all the elements of the data matrix is the overall accuracy while identifying a bicluster. For each bicluster, present in 
the data, the best match is reported for each algorithm. These results are reported in Section 5.3 and corresponding execution times 
are reported in Section 5.4.

5.3. Accuracy for simulated datasets

For simulated data, experiments are conducted with 10 different simulations and the average (over 10 simulations) accuracy and 
corresponding standard deviation (denoted as “deviation”) values are reported in Tables 1, 2, 3 and 4. Comparison is done with 
eleven other methods. We see that the proposed method provides better accuracy for fifteen out of the sixteen simulated datasets. 
Data is normalized using 𝑛𝑜𝑟𝑚2() for “Normal” and “Noisy Normal” datasets. For all other datasets 𝑛𝑜𝑟𝑚1() is used.

The columns (“Non-Monotonous”, “Non-linear 1” and “Non-linear 2”) of Table 1 represent datasets having biclusters based on 
8

non-linear relations. We see that the proposed algorithm provides higher accuracy for these three datasets. Unlike other algorithms, 
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Table 2

Accuracy for Base and transformed simulated datasets (Mean and Standard Deviation for 10 datasets of each type).

Method Accuracy Datasets

Base Scaled Translated Linear Transform Point Proportion Cluster Proportion Noisy Uniform Permutations

Proposed Mean 0.986 0.983 0.985 0.986 0.984 0.981 0.984 0.986

Std. Dev. 0.036 0.036 0.038 0.037 0.026 0.026 0.032 0.036

MSBEC Mean 0.600 0.601 0.604 0.654 0.603 0.641 0.595 0.600

Std. Dev. 0.041 0.041 0.059 0.033 0.037 0.042 0.054 0.034

ARBic Mean 0.968 0.973 0.857 0.633 0.968 0.964 0.874 0.867

Std. Dev. 0.032 0.060 0.100 0.103 0.032 0.036 0.051 0.033

RelDenClu Mean 0.980 0.980 0.981 0.981 0.980 0.980 0.974 0.980

Std. Dev. 0.057 0.057 0.073 0.057 0.042 0.051 0.058 0.057

ROCCO Mean 0.813 0.881 0.883 0.851 0.881 0.829 0.839 0.819

Std. Dev. 0.019 0.015 0.014 0.020 0.034 0.036 0.012 0.019

CBSC Mean 0.914 0.914 0.913 0.914 0.915 0.924 0.906 0.913

Std. Dev. 0.063 0.063 0.063 0.062 0.068 0.070 0.049 0.063

UniBic Mean 0.900 0.848 0.802 0.793 0.603 0.641 0.832 0.900

Std. Dev. 0.034 0.211 0.159 0.034 0.046 0.078 0.124 0.034

P3C Mean 0.781 0.782 0.779 0.779 0.787 0.802 0.772 0.783

Std. Dev. 0.040 0.040 0.041 0.041 0.022 0.092 0.032 0.015

Subclu Mean 0.794 0.759 0.788 0.765 0.802 0.724 0.795 0.798

Std. Dev. 0.023 0.016 0.019 0.025 0.030 0.020 0.017 0.022

ITL Mean 0.751 0.752 0.750 0.751 0.750 0.750 0.750 0.750

Std. Dev. 0.005 0.004 0.004 0.001 0.001 0.002 0.002 0.001

Proclus Mean 0.785 0.768 0.803 0.770 0.800 0.711 0.792 0.785

Std. Dev. 0.013 0.015 0.023 0.028 0.024 0.024 0.010 0.015

CLIQUE Mean 0.776 0.776 0.776 0.776 0.776 0.683 0.720 0.773

Std. Dev. 0.016 0.016 0.016 0.016 0.016 0.012 0.011 0.015

the proposed method finds the biclusters accurately for datasets containing highly non-monotonous relations as seen from the first 
column. Despite the highly variable distribution of background observations, the proposed method finds the biclusters with higher 
accuracy as seen from the column “Non-Linear 1”. Its accuracy for another dataset containing bicluster based on non-linear relations is 
also higher in comparison with other algorithms as seen from column “Non-Linear 2”. The values of accuracy obtained using different 
algorithms on these datasets are presented in Fig. 1 as bar-graphs, for better illustration. The experiments on these three datasets 
illustrate that the proposed method can find biclusters where features are related to each other with non-linear or non-monotonous 
relations as mentioned in Section 2.2. The proposed method is able to identify these relations due to its reliance on relative density 
to find the initial set of observations and the use of the relation index MIDI to find the final biclusters.

The first column of Table 2 (“Base”) represents a dataset containing biclusters based on linear relation. The other seven columns of 
the table (“Scaled”, “Translated”, ..., “Permutations”) give results for datasets obtained by applying different transforms to the “Base” 
dataset. These datasets allow us to analyze the behaviour of the proposed method in a way similar to the analysis done by Fisher 
and Ness [50] for clustering algorithms. From Fig. 2 (shown in parts 2a and 2b) and the above-mentioned table, we find that the 
proposed method has produced better results as compared to other methods for the “Base” dataset and its transforms, i.e. “Scaled”,..., 
“Permutations”.

The three columns of Table 3 (“Normal”, “Noisy Normal 1” and “Noisy Normal 2”), contain results for datasets generated using 
the normal distribution. In the case of the “Normal” dataset, we find that ARBic has slightly better performance than the proposed 
method. But from the results on the “Noisy Normal 1” (noise with standard deviation 0.1) and “Noisy Normal 2” (noise with standard 
deviation 0.2) datasets, we find that the performance of ARBic decreases more sharply when noise is added. On the other hand, the 
proposed method shows a more robust performance and achieves higher accuracy than other methods on “Noisy Normal 1” and 
“Noisy Normal 2” datasets. The performance for these datasets is reported in Table 3 and Fig. 3.

The first two columns of Table 4 (“Overlap 1”), present results for a dataset containing two biclusters with an overlap of 12%. 
We find that the proposed method has the best performance among the methods used for comparison. The third and fourth columns 
present results for a similar dataset with two biclusters but with an overlap of 20%. In this case, we find that RelDenClu finds the 
second bicluster with the highest accuracy. On the other hand, the proposed method finds the first bicluster with the highest accuracy. 
If we take the average over both biclusters in the dataset “Overlap 2”, the proposed method achieves the highest accuracy. These 
results are presented graphically in Fig. 4.
9

These results for simulated datasets suggest some properties of the proposed method which will be discussed in Section 5.5.
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Table 3

Accuracy for simulated datasets with Normal Distribution (Mean and Standard 
Deviation for 10 datasets of each type).

