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Abstract: Phospholipids, consisting of a hydrophilic head group and two hydrophobic acyl chains,
are essential for the structures of cell membranes, plasma lipoproteins, biliary mixed micelles,
pulmonary surfactants, and extracellular vesicles. Beyond their structural roles, phospholipids have
important roles in numerous biological processes. Thus, abnormalities in the metabolism and transport
of phospholipids are involved in many diseases, including dyslipidemia, atherosclerosis, cholestasis,
drug-induced liver injury, neurological diseases, autoimmune diseases, respiratory diseases,
myopathies, and cancers. To further clarify the physiological, pathological, and molecular mechanisms
and to identify disease biomarkers, we have recently developed enzymatic fluorometric assays
for quantifying all major phospholipid classes, phosphatidylcholine, phosphatidylethanolamine,
phosphatidylserine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol + cardiolipin,
and sphingomyelin. These assays are specific, sensitive, simple, and high-throughput, and will be
applicable to cells, intracellular organelles, tissues, fluids, lipoproteins, and extracellular vesicles.
In this review, we present the detailed protocols for the enzymatic fluorometric measurements of
phospholipid classes in cultured cells.

Keywords: enzymatic fluorometric measurement; phosphatidylcholine; phosphatidylethanolamine;
phosphatidylserine; phosphatidic  acid; phosphatidylinositol; phosphatidylglycerol;
cardiolipin; sphingomyelin

1. Introduction

Phospholipids are amphiphilic molecules composed of a hydrophilic head group
and two hydrophobic acyl chains, and are divided into glycerophospholipids (GPL)
containing a glycerol backbone and sphingophospholipids containing a sphingosine backbone.
Glycerophospholipids are further divided based on the head group structures into the following classes:
phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidic
acid (PA), phosphatidylinositol (PI), phosphatidylglycerol (PG), and cardiolipin (CL) (Figure 1).
Sphingomyelin (SM), a major sphingophospholipid class, has a phosphocholine moiety in the
head group. Lysophospholipids, lysophosphatidylcholine (LPC), lysophosphatidylethanolamine
(LPE), lysophosphatidylserine (LPS), lysophosphatidic acid (LPA), lysophosphatidylinositol (LPI),
and lysophosphatidylglycerol (LPG), contain only one acyl chain. Sphingosylphosphorylcholine (SPC)
is a lyso-form of SM. Furthermore, these phospholipids vary widely in the acyl chain composition.

It has been previously reported that abnormalities in phospholipid metabolism and transport are
closely associated with disorders, including dyslipidemia, atherosclerosis, cholestasis, drug-induced
liver injury, neurological diseases, autoimmune diseases, respiratory diseases, cardiac and skeletal
myopathies, and cancers [1-10]. Therefore, phospholipid classes have potential as biomarkers for
these diseases, and it is highly desired to develop high-sensitive and high-throughput methods for
analyzing phospholipid classes.
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Figure 1. Structures of the phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamine
(PE), phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylglycerol (PG),
cardiolipin (CL), and sphingomyelin (SM). These phospholipid molecules contain various acyl chains.

The conventional assay for measuring phospholipid classes is thin-layer chromatography (TLC)
followed by quantification of phosphate from the TLC spots [11]. However, this TLC-phosphorus assay
is less sensitive, low throughput, time-consuming, and technically demanding. High-performance
liquid chromatography (HPLC) equipped with an evaporative light-scattering detector or a corona
charged aerosol detector has been used for the quantification of phospholipid classes [12-14].
Mass spectrometry has been applied to characterize phospholipid molecular species differing in
acyl chain composition [15-19]. In mass spectrometric analyses, however, a large number of correction
curves are needed for the quantification of each phospholipid molecular species because the ionization
efficiencies differ among phospholipid species. In addition to these methods, we have recently
completed the development of enzymatic fluorometric methods for quantifying all major phospholipid
classes, which are specific, sensitive, simple, and high-throughput [18,20-24].
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2. Physiological Roles of Phospholipids

2.1. Cell Membranes

Phospholipids, together with cholesterol, are necessary to assemble bilayer membranes in
cells. In addition to the plasma membrane, the endoplasmic reticulum (ER), mitochondria, nuclear
envelope, Golgi apparatus, lysosomes, endosomes, and peroxisomes are formed by bilayer membranes.
In adipocytes, lipid droplets containing triglycerides are surrounded by phospholipid monolayers [25].
In mammalian cell membranes, the most abundant phospholipid is PC, constituting 40-50% of all
phospholipids [26]. PE is the second most abundant mammalian phospholipid (20-50%), whereas
PS, PA, PI, and PG are quantitatively minor components of cell membranes [26]. SM, together
with cholesterol, is highly enriched in lipid raft membrane microdomains [27]. CL is located in the
mitochondria, primarily in the inner mitochondrial membranes [28]. In addition to the structural
roles in membranes, phospholipids play crucial roles in numerous cellular processes, including
membrane protein localization and regulation, membrane trafficking, autophagy, cell proliferation and
differentiation, apoptosis, cell migration, and intracellular signaling. For example, during apoptosis,
PS is externalized to the cell surface as an ‘eat me’ signal that is recognized by phagocytes [29].
Microtubule-associated protein 1 light chain 3, an autophagy marker, is conjugated with PE [30].
Through direct interaction, PA positively regulates the mammalian target of rapamycin, which controls
cell cycle progression and cell growth [31]. In mitochondria, CL facilitates electron transfer and ATP
production [32]. Pl is further phosphorylated to PI(4)P, PI(5)P, PI(3)P, P1(4,5)P,, P1(3,4)P,, P1(3,5)P,,
and PI(3,4,5)P3, which are implicated in diverse cellular functions [7,33].

2.2. Plasma Lipoproteins

In the structures of plasma lipoproteins including high density lipoproteins (HDL), low density
lipoproteins (LDL), very low density lipoproteins (VLDL), and chylomicrons, a hydrophobic core
consisting of triglyceride and cholesteryl esters is enveloped by a surface monolayer consisting of
phospholipids, cholesterol, and apolipoproteins [6]. In the formation of VLDL in hepatocytes and
chylomicrons in enterocytes, the microsomal triglyceride transfer protein mediates the transfer of
phospholipids from the endoplasmic reticulum membrane or another site to apolipoprotein B [6].
HDL is formed from cellular phospholipids and cholesterol through the interaction of apolipoprotein A-I
with the ATP-binding cassette (ABC) transporter ABCA1 at the cell surface plasma membrane [6,34,35].
PC and SM are the main phospholipids in lipoprotein particles. The SM/PC ratio is ~0.25 in VLDL
particles but increases to ~0.5 in LDL particles, because the degradation of SM is much slower than
that of PC in plasma [6]. The PC/SM ratio in HDL is ~0.2 [36]. The metabolism of lipoproteins is
highly dependent on the composition of surface phospholipids through the regulation of binding of
apolipoproteins or enzymes on the lipoprotein surfaces [6,37-39]. For example, SM at the lipid particle
surface reduces the binding of apolipoprotein E to the particle [37]. Apolipoprotein E on the lipoprotein
surface also binds to the LDL receptor, LDL receptor-related protein and heparan sulfate proteoglycans,
which promotes the uptake of lipoprotein remnant particles by hepatocytes [6]. However, little is
known about the roles of other phospholipid classes on the lipoprotein particle surfaces.

2.3. Biliary Mixed Micelles

In bile, bile salts, phospholipids, and cholesterol are the main lipid components, which form
mixed micelles and vesicles. Bile salts damage cell membranes due to their detergent properties.
The biliary phospholipids are necessary to protect hepatocytes from bile salt cytotoxicity [8,40].
The cytotoxicity of bile salts is attenuated by the formation of mixed micelles with phospholipids.
PC is the predominant (>95%) biliary phospholipid, whereas only small amounts of PE, PS, and SM
are present in bile [8,41]. The phospholipid secretion from hepatocytes into bile is mediated by
the transporter ABCB4 [41-44]. ABCB4 gene mutations cause a wide spectrum of liver diseases,
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including progressive familial intrahepatic cholestasis type 3, intrahepatic cholestasis of pregnancy,
low phospholipid-associated cholelithiasis, primary biliary cirrhosis, and cholangiocarcinoma [8,41].