Method Accuracy Datasets

Normal Noisy Normal 1 Noisy Normal 2

Proposed Mean 0.971 0.964 0.934

Std. Dev. 0.022 0.015 0.020

MSBEC Mean 0.746 0.747 0.746

Std. Dev. 0.009 0.009 0.010

ARBic Mean 0.975 0.812 0.784

Std. Dev. 0.010 0.009 0.002

RelDenClu Mean 0.958 0.941 0.810

Std. Dev. 0.043 0.074 0.010

ROCCO Mean 0.753 0.755 0.752

Std. Dev. 0.011 0.009 0.003

CBSC Mean 0.951 0.950 0.886

Std. Dev. 0.075 0.074 0.074

UniBic Mean 0.869 0.794 0.776

Std. Dev. 0.025 0.098 0.009

P3C Mean 0.767 0.758 0.765

Std. Dev. 0.017 0.047 0.009

Subclu Mean 0.783 0.78 0.769

Std. Dev. 0.010 0.015 0.006

ITL Mean 0.75 0.749 0.750

Std. Dev. 0.003 0.001 0.001

Proclus Mean 0.783 0.772 0.769

Std. Dev. 0.017 0.011 0.006

CLIQUE Mean 0.799 0.787 0.776

Std. Dev. 0.011 0.015 0.008
10

Fig. 1. Accuracy obtained using various algorithms for Non-Linear datasets.
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Table 4

Accuracy for Overlapping simulated datasets (Mean and Standard De-

viation for 10 datasets of each type).

Method Accuracy Datasets

Overlap 1 Overlap 2

First Second First Second

Proposed Mean 0.994 0.999 0.973 0.955

Std. Dev. 0.010 0.001 0.028 0.108

MESBC Mean 0.727 0.779 0.701 0.751

Std. Dev. 0.015 0.009 0.005 0.005

ARBic Mean 0.927 0.584 0.905 0.603

Std. Dev. 0.029 0.020 0.031 0.016

RelDenClu Mean 0.980 0.996 0.906 0.965

Std. Dev. 0.004 0.002 0.002 0.004

ROCCO Mean 0.773 0.817 0.751 0.801

Std. Dev. 0.008 0.007 0.002 0.002

CBSC Mean 0.924 0.935 0.872 0.883

Std. Dev. 0.036 0.006 0.012 0.012

UniBic Mean 0.940 0.626 0.833 0.775

Std. Dev. 0.037 0.032 0.130 0.143

P3C Mean 0.751 0.801 0.750 0.800

Std. Dev. 0.002 0.004 0.001 0.001

Subclu Mean 0.761 0.801 0.763 0.801

Std. Dev. 0.005 0.002 0.004 0.002

ITL Mean 0.750 0.800 0.750 0.800

Std. Dev. 0.001 0.001 0.001 0.001

Proclus Mean 0.760 0.804 0.761 0.802

Std. Dev. 0.009 0.004 0.008 0.003

CLIQUE Mean 0.750 0.800 0.750 0.800

Std. Dev. 0.001 0.001 0.001 0.001

Table 5

Execution time in seconds for Non-Linear simulated datasets.

Method Datasets

Non-Monotonous Non-Linear 1 Non-Linear2

Proposed 0.287 0.221 0.232

MSBEC 0.021 0.069 0.075

ARBic 0.258 0.232 0.254

RelDenClu 0.195 0.295 0.275

ROCCO 31.402 4.087 3.164

CBSC 19.294 37.464 31.82

UniBIc 0.012 0.583 0.612

P3C 1.440 0.359 0.650

SubClu 0.037 0.064 0.052

ITL 15.000 9.096 9.248

Proclus 0.026 0.060 0.055

Clique 0.001 0.011 0.007

5.4. Execution time for simulated datasets and time complexity

Execution time is considered as another evaluation criterion and the results are reported in Tables 5, 6, 7 and 8. The datasets 
used here are the same as those used in Tables 1, 2, 3 and 4. The algorithm is executed with Intel Core i7 CPU and 8 GB memory. 
As seen from the above-mentioned tables, the execution time for the proposed method is less than ITL, P3C, UniBic and CBSC. The 
execution time of ARBic and the proposed method are similar. It is high compared to MESBC and density-based methods like Subclu, 
Proclus, and CLIQUE. However, it is already seen in Tables 1, 2, 3 and 4, that the accuracy of the proposed method is better than 
11

these methods for most of the simulated datasets.
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Fig. 2. Accuracy obtained for simulated datasets with various transforms applied.

5.4.1. Time complexity of the proposed method

The time complexity of ITL has been reported by Dhillon et al. [45] and Liu et al. have reported the time complexity of ARBic 
[30]. The time complexity of ROCCO has been reported by He and Moreira-Matias [35]. For MESBC, the most computationally 
expensive operation is to calculate the Singular Value Decomposition which is known to have a complexity of 𝑀𝑁2, where 𝑁 and 
𝑀 , respectively are the number of observations and the number of features. However faster approximations have recently been 
designed which may lead to faster implementations [51]. The time complexity of other methods used for comparison has been 
reported by Jain and Murthy [5]. We are reporting the time complexity of the proposed method, where 𝑁 and 𝑀 , respectively are 
12

the number of observations and the number of features in a given dataset.
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Fig. 3. Accuracy obtained using various algorithms for Normal and Noisy Normal datasets.

Fig. 4. Accuracy obtained using various algorithms for Overlapping datasets.

The time complexity of the method proposed in this article is (𝑙𝑜𝑔(𝑁)𝑀)2 + 𝑁𝑀3 where 𝑁 and 𝑀 represent the number 
of observations and features in the dataset, respectively. For finding dense regions the complexity is given by (𝑙𝑜𝑔(𝑁)𝑀)2 . The 
complexity is 𝑁𝑀3 for the pruning step because the intersection of observations is calculated for a set of 3 dimensions. However, 
this is the worst-case scenario and in reality, we do not check for all feature triplets but only find the intersections for dense regions 
calculated previously.

Theoretically, the time complexity of CBSC [5] and the proposed method are similar. However, the execution time for the proposed 
method is found to be much lower as compared to CBSC for the high dimensional dataset. This happens because the proposed method 
does not calculate the Minimal Spanning Tree for each pair of dimensions, which is done in CBSC. The time complexity of the proposed 
method is similar to RelDenClu. However, in practical applications, the proposed method may save time, as the user would not need 
13

to experiment with different parameter settings.
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Table 6

Execution time in seconds for Base and transformed simulated datasets.