2.4. Pulmonary Surfactants

Pulmonary surfactants, extracellular complex of phospholipids, cholesterol and proteins,
are secreted by type II alveolar epithelial cells, and reduce the incidence of alveoli to collapse
during expiration [45]. The dysfunction of pulmonary surfactants disturbs alveolar gas exchange.
In pulmonary surfactants, PC is the most abundant phospholipid class (70-80%), and 1,2-dipalmitoyl
PC is the most abundant molecular species [45,46]. The second most abundant phospholipid is PG,
constituting up to 10%, and PI, PE, and PS are also present in the surfactants [45,46]. PG and Pl in
pulmonary surfactants play key roles in regulating inflammatory processes within the lung [46]. In type
II cells, the ABCAS3 transporter protein is located at the limiting membrane of lamellar bodies, and plays
an essential role in the biogenesis of lamellar bodies, likely by transporting phospholipids [3,47].
Phospholipids and proteins contained in the lamellar body are secreted into the alveoli and form
films preventing alveolar collapse [3]. The majority of ABCA3 mutations result in neonatal respiratory
distress syndrome [3].

2.5. Extracellular Vesicles

Extracellular vesicles are secreted by almost all types of cells, and widely observed in body fluids,
including blood, urine, milk, saliva, cerebrospinal fluid, and semen [48,49]. Extracellular vesicles
consist of phospholipid bilayer membranes with transmembrane proteins and contain microRNAs,
mRNAs, DNAs, and proteins [48,49]. Extracellular vesicles are categorized into three groups,
exosomes (30-150 nm in diameter), microvesicles (100-1000 nm) and apoptotic bodies (1-5 um) [48,49].
Microvesicles and exosomes are generated from plasma membranes and endosomal compartments,
respectively [48-50]. Multivesicular bodies filled with vesicles originate from endosomes and fuse with
the plasma membranes to release exosomes into the extracellular space [48-50]. Recently, an increasing
number of studies have demonstrated that extracellular vesicles play important roles in intracellular
communication and many pathophysiologies [48-51]. In particular, extracellular vesicles from cancer
cells target diverse types of normal cells to alter the microenvironment in order to support the cancer
cell growth [48,49,51]. Thus, extracellular vesicles hold great promise as biomarkers. On the other
hand, the roles of phospholipids in the bioactivities and fates of extracellular vesicles remain largely
unknown, although several studies have analyzed the phospholipid composition of exosomes [51,52].

3. Phospholipid Biomarkers

As the level of serum phospholipids increases in patients with obstructive jaundice,
the measurement of choline-containing phospholipids in serum is used as a clinical laboratory
test to diagnose liver diseases [53,54]. Lipoprotein-X (Lp-X) is detected in the plasma of patients
with extrahepatic and intrahepatic cholestasis caused by bile duct obstruction, hepatitis, primary
sclerosing cholangitis, or primary biliary cholangitis [9,55,56]. Moreover, in patients with drug-induced
cholestasis, plasma phospholipid and Lp-X levels markedly increase [1,57]. Lp-X is an abnormal
lipoprotein rich in phospholipids and cholesterol, and is observed as vesicles of 50-70 nm in diameter [9].
The biliary phospholipid secretion mediated by Abcb4 is required for the appearance of Lp-X in bile
duct-ligated mice, suggesting that Lp-X originates from biliary phospholipids moving into blood
vessels under cholestatic conditions [9,58].

In addition to high levels of LDL-cholesterol and low levels of HDL-cholesterol, high plasma SM
levels have been found to be an independent risk factor for coronary artery disease after adjusting for
other risk factors [59]. Of note, LDL extracted from human atherosclerotic lesions exhibits a higher ratio
of SM/PC than plasma LDL [60]. In arterial walls, sphingomyelinase (SMase) converts SM to ceramide
in LDL, which leads to LDL aggregation and subsequent macrophage foam cell formation [6,38,39,61].
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4. Detection of H,O; in Enzymatic Assays

Our developed assays for measuring phospholipid classes (described in Section 6) fluorometrically
detect enzymatically produced H,O, in the final steps. This section describes several probes for
detecting H,O,.

In the final steps of many enzymatic assays, enzymatically generated H,O, is determined
spectrophotometrically by reaction with chromogenic hydrogen donors catalyzed by peroxidase.
As shown in Figure 2a, the oxidative condensation of phenol with 4-amino antipyrine
(4-AA) by HpO; in the presence of peroxidase yields a red quinoneimine chromogen
with an absorption maximum at 505 nm, which has been widely used in clinical
laboratory tests [53,62,63]. N-Ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline (DAQOS) and
N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline (TOOS) are also oxidatively coupled with 4-AA
by HyO,, and these resulting chromogens have higher molar extinction coefficients and longer
wavelengths of maximum absorption (593 nm and 555 nm, respectively) than the chromogen produced
by the coupling of phenol and 4-AA [64].

NH2 N=/\:>=O
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Phenol Red quinoneimine chromogen
(Absmax 505 nm)
(b)
HO. o OH
\@ D/ Peroxidase Ij: D/
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(EXmax 563 nm, Empa 587 nm)

Figure 2. Detection of HyO; in enzymatic assays. (a) The oxidative coupling of phenol and 4-AA by
H,O; in the presence of peroxidase produces a red quinoneimine chromogen (absorption maximum at
505 nm). (b) The oxidation of Amplex Red by H,O; in the presence of peroxidase produces highly
fluorescent resorufin (excitation maximum at 563 nm and emission maximum at 587 nm).

4-Hydroxyphenyl compounds, homovanillic acid, 4-hydroxyphenylacetic acid and
3-(4-hydroxyphenyl)propionic acid (HPPA), are fluorogenic substrates for peroxidase and have been
employed for the HyO, assay [65-67]. Using HPPA, H,O, can be measured at as low as 100 pmol [67].
In the presence of H,O,, peroxidase catalyzes the dimerization of HPPA to form fluorescent bisphenol
with excitation and emission maxima of 318 nm and 404 nm, respectively [68].

10-Acetyl-3,7-dihydroxyphenoxazine (Amplex Red) is also applied for monitoring of HyO,
levels and in various enzymatic assays [69-73]. Peroxidase-catalyzed oxidation of Amplex Red,
a nonfluorescent compound, by HyO, generates highly fluorescent resorufin with an excitation
maximum at 563 nm and emission maximum at 587 nm [69] (Figure 2b). The reaction stoichiometry of
Amplex Red and H,O; is 1:1. Amplex Red can detect as little as 2 pmol of H,O, [71].
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5. Enzymatic Assays of Phospholipids

Takayama et al. have developed the first enzymatic method to measure choline-containing
phospholipids, PC, LPC, and SM, which involves three steps [53]. (1) PC, LPC, or SM is hydrolyzed by
phospholipase D (PLD) from Streptomyces sp. to release choline. (2) Choline is oxidized by choline oxidase
to betaine, which simultaneously generates HyO,. (3) In the presence of peroxidase, H;O, couples phenol
and 4-AA to produce a chromogen. This method does not distinguish among PC, LPC, and SM.

Enzymatic assays have been also reported for the specific measurement of SM by Blaton et al. [54].
In this assay, SM is selectively hydrolyzed by SMase from Bacillus cereus to liberate phosphocholine.
Next, alkaline phosphatase catalyzes the cleavage of inorganic phosphate and the formation of choline.
Choline is oxidized by choline oxidase, and the generated H,O; is subsequently detected by phenol
and 4-AA in the presence of peroxidase.

Hojjati and Jiang have reported an enzymatic method for the specific quantification of PC [74].
In the first step of this method, GPL-specific PLD (GPL-PLD) hydrolyzes PC, but not SM, to choline
and PA. Choline is oxidized in a reaction catalyzed by choline oxidase to generate H,O,, which induces
the coupling of DAOS and 4-AA in the presence of peroxidase as catalyst to yield a blue dye.