Method Datasets

Base Scale Translated Linear Point Proportion Cluster Proportion Noisy Permutations

Proposed 0.250 0.238 0.243 0.236 0.488 0.549 0.228 0.243

MSBEC 0.104 0.089 0.063 0.071 0.209 0.153 0.073 0.136

ARBic 0.254 0.229 0.248 0.282 2.751 2.105 0.287 0.216

RelDenClu 0.293 0.291 0.273 0.302 11.103 7.768 0.288 0.293

ROCCO 2.939 3.021 2.681 2.794 29.275 7.509 2.874 2.958

CBSC 42.416 51.400 43.964 41.313 91.973 83.796 42.304 41.654

UniBIc 0.583 0.612 0.649 0.673 2.596 1.436 0.621 0.583

P3C 0.513 0.955 0.952 0.433 1.083 0.848 0.458 0.588

SubClu 0.056 0.043 0.050 0.055 0.120 0.082 0.049 0.070

ITL 3.171 3.302 3.498 3.276 9.994 6.519 2.94 3.272

Proclus 0.052 0.055 0.049 0.055 0.120 0.088 0.056 0.063

Clique 0.105 0.015 0.015 0.018 0.033 0.021 0.014 0.013

Table 7

Execution time in seconds for simulated datasets with Normal Dis-

tribution.

Method Datasets

Normal Noisy Normal 1 Noisy Normal 2

Proposed 0.234 0.225 0.296

MSBEC 0.069 0.076 0.859

ARBic 0.288 0.264 0.918

RelDenClu 1.398 1.395 71.117

ROCCO 6.258 5.128 2.938

CBSC 66.659 63.821 267.958

UniBic 0.531 0.577 0.001

P3C 18.840 9.751 6.322

SubClu 0.071 0.061 0.050

ITL 1.187 1.259 20.639

Proclus 0.054 0.052 0.084

Clique 0.071 0.044 0.715

Table 8

Execution time in seconds for Overlapping 
simulated datasets.

Method Datasets

Overlap 1 Overlap 2

Proposed 0.379 0.430

MESBC 0.240 0.142

ARBic 0.590 0.811

RelDenClu 27.090 27.103

ROCCO 2.571 25.663

CBSC 110.521 115.285

UniBic 2.092 2.775

P3C 0.049 0.016

Subclu 0.074 0.158

ITL 15.102 15.091

Proclus 0.074 0.087

CLIQUE 0.014 0.032

5.5. A discussion on properties of PF-RelDenBi as seen from experiments on simulated datasets

It is already seen that the proposed algorithm can find relation-based biclusters with better accuracy as compared to other algo-

rithms for most of the simulated datasets as it is seen from Tables 1, 2, 3, 4 and Figs. 1, 2, 3 and 4. In this section, we discuss some 
of the observed properties of the proposed algorithm.

The proposed algorithm is invariant to scaling, translation and linear transforms because these transforms affect neither bin length 
nor estimated densities. Theoretically, the procedure is not invariant to arbitrary order-preserving transforms, which may change the 
density of the observations. We compare the accuracy obtained for the “Base” dataset and its various transforms. We find that there 
is no significant difference in the performance of PF-RelDenBi for “Scaled”, “Translated”, “Linear Transform”, “Point Proportion”, 
14

“Cluster Proportion” and “Permutations” datasets. Accuracy for the “Noisy Uniform”, “Noisy Normal 1” and “Noisy Normal 2” datasets 
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is only slightly lower than the “Base” and “Normal” datasets. As compared to other algorithms the proposed method still has higher 
accuracy for noisy datasets.

We may note, that the biclusters in “Base” dataset can also be seen as scaling biclusters, as each column in the bicluster can be 
obtained by multiplying another column by a constant value. Further, the biclusters in “Translated” datasets are obtained by adding 
a randomly selected constant value to each column of “Base” dataset. Hence, the resulting biclusters can be seen as a combination of 
scaling and shift biclusters. This happens because scaling and shifting are examples of linear and affine transformations, respectively. 
Since the proposed method finds biclusters based on feature relations, it will be able to find biclusters based on scaling and shifting of 
columns. However, the proposed method will not be able to find biclusters based on the shifting and scaling of rows, as it specifically 
aims to find biclusters based on feature relations.

Overall, we find that the proposed method PF-RelDenBi performs well on data after applying different transforms or adding noise. 
Its performance on datasets containing non-linear datasets is also good, which is in line with its objectives discussed in Section 3.

6. Experiments with real-world datasets

In this section, we demonstrate the use of the proposed method in three different ways. First, as an application to supervised learn-

ing, the biclustering algorithms have been used to generate new features for two different datasets that lead to improved classification 
accuracy. This is discussed in Section 6.1

Second, in Section 6.2, we use the proposed method for clustering three datasets and then compare the obtained clusters with 
known classes in the data. The datasets used for these experiments are taken from the UCI ML repository [52] and are suitable for the 
task of classification. These datasets are from diverse application areas namely, Banking, Education, Medical Science, Particle Physics, 
and Electrical Engineering. For the chosen datasets each feature is presented in numeric form. Each of these datasets has at least 600 
observations and a minimum of 9 features. For each application area, the dataset with the highest number of views is selected. The 
number of views as of 7 May 2024, for each of the datasets, is given along with the description of the datasets in Sections 6.1 and 
6.2.

Third, we use the proposed method for identifying factors impacting the spread of COVID across different countries. This is 
discussed in Section 6.3.

For the real-world datasets, we initially apply the normalization 𝑛𝑜𝑟𝑚1. If no biclusters are produced using 𝑛𝑜𝑟𝑚1 then the biclusters 
are found after applying 𝑛𝑜𝑟𝑚2 to the dataset.

6.1. Experiments with supervised learning

We have used PF-RelDenBi and other biclustering methods to generate new binary features that are further used to improve the 
classification performance on two UCI ML datasets [52]. These are: (1)“Default of credit card clients” dataset [53] from the banking 
sector having 30000 observations with 23 features and two classes; this dataset has 97178 views as of May 7 2024. (2) “Predict 
Students’ Dropout and Academic Success” dataset [54] from the education sector has 4424 observations with 36 features and three 
classes; this dataset was viewed 128520 times as of 7 May 2024.