Ota et al. have reported the preliminary application of amine oxidase from Arthrobacter sp. to
measure PE [75]. This PE assay consists of the hydrolysis of PE by PLD, oxidative deamination of
ethanolamine by amine oxidase to generate H,O,, and oxidative coupling reaction between TOOS and
4-AA catalyzed by peroxidase.

6. Enzymatic Fluorometric Assays for Quantifying Phospholipid Classes

To enable comprehensive quantification of all major phospholipid classes in mammalian cells, we have
developed methods for measuring PC, PE, PS, PA, PI, PG + CL, and SM using combinations of specific
enzymes and Amplex Red [18,20-24]. This section describes the protocols for the enzymatic fluorometric
assays for quantifying these phospholipid classes in cultured cells and intracellular organelles, which are
slightly modified from those in the original reports mainly due to the availability of commercial enzymes
(GPL-PLD for PC assay and glycerol-3-phosphate (G3P) oxidase for PA and PG + CL assays).

6.1. Sample Preparation

To determine the cellular phospholipid contents, cells are cultured in 10-cm dishes or 6-well plates.
Cells were washed, scraped with cold phosphate-buffered saline, and sonicated to prepare cell homogenates.
To determine the phospholipid contents in purified mitochondrial and microsomal fractions, cells are
cultured in 10-cm dishes. Purified mitochondrial and microsomal fractions are isolated according to
the previously described method [76]. The concentrations of protein in samples are measured by the
bicinchoninic acid assay [77]. Phospholipids in cell homogenates or in purified mitochondrial and
microsomal fractions are extracted by the modified method of Folch [17,24,78,79]. Lipid extraction from
samples is recommended for the enzymatic measurements of phospholipid classes to remove water-soluble
interfering compounds including choline, amines, amino acids, G3P, inositol, NADH, and H,O;.

6.2. Lipid Extraction

6.2.1. Materials

e  Chloroform (>99.0%) (08402-55, Nacalai Tesque, Kyoto, Japan).
e  Methanol (299.8%) (21915-35, Nacalai Tesque).
e  Triton X-100 (<1 ppm HyO,) (10789704001, Roche Diagnostics, Mannheim, Germany).

6.2.2. Procedure

1.  Pipette each sample (1 mL) into a glass tube.
2. Add chloroform/methanol (2:1) solution (4 mL) to each glass tube and vortex.
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Incubate overnight at 4 °C.

Complete the phase split by centrifugation (740x g, 20 min, 4 °C).

Carefully remove the upper aqueous phase and the interfacial material using a glass Pasteur pipette.
Add H;O (1 mL) to the recovered lower organic phase and vortex.

Complete the phase split by centrifugation and remove the aqueous phase again.

Evaporate the organic solvent from the lower phase.

Dissolve the evaporated sample with 1% Triton X-100 solution (200 pL).

6.3. Protocol for Enzymatic Fluorometric Measurement of PC

6.3.1. Strategy

There are three reaction steps for the enzymatic fluorometric measurement of PC [18] (Figure 3a).

@)
GPL-PLD
PC + H,0 ——> Choline + PA

‘ Choline Oxidase
Choline +2 O, + H,0 ——> 2 H,0, + Betaine

(b)
PLD
PE + H,O =—> Ethanolamine + PA

Amine Oxidase
Ethanolamine + O, + H,0 =———> H,0, + NHj; + Glycolaldehyde

(c)
FLD
PS + H,O ———> Serine + PA
L-Amino Acid Oxidase

Serine + O, + H,O > H,0, + NH; + 2-Oxo-3-hydroxypropionic Acid
(d)

Lipase .
PA + 2 H,0 =——— G3P + 2 Fatty Acid

G3P Oxidase

G3P + O, =————> H,0, + Dihydroxyacetone Phosphate

(e)
PLD
Pl + H,O =——> Inositol + PA

. myo-Inositol Dehydrogenase
myo-Inositol + NAD* > scyllo-Inosose + NADH + H*

NADH Oxidase
NADH + H* + O, =————————> H,0, + NAD*

f)
PLD
CL+H,0——> PG +PA

PLD
PG + H,O =—> Gilycerol + PA

Glycerol Kinase
Glycerol + ATP =—————> G3P + ADP

G3P Oxidase
G3P + Oy =———> H,0, + Dihydroxyacetone Phosphate
(@)
SMase
SM + H,O——> Phosphocholine + Ceramide

Alkaline Phosphatase
Phosphocholine + H,O > Choline + Phosphate

. Choline Oxidase )
Choline + 2 O, + H,O0 =—> 2 H,0, + Betaine

Figure 3. Strategies for enzymatic fluorometric measurements of PC (a), PE (b), PS (c), PA (d), PI (e),
PG + CL (f), and SM (g). In the final steps, H,O; is detected using Amplex Red and peroxidase.
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1.  PCis hydrolyzed by GPL-PLD to choline and PA.
2. Choline is oxidized by choline oxidase, generating two H,O, molecules and betaine.
3. In the presence of peroxidase, HyO, reacts with Amplex Red to produce resorufin.

6.3.2. Materials

e  GPL-PLD from Streptomyces sp. (T-39, Asahi Kasei Pharma, Tokyo, Japan).

e  Choline oxidase from Alcaligenes sp. (037-14401, FUJIFILM Wako Pure Chemical, Osaka, Japan).

e Peroxidase from horseradish roots (46261003, Oriental Yeast, Tokyo, Japan).

e  Amplex Red (A12222, Thermo Fisher Scientific, Waltham, MA, USA).

e Amplex Red/UltraRed Stop Reagent (A33855, Thermo Fisher Scientific).

e Egg PC (1-a-PC from chicken egg) (840051P, Avanti Polar Lipids, Alabaster, AL, USA).

o  96-well black flatbottom plate S type for fluorescence measurements (MS-8496K, Sumitomo
Bakelite, Tokyo, Japan).

o  Triton X-100 (see Section 6.2.1).

6.3.3. Reagents

e Reagent C1: 100 U/mL GPL-PLD, 1.5 mM CaCl,, 50 mM NaCl, and 50 mM Tris-HCl (pH 7.4).

e  Reagent C2: 4 U/mL choline oxidase, 5 U/mL peroxidase, 300 uM Amplex Red, 0.2% Triton X-100,
50 mM NacCl, and 50 mM Tris-HCl (pH 7.4).

e  Solubilize egg PC (average M.W. 770.12) at 25 mM in 10% Triton X-100 aqueous solution, and then
dilute with water to 2.5 mM in 1% Triton X-100 solution. To prepare PC standard solutions, 2.5 mM
egg PC in 1% Triton X-100 is sequentially diluted with 1% Triton X-100 solution. The 25 mM egg
PC in 10% Triton X-100 solution is stored at —20 °C.

6.3.4. Procedure

1.  Pipette each sample or PC standard solution (10 puL) into a 96-well black plate.

Add Reagent C1 (40 pL) to each well and incubate at 37 °C for 30 min.

Add Reagent C2 (50 pL) to each well and incubate at room temperature for 30 min.

Add Amplex Red Stop Reagent (20 uL) to each well.

Measure the fluorescence intensity at 544 nm (excitation) and 590 nm (emission) using a microplate
reader (Infinite M200, Tecan, Mannedorf, Switzerland).

AR

6.3.5. Sensitivity and Specificity

The standard curve for the PC measurement is quadratic at concentrations below 20 uM and
linear between 20 and 150 uM [18]. The detection limit is 1 uM (10 pmol in the reaction mixture).
There are no differences in the fluorescence changes in response to egg PC, soy PC, 1-palmitoyl-2-oleoyl
PC, and plasmanylcholine, indicating that this PC measurement is not affected by the chain length,
the number of double bonds or the linkage type (ester or ether). In this PC assay, other choline-containing
phospholipids, SM, and LPC, induce only negligible increases in fluorescence. In the recovery test
using the cellular lipid extract, the mean recovery of 1-palmitoyl-2-oleoyl PC in concentrations of
12.5-75.0 uM is 101.3%, indicating that there is no interference of hydrophobic compounds extracted
from the cells [18].