Biclusters are found using different methods (proposed and eleven other methods). For a given algorithm, each bicluster obtained 
results in a new feature. If an observation belongs to this bicluster, the new feature value is taken as 1 otherwise 0 i.e., the corre-

sponding membership value is taken as a new feature. Naive Bayes classifier, which is a very simple classifier is used after adding 
new features to a database. For MESBC, the number of clusters is taken as the known number of classes in the data. For the methods 
RelDenClu and CBSC we needed to choose one set of parameter values for which the biclusters could be used to generate new features. 
The choice is made by selecting parameter values using 10-fold cross-validation from the combinations of parameters mentioned in 
Section 5.3. All other parameters for various algorithms are the same as those discussed in Section 5.3. The performance is evaluated 
in terms of Accuracy, Normalized Mutual Information (NMI) [41], Adjusted Rand Index (ARI) [55], Precision, Recall and G-Score 
[56]. Note that ARI can sometimes attain negative values and the lower bounds have been well studied [57]. Also note that, since av-

erage Precision, Recall and G-Score are being reported, the reported G-Score values may be less than the geometric mean of reported 
Precision and Recall. The results are reported in Table 9 and the above-mentioned performance indices are presented as bar-graphs 
in Figs. 5a, 5b, 5c, 5d, 5e, 5f. We find that for the Credit Card dataset, the features generated by PF-RelDenBi provide a greater 
improvement in accuracy as compared to eleven other algorithms, thereby leading to better identification of credit card defaulters. 
RelDenClu and CBSC also resulted in similar improvements. However, this was achieved only after determining the parameters using 
cross-validation, making the process more computationally costly and time-consuming. For the Student Dropout dataset, the proposed 
method provides improvement over the original accuracy. It also results in better NMI and ARI. Here too RelDenClu provides similar 
improvement only after determining the parameters with cross-validation. Overall, we find that the proposed method provides better 
accuracy without the hassle of finding suitable parameters.

6.2. Experimental results for unsupervised learning

We apply the proposed method for unsupervised learning to see whether the biclusters detected by the proposed algorithm 
correspond to the meaningful structures in data. We check if one of the biclusters detected corresponds to one of the known classes 
in the data or not. This is done for three UCI ML [52] datasets: (1) “Magic gamma telescope” dataset [58] from the application area 
15

named particle physics, has 19020 observations with 10 features; it has 74568 views as of 7 May 2024. (2) “Breast cancer (Wisconsin 
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Table 9

Classification performance for Credit card and Student Dropout datasets (after adding 
features generated using different biclustering methods).

Dataset Credit Card [53]

Method Accuracy NMI ARI Average

Mean S. Dev. Prec. Recall G-Score

Proposed 0.775 0.007 0.116 0.241 0.680 0.694 0.686

MESBC 0.697 0.015 0.086 0.140 0.638 0.687 0.650

ARBic 0.736 0.012 0.097 0.188 0.654 0.692 0.668

RelDenClu 0.761 0.006 0.108 0.227 0.672 0.702 0.685

ROCCO 0.269 0.005 0.000 -0.007 0.510 0.504 0.355

CBSC 0.755 0.006 0.074 0.185 0.647 0.651 0.649

UniBic 0.397 0.006 0.015 -0.047 0.559 0.562 0.472

P3C 0.702 0.012 0.090 0.149 0.642 0.690 0.654

Subclu 0.547 0.098 0.033 0.004 0.581 0.616 0.560

ITL 0.269 0.010 0.006 -0.035 0.562 0.520 0.359

Prolus 0.722 0.015 0.097 0.172 0.650 0.696 0.665

CLIQUE 0.544 0.006 0.032 0.003 0.580 0.614 0.558

Original 0.703 0.028 0.088 0.147 0.640 0.689 0.654

Dataset Student Dropout [54]

Method Accuracy NMI ARI Average

Mean S. Dev. Prec. Recall G-Score

Proposed 0.692 0.015 0.222 0.325 0.624 0.600 0.609

MESBC 0.664 0.021 0.192 0.285 0.566 0.554 0.555

ARBic 0.679 0.020 0.209 0.307 0.602 0.583 0.589

RelDenClu 0.685 0.018 0.219 0.317 0.616 0.602 0.608

ROCCO 0.221 0.011 0.010 -0.003 0.434 0.360 0.264

CBSC 0.681 0.016 0.207 0.302 0.604 0.583 0.589

UniBic 0.610 0.009 0.144 0.125 0.550 0.450 0.455

P3C 0.679 0.020 0.215 0.312 0.595 0.581 0.585

Subclu 0.674 0.018 0.197 0.291 0.602 0.586 0.591

ITL 0.185 0.003 0.004 -0.002 0.417 0.336 0.184

Proclus 0.676 0.018 0.206 0.305 0.601 0.589 0.593

CLIQUE 0.675 0.022 0.195 0.295 0.597 0.576 0.582

Original 0.678 0.020 0.204 0.303 0.597 0.580 0.585

Original)” dataset [59] from the sector of medical science has 683 observations and 9 features; it has 121901 views as of 7 May 2024. 
(3) “Electrical Grid Stability Simulated Data” dataset [60] from the application area electrical engineering, has 10000 observations 
and 12 features; the dataset has 13797 views as of 7 May 2024. These datasets have numeric features and the associated task is binary 
classification.

The methods used for comparison and parameter settings are the same as those used in Section 5. The performance evaluation 
for these datasets is done in the following manner. Each of the datasets used contains two classes labelled as 0 or 1. Let 𝑂𝐶 (𝑖) denote 
whether observation 𝑖 is in class 1 or 0. Let 𝑂𝐸(𝑖) = 1, if observation 𝑖 is included in the estimated bicluster and 0 otherwise. For each 
bicluster, the number of matches between the bicluster membership and the class label is calculated as below:

𝐴𝑐𝑐 =
𝑚𝑎𝑥(𝑠𝑢𝑚(𝑋𝑁𝑂𝑅(𝑂𝐸 (𝑖),𝑂𝐶 (𝑖))), 𝑠𝑢𝑚(𝑋𝑂𝑅(𝑂𝐸 (𝑖),𝑂𝐶 (𝑖))))

𝑁
; (9)

where 𝑁 is the number of observations in the dataset and 𝑋𝑁𝑂𝑅 and 𝑋𝑂𝑅 are the logical operators. Using this formula we check 
whether a bicluster is similar to any one of the two classes present in the dataset. For the bicluster that obtains the best accuracy 
according to Equation (9), six performance indices are reported. These indices are Accuracy, NMI, ARI, Precision, Recall and G-score.

The results are reported in Table 10. It is seen that the proposed method yields the best accuracy for the three datasets used 
for investigation. For better visualization, the accuracies obtained by different methods are presented in Fig. 6a as bar graphs. NMI 
and ARI are shown in Figs. 6b and 6c, respectively. The average Precision, Recall and G-score of both classes have been shown in 
Figs. 6d, 6e and 6f, respectively. We find that the proposed method obtains better accuracy for all three datasets. It obtains the best 
NMI and ARI for Magic and Breast Cancer datasets. It does not achieve a better G-Score for each class individually but achieves a 
higher G-Score averaged over the two classes for Magic and Breast Cancer datasets.

6.3. Applicability of the proposed method for COVID-19

We have also utilized the proposed method to find lifestyle factors impacting COVID-19 infection rates. Toward the end of 2019, 
a highly contagious disease named COVID-19 emerged and caused a pandemic of unprecedented scale. However, it is seen that some 
16

countries were affected by this disease to a greater extent than others. During the early phase of the spread of COVID-19, it was 
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Fig. 5. Performance of various biclustering algorithms for Supervised Learning.

important for policymakers and medical practitioners to understand the behaviour of the disease. For this, there were attempts to 
find the relation between existing lifestyle factors and COVID-19 rates.

One such dataset was created by selecting features from World Development Indicators taken from the site of the World Bank [61]

and the script for generating the dataset was made available at Kaggle [62]. In brief, the creator of the dataset considered 74 features 
from the World Bank Indicators dataset, that intuitively seemed related to COVID-19 infection rates and dropped the features in 
which the missing values were more than 25%. This resulted in a WDI (World Bank Indicators) dataset with 27 columns. The missing 
17

values were treated using KNN imputation. The creator then joined the WDI dataset with the COVID-19 rate dataset for correlation 
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Fig. 5. (continued)

analysis. However, the values of the correlation coefficient at this time were small as the disease had spread to few countries and the 
relation between COVID-19 rates and other features was obscured.

For our analysis using the proposed method, we have utilized the WDI features extracted in the same way as described above and 
joined this dataset with the table of the cumulative number of confirmed COVID-19 cases on 31 January 2020 [63,64].

The proposed method does not find the correlation between features for the entire set of observations. Instead, it finds subsets 
of observations where features are related to each other by linear or non-linear relations. This allows the proposed method to find 
relations limited to a smaller subset of data. We may also say that the relation between the selected features for the selected ob-

servations is different from the relation between the same set of features for the observations outside the bicluster. Thus a bicluster 
18

that separates countries with a higher occurrence of COVID-19 from other countries would contain features that are more likely to 
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Fig. 5. (continued)

impact the COVID-19 infection rates. Note that traditional clustering methods cannot be used for this analysis, as they do not select 
features. Biclustering is useful in scenarios where subsets of observations as well as features are required together. Thus we applied the 
proposed method for analysis of lifestyle factors impacting COVID-19 rates. The details of the methodology and results are provided 
in the following sections.

6.3.1. Methodology for finding relevant features in COVID-19 dataset

To understand the features affecting the infection rate, we use the number of confirmed COVID-19 cases on 31 January 2020 i.e., 
the cumulative number of confirmed cases on that day. This along with WDI features, is used as input for PF-RelDenBi. We define the 
19

infection rate as the number of confirmed COVID-19 cases per million people living in a region. We find countries lying above the 
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Table 10

Results for Unsupervised Learning.

Dataset Magic Gamma [58]

Method Accuracy NMI ARI Class 1 Class 2

Prec. Recall G-Score Prec. Recall G-Score

Proposed 0.754 0.181 0.256 0.848 0.755 0.800 0.625 0.751 0.685

MESBC 0.657 0.023 0.068 0.690 0.857 0.769 0.522 0.289 0.388

ARBic 0.599 0.005 0.024 0.674 0.739 0.706 0.414 0.341 0.376

RelDenClu 0.699 0.096 0.138 0.629 0.500 0.536 0.770 0.807 0.779

ROCCO 0.653 0.006 0.009 0.845 0.016 0.117 0.652 0.998 0.807

CBSC 0.689 0.062 0.089 0.839 0.225 0.376 0.700 0.941 0.808

UniBic 0.655 0.006 0.015 0.654 0.991 0.805 0.677 0.035 0.153

P3C 0.705 0.080 0.110 0.690 0.992 0.827 0.919 0.177 0.404

Subclu 0.639 0.001 0.011 0.653 0.943 0.785 0.425 0.077 0.181

ITL 0.652 0.027 0.007 0.953 0.012 0.107 0.651 1.000 0.807

Proclus 0.648 0.013 0.048 0.676 0.878 0.770 0.498 0.223 0.333

CLIQUE 0.685 0.044 0.104 0.703 0.889 0.791 0.600 0.308 0.430

Dataset Breast Cancer (Wisconsin Original) [59]

Method Accuracy NMI ARI Class 1 Class 2

Prec. Recall G-Score Prec. Recall G-Score

Proposed 0.968 0.784 0.874 0.986 0.964 0.975 0.936 0.975 0.955

MESBC 0.845 0.452 0.475 0.697 0.983 0.828 0.988 0.770 0.873

ARBic 0.862 0.389 0.520 0.887 0.903 0.895 0.814 0.787 0.800

RelDenClu 0.924 0.632 0.718 0.834 0.981 0.904 0.989 0.893 0.939

ROCCO 0.660 0.011 0.022 0.733 0.046 0.184 0.659 0.991 0.808

CBSC 0.925 0.607 0.719 0.866 0.932 0.898 0.963 0.920 0.941

UniBic 0.843 0.330 0.462 0.833 0.690 0.758 0.847 0.926 0.886

P3C 0.796 0.261 0.322 0.981 0.427 0.647 0.763 0.995 0.872

Subclu 0.814 0.296 0.370 0.975 0.481 0.685 0.781 0.993 0.880

ITL 0.656 0.007 0.011 0.833 0.021 0.132 0.654 0.998 0.808

Proclus 0.657 0.008 0.023 0.600 0.063 0.194 0.660 0.977 0.803

CLIQUE 0.921 0.579 0.706 0.881 0.895 0.888 0.943 0.935 0.939

Dataset Electrical Grid [60]

Method Accuracy NMI ARI Class 1 Class 2

Prec. Recall G-Score Prec. Recall G-Score

Proposed 0.679 0.041 0.088 0.680 0.939 0.799 0.673 0.220 0.385

MESBC 0.503 0.000 0.000 0.363 0.497 0.425 0.639 0.506 0.569

ARBic 0.552 0.009 -0.022 0.255 0.124 0.177 0.615 0.795 0.699

RelDenClu 0.610 0.045 0.032 0.415 0.497 0.437 0.737 0.674 0.693

ROCCO 0.650 0.011 0.030 0.651 0.973 0.796 0.631 0.082 0.228

CBSC 0.649 0.055 0.092 0.503 0.487 0.491 0.724 0.741 0.731

UniBic 0.638 0.001 0.006 0.497 0.026 0.114 0.641 0.985 0.794

P3C 0.638 0.000 0.000 0.638 1.000 0.799 0.000 0.000 0.000

Subclu 0.631 0.000 0.001 0.383 0.030 0.107 0.639 0.973 0.788

ITL 0.647 0.009 0.029 0.572 0.096 0.235 0.652 0.959 0.791

Proclus 0.635 0.001 0.006 0.444 0.038 0.129 0.641 0.973 0.790

CLIQUE 0.532 0.000 0.002 0.372 0.425 0.398 0.645 0.593 0.619

90 percentile in terms of infection rate. The bicluster having a maximum match for finding the set of countries with high COVID-19 
rates is identified among all the biclusters obtained using PF-RelDenBi. The maximum match is found using the accuracy calculated 
using Equation (9). Note that this accuracy does not indicate the similarity between the bicluster and the group of countries with 
higher rates of COVID-19 infections, but indicates the ability of the bicluster to separate the countries with high and low COVID-19 
infection rates. Since the biclusters are obtained based on the similarity between features for chosen observations, it can be inferred 
that the relationship between these features distinguishes the given set of observations from other observations. Thus these features 
are likely to affect the spread of the disease.

For this analysis, we have used the data available at an early stage on 31 January 2020. We have taken 90 percentile to cover the 
major portion of the dataset as the size of the dataset is very small. We have also repeated the analysis with the top 80 percentile 
countries and obtained the same results for all the methods. The major aim was to take information from a large part of the available 
data.

Using the data for January 2020, we found that the proposed method identified some factors related to the disease occurrence rate. 
At this time, the Spearman correlations of selected features with disease occurrence were low. However, the Spearman correlations of 
the features selected by PF-RelDenBi with disease occurrence on 31 December 2020 (after 1 year of the spread of the disease, before 
20

vaccination programs started in many countries) are high (Table 11), indicating that the selected features are indeed important. 
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Fig. 6. Performance of various biclustering algorithms for Unsupervised Learning.

During the early phases of the disease, these relations were obscured by data from countries where the disease was still in its nascent 
stages. The proposed method is capable of mining this obscured information as it searches for relations between subsets of data. Early 
detection of factors impacting the spread of diseases makes the proposed method a useful tool for understanding new diseases and 
epidemics.

A similar analysis has also been done using CBSC, ROCCO, RelDenClu, ARBic and MESBC which are the most recent algorithms 
among the eleven methods mentioned above. For MESBC the parameter determining the number of classes is set to two. For ROCCO we 
take 𝑘 = 9 as before. The parameters used for RelDenClu for this analysis are 𝑀𝑖𝑛𝑆𝑒𝑒𝑑𝑆𝑖𝑧𝑒 = 10, 𝑂𝑏𝑠𝐼𝑛𝑀𝑖𝑛𝐵𝑎𝑠𝑒 = 5, 𝑆𝑖𝑚2𝑆𝑒𝑒𝑑 =
0.95, 𝑅𝑒𝑢𝑠𝑒𝐴𝑙𝑙𝑆𝑒𝑒𝑑𝑠 = 𝐹𝑎𝑙𝑠𝑒, 𝑅𝑒𝑢𝑠𝑒𝑆𝑒𝑒𝑑𝑆𝑖𝑚 = 0.5, 𝐶𝑙𝑢𝑠𝑆𝑖𝑚 = 1. The parameters that are used for CBSC are 𝑀𝑖𝑛𝐶𝑜𝑚𝑝𝑡𝑠 = 10, 
21

𝑅𝑎𝑡𝑖𝑜𝑀𝑒𝑟𝑔𝑒 = 0.95, 𝑅𝑒𝑢𝑠𝑒_𝐴𝑙𝑙_𝐵𝑎𝑠𝑒𝑠 = 𝐹𝑎𝑙𝑠𝑒, 𝑅𝑒𝑢𝑠𝑒_𝐵𝑎𝑠𝑒_𝑅𝑎𝑡𝑖𝑜 = 0.5, 𝐶𝑙𝑢𝑠_𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = 1, 𝑛𝑔 = 10 and 𝑐 = 0.85. We have chosen 
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Fig. 6. (continued)

a smaller value of 𝑀𝑖𝑛𝑆𝑒𝑒𝑑𝑆𝑖𝑧𝑒 or 𝑀𝑖𝑛𝐶𝑜𝑚𝑝𝑡𝑠 to explore the relatively small dataset. A higher value is chosen for 𝑆𝑖𝑚2𝑆𝑒𝑒𝑑 or 
𝑅𝑎𝑡𝑖𝑜𝑀𝑒𝑟𝑔𝑒 so that we choose features having higher similarity. For the method ARBic, default parameters are used.

6.3.2. Relevant features in COVID-19 dataset obtained using PF-RelDenBi during early stages of the pandemic

Table 11 lists the 27 features used for analysis [61]. Features obtained by all the methods, using the data from January 2020 have 
been indicated by a tick in respective columns. The table also reports the values of Spearman correlation (𝜌𝑠) between the chosen 
feature and the infection rate of COVID-19 for various countries for 31 January 2020 (denoted as 𝜌𝑠(Jan)) and 31 December 2020 
(denoted as 𝜌𝑠(Dec)). The features are listed in decreasing order of absolute value of 𝜌𝑠(Dec).

The proposed method selected 13 out of 27 WDI features capable of distinguishing regions with high infection rates. We find 
22

that 11 out of 13 features selected by PF-RelDenBi have a Spearman correlation (absolute value) greater than 0.5 with the disease 
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Fig. 6. (continued)

occurrence rate on 31 December 2020. This indicates that PF-RelDenBi could identify the importance of these features much earlier 
i.e. from the January data when the Spearman correlation could not reflect this relation. Amongst the features not included in the 
bicluster, only 3 out of the 14 features have a Spearman correlation (absolute value) greater than 0.5 with disease occurrence rates 
on 31 December 2020.

The above-mentioned results suggest that the proposed algorithm could be explored to identify important factors impacting a new 
disease and, this, in turn, will aid in preparing a strategy, more scientifically, to combat the pandemic situation across countries. 
Indeed some of these selected features for COVID-19 have already been studied and are found to be important, as discussed in the 
following paragraphs, where we refer to features using their serial number (S.No.) given in Table 11.

Among the features selected by PF-RelDenBi, the features “Current health expenditure per capita” and “GDP per capita” (S.No. 
23

1 and 8 in Table 11) may be related to the higher COVID-19 rate due to the higher number of tests. The percentage of deaths in 
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Table 11

Features (WDI dataset) selected by biclusters based on countries having high COVID-19 occurrence (90 percentile) in January 2020.

S.No. Feature description 𝜌𝑠(Jan) 𝜌𝑠(Dec) CBSC ROCCO RelDenClu ARBic MESBC Proposed

1 Current health expenditure per capita, PPP 
(current international $)

0.22 0.69 - - - - - ✓

2 Cause of death, by communicable diseases and 
maternal, prenatal and nutrition conditions (% of 
total)

-0.09 -0.68 ✓ - - - ✓ ✓

3 Cause of death, by non-communicable diseases 
(% of total)

0.12 0.67 ✓ - - - - ✓

4 Mortality rate, adult, female (per 1,000 female 
adults)

-0.27 -0.67 ✓ - ✓ - ✓ ✓

5 Survival to age 65, female (% of cohort) 0.27 0.67 ✓ - ✓ ✓ - ✓
6 People using at least basic sanitation services (% 

of population)

0.23 0.64 ✓ - - - - ✓

7 Life expectancy at birth, total (years) 0.26 0.64 - - ✓ ✓ - ✓
8 GDP per capita, PPP (current international $) 0.22 0.62 ✓ - ✓ ✓ - ✓
9 Tuberculosis case detection rate (%, all forms) 0.13 0.61 - - - - - -

10 Population ages 65 and above (% of total) 0.25 0.59 - - ✓ ✓ - -

11 Survival to age 65, male (% of cohort) 0.24 0.58 ✓ - ✓ - - ✓
12 Urban population (% of total) 0.12 0.58 - - - - - -

13 Mortality rate, adult, male (per 1,000 male 
adults)

-0.23 -0.57 ✓ - ✓ - ✓ ✓

14 Incidence of tuberculosis (per 100,000 people) -0.05 -0.51 ✓ - ✓ - ✓ ✓
15 Population ages 15-64 (% of total) 0.07 0.46 - - ✓ - - ✓
16 International tourism, number of arrivals 0.4 0.44 - - ✓ - - -

17 Mortality from CVD, cancer, diabetes or CRD 
between exact ages 30 and 70 (%)

-0.23 -0.4 ✓ - - - ✓ ✓

18 PM2.5 air pollution, population exposed to levels 
exceeding WHO guideline value (% of total)

-0.23 -0.38 - ✓ - ✓ ✓ -

19 Air transport, passengers carried 0.44 0.37 - - - - - -

20 International migrant stock, total 0.35 0.27 - - - - - -

21 Trade (% of GDP) 0.03 0.26 - - ✓ - - -

22 Out-of-pocket expenditure (% of current health 
expenditure)

-0.09 -0.25 ✓ - - - ✓ -

23 Labor force participation rate, total (% of total 
population ages 15+) (modelled ILO estimate)

0.04 -0.24 - - - - ✓ -

24 Population density (people per sq. km of land 
area)

0.23 0.16 - - ✓ - - -

25 Population, total 0.34 -0.16 - - ✓ ✓ ✓ -

26 Tuberculosis treatment success rate (% of new 
cases)

-0.08 -0.15 - - ✓ - - -

27 Death rate, crude (per 1,000 people) 0.02 0.07 - - - - - -

region due to communicable and non-communicable diseases (S.No. 2 and 3 of Table 11) falls in line with the report given by Centers 
for Disease Control and Prevention [65]. Features showing life expectancy and mortality rate for the overall population and for 
each gender affect the age distribution of people in a region (S.No. 4,5,7,11,13,15,17 of Table 11) is selected by PF-RelDenBi. The 
feature “People using at least basic sanitation services” (S.No. 6 of Table 11) is related to the spread of communicable diseases and 
corresponding immunity. The feature “Incidence of tuberculosis” (S.No. 14 of Table 11), is interesting. It is also seen that countries 
with higher tuberculosis incidences have relativity lower COVID-19 infection rates. A study [66] has already noted that administering 
the BCG vaccine is likely to reduce the severity of COVID-19 symptoms. Another factor that may contribute to this association is that 
tuberculosis is more rampant in warm humid climates while COVID-19 is expected to spread faster in cold dry climates [67].

As mentioned earlier, all features selected by PF-RelDenBi, except two (S.No. 15 and 17 of Table 11) are found to have a high 
correlation with COVID infection rates on 31 Dec 2020, although the biclusters are obtained using the least amount of data from 31 
Jan 2020.

Performance comparison between the proposed method, and other methods is shown in Fig. 7, which shows a scatter plot for 
Spearman correlation (absolute values). For each method, selected features are marked in blue and rejected features in red. For the 
proposed method the selected features are mostly the ones having a higher correlation. In fact, the minimum absolute value attained 
by any feature selected by PF-RelDenBi is 0.4, another selected feature attains a value of 0.46, while all other selected features lie 
above 0.5.

In a nutshell, most of the features selected by the proposed algorithm are relevant and the presented methodology allows us to 
explore some previously unknown associations. Once features are identified from larger datasets, a more detailed analysis could be 
24

done for individual features.
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Fig. 7. Spearman correlation (absolute value) between Dec 31 2020 COVID infection rates and features selected from WDI database by biclustering methods. Selected 
features are marked in blue and rejected in red.

7. Conclusion and future work

In this article, we proposed a parameter-free algorithm that finds biclusters based on non-linear relations between features. By 
analysing local variations in marginal and joint densities, the algorithm is seen to perform well on non-linear datasets. The proposed 
algorithm does not require any user-defined parameter, making it a versatile method that can be used for analyzing datasets across 
varied domains. Experiments on simulated datasets have shown that the proposed algorithm is consistent under linear transforms. It is 
also seen to provide better performance on datasets obtained by adding noise. The performance of the proposed method is compared 
with eleven state-of-the-art methods for these simulated datasets. PF-RelDenBi is seen to provide better accuracy in most cases.

PF-RelDenBi is seen to improve the classification accuracy when used as a precursor for supervised learning for the Credit Card 
dataset and Student Dropout datasets. As an unsupervised learning method, it is able to find classes hidden in Magic Gamma, Breast 
Cancer and Electrical grid datasets with higher accuracy.

It has also been applied to a dataset containing information about the number of COVID-19 cases in different regions and respective 
development indicators, to obtain factors (demographic and others) impacting the number of confirmed infections in a region. Finally, 
the proposed algorithm facilitates us to understand the relationship between subsets of a dataset that is otherwise obscured by 
unrelated subsets of observations or overlooked due to non-linearity.

With the encouraging results obtained on several datasets, we would like to develop the proposed method further. Some possibil-

ities for future work are discussed below.

It may be noted that the main objective of the proposed method is to find relations between features for a subset of observations. 
When used for clustering, it would work best for datasets where different clusters are defined by different relations between the 
features. However, in datasets where clusters are well separated only by spatial distances, the proposed method may not perform 
well. Therefore in future, we would like to experiment with ensemble methods utilizing the proposed method. We would also like 
to enhance the proposed algorithm so that it can utilize parallel computing allowing its application to larger datasets. Further, the 
proposed method either includes or excludes an observation or a feature in a bicluster; but does not provide a membership value to 
it. In future, we would like to work on assigning a membership value to observations and features using fuzzy sets.
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Table A.1

Functions used to generate datasets of type Non-Monotonous, Non-Linear 
1 and Non-Linear 2. Both Non-Linear 1 and 2 datasets are similar but the 
range of some features is different.

ℎ𝑖 Non-Monotonous Non-Linear 1 Non-Linear 2

ℎ1(𝑥) 𝐼(𝑥) = 𝑥 𝐼(𝑥) = 𝑥 𝐼(𝑥) = 𝑥
ℎ2(𝑥) 0.5 sin(2𝜋𝑥) + 0.5 sin(𝑥) sin(𝑥)
ℎ3(𝑥) 0.5 sin(3𝜋𝑥) + 0.5 𝑥2 𝑥2

ℎ4(𝑥) 0.5 sin(15𝜋𝑥) + 0.5 𝑥10 𝑥10

ℎ5(𝑥) 0.5 sin(25𝜋𝑥) + 0.5 sin(𝜋𝑥) 0.5 sin(𝜋𝑥)
ℎ6(𝑥) 2𝑥 sin(2𝜋𝑥) 0.5 sin(2𝜋𝑥) + 0.5
ℎ7(𝑥) sin(2𝜋𝑥) + 1 𝑥3 𝑥3

ℎ8(𝑥) sin(3𝜋𝑥) + 1 4𝑥2 𝑥2

ℎ9(𝑥) sin(15𝜋𝑥) + 1 sin(4𝜋𝑥) 0.5 sin(4𝜋𝑥) + 0.5
ℎ10(𝑥) sin(25𝜋𝑥) + 1 4𝑥3 𝑥3
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Appendix A. Detailed procedure for generating simulated datasets

This section outlines our method of generating synthetic datasets for analyzing the properties of the proposed algorithm. The 
datasets for Table 1 require several functions which are reported in Table A.1. The rest of the data is generated using a single 
function.

In Table 1, the first column shows the results on datasets generated in the following manner. A random matrix of size 1000 × 20
is generated. Now we replace 500 × 10 submatrix of data in a way so that the 𝑖𝑡ℎ column of this submatrix is given by ℎ𝑖(𝑥), where 𝑥
is the value in the first column and the definitions of ℎ𝑖 for 𝑖 = 1, 2, ⋯ , 10 are given in Table A.1. Thus we embed a bicluster of size 
500 × 10 in the data.

Similarly, the second column shows the results for data generated using functions in the second column of Table A.1. Note that 
for some columns, the range in which the bicluster elements lie is different from the range of remaining data. Thus the background 
for the biclusters is highly variable.

Datasets used for results shown in the third column of Table 1 are generated using a set of functions, which are modifications of 
the functions used in the second column. The modifications are made so that data in bicluster lies in the same range as the rest of 
the data. The modified functions have been reported in the third column of Table A.1. It may be noted that the function 𝑥2 occurs 
both as ℎ3 and ℎ8 in the third column and 𝑥3 occurs both as ℎ7 and ℎ10, amounting to the repetition of a column in the bicluster. 
However, we have retained the repeated columns to retain the similar structure of bicluster as in datasets for the first column.

The first column of Table 2 presents the results on datasets of size 1000 ×20 drawn from the uniform distribution. It has a bicluster 
of size 500 × 10 generated using functions ℎ1(𝑥) = 𝐼(𝑥) = 𝑥, where I is the identity function and ℎ𝑖(𝑥) = 𝑎𝑖 ∗ 𝑥 with 𝑖 = 2, 3 ⋯ , 10. 
𝑎𝑖 with 𝑖 = 2, 3, ⋯ , 10 are different random values lying in interval (0, 1). This is our base data for Uniform distribution datasets. 
Different transformations have been applied to this data for analysing properties of biclustering algorithms and corresponding results 
have been reported in the following columns.

The second column of Table 2 contains results for datasets obtained by scaling each column of data generated for the first column 
26

of Table 2 with a random number lying in the interval (0, 1).

https://github.com/namitaML/RelDenClu-Non-linear-feature-relation-based-biclustering
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The third column of Table 2 contains results for datasets obtained by adding a random number lying in (0, 1) to each column of 
the data generated for the 2. These are used to analyze the scaling and translation properties of the algorithms.

The fourth column of Table 2 contains results for datasets obtained by linear transform to each column of data generated for the 
2. In a way, this is a combination of scaling and translation. Two random numbers 𝑟1 and 𝑟2 are generated for each column and the 
transform 𝑟1𝑥 + 𝑟2 is applied. Scaling, translation and linear transforms are special cases of distance-preserving transforms.

The fifth column of Table 2 contains results for datasets obtained by duplicating each observation of datasets used for reporting 
the results in the 2. Thus these datasets contain 2000 observations.

The sixth column of Table 2 contains results for datasets obtained by duplicating each observation of bicluster in datasets generated 
for the 2. Thus these datasets contain 1500 observations.

The seventh column of Table 2 contains results for datasets obtained by adding a random number in the range (0,0.1) to each 
element of data matrices. The random noise is drawn from a uniform distribution. The robustness of the algorithms regarding noise 
is checked through this.

The eighth column of Table 2 contains results for datasets obtained by randomly shuffling rows and columns of the data generated 
for the 2.

The first column of Table 3 presents the results on datasets of size 1000 × 20 drawn from Gaussian distribution. The bicluster 
submatrix of size 500 × 10 is generated in the same way as the first column of Table 2.

The second column of Table 3 contains results for datasets obtained by adding noise to each element of the data matrix generated 
in the first column. Noise is generated using random numbers drawn from Gaussian distribution with a standard deviation 0.1. Thus 
we test the robustness of the algorithms for Gaussian data.

The third column of Table 3 contains results for datasets obtained by adding noise to each element of the data matrix generated 
in the first column. Noise is generated using random numbers drawn from Gaussian distribution with a standard deviation 0.2. Thus 
we test the robustness of the algorithms for Gaussian data.

The first and second columns of Table 4 contain results for datasets containing two overlapping clusters. The data is uniformly 
distributed and each row of the biclusters has a constant value. The first column shows accuracy for a bicluster with 500 rows and 10 
columns. The second column shows accuracy for another bicluster with 400 rows and 10 columns. There is an overlap of 200 rows 
and 3 features in both biclusters (12% of the larger bicluster).

The third and fourth columns of Table 4 contain results for datasets containing two overlapping clusters. The data is uniformly 
distributed and each row of the biclusters has a constant value. The first column shows accuracy for a bicluster with 500 rows and 10 
columns. The second column shows accuracy for another bicluster with 400 rows and 10 columns. There is an overlap of 200 rows 
and 5 features in both biclusters (20% of the larger bicluster).
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