6.4. Protocol for Enzymatic Fluorometric Measurement of PE

6.4.1. Strategy

There are three reaction steps for the enzymatic fluorometric measurement of PE [18] (Figure 3b).

1.  PEis hydrolyzed by PLD to ethanolamine and PA.
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2. Ethanolamine is oxidized by amine oxidase, generating H,O,, NHj3 and glycolaldehyde.
3. In the presence of peroxidase, HyO; reacts with Amplex Red to produce resorufin.

6.4.2. Materials

e  PLD from Streptomyces chromofuscus (BML-SE301, Enzo Life Sciences, Farmingdale, NY, USA).

e  Amine oxidase (tyramine oxidase) from Arthrobacter sp. (T-25, Asahi Kasei Pharma).

e Liver PE (t-a-PE from bovine liver) (840026P, Avanti Polar Lipids).

e  Triton X-100 (see Section 6.2.1). Peroxidase, Amplex Red, Amplex Red/UltraRed Stop Reagent,
and 96-well black flatbottom plate (see Section 6.3.2).

6.4.3. Reagents

e Reagent E1: 150 U/mL PLD, 1.5 mM CaCl,, 50 mM NaCl, and 50 mM Tris-HCI (pH 7.4).

e Reagent E2: 8 U/mL amine oxidase, 5 U/mL peroxidase, 300 uM Amplex Red, 0.2% Triton X-100,
50 mM NaCl, and 50 mM Tris-HCl (pH 7.4).

e  Solubilize liver PE (average M.W. 756.34) at 25 mM in 10% Triton X-100 aqueous solution, and then
dilute with water to 2.5 mM in 1% Triton X-100 solution. To prepare PE standard solutions, 2.5 mM
liver PE in 1% Triton X-100 is sequentially diluted with 1% Triton X-100 solution. The 25 mM liver
PE in 10% Triton X-100 solution is stored at —20 °C.

6.4.4. Procedure

1.  Pipette each sample or PE standard solution (10 pL) into a 96-well black plate.

Add Reagent E1 (40 pL) to each well and incubate at 37 °C for 30 min.

Add Reagent E2 (50 pL) to each well and incubate at room temperature for 30 min.

Add Amplex Red Stop Reagent (20 uL) to each well.

Measure the fluorescence intensity at 544 nm (excitation) and 590 nm (emission) using a
microplate reader.

ARSI

6.4.5. Sensitivity and Specificity

The standard curve for the PE measurement is quadratic at concentrations below 50 uM and linear
between 50 and 250 uM [18]. The detection limit is 1 uM (10 pmol in the reaction mixture). There are
no differences in the fluorescence changes in response to liver PE, soy PE, 1-palmitoyl-2-oleoyl PE,
plasmenylethanolamine, and LPE, indicating that this PE measurement is not affected by the chain
length, the number of double bonds, or the linkage type (ester or ether), and does not distinguish
between PE and LPE. In this PE assay, other amine-containing phospholipids, PC and PS, lead to no
increase in fluorescence. In the recovery test using the cellular lipid extract, the mean recovery of
1-palmitoyl-2-oleoyl PE in concentrations of 12.5-75.0 uM is 99.6% [18].

6.5. Protocol for Enzymatic Fluorometric Measurement of PS

6.5.1. Strategy

There are three reaction steps for the enzymatic fluorometric measurement of PS [21] (Figure 3c).

1.  PSis hydrolyzed by PLD to serine and PA.
2. Serine is oxidized by rL-amino acid oxidase, generating H,O, and 2-oxo-3-hydroxypropionic acid.
3. Inthe presence of peroxidase, HyO, reacts with Amplex Red to produce resorufin.

6.5.2. Materials
e PLD from Streptomyces chromofuscus (BML-SE301, Enzo Life Sciences).
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e L-Aminoacid oxidase from Crotalus adamanteus venom (LAO, Worthington Biochemical, Lakewood,
NJ, USA).

e  Brain PS (1-x-PS sodium salt from porcine brain) (840032P, Avanti Polar Lipids).

e  Triton X-100 (see Section 6.2.1). Peroxidase, Amplex Red, Amplex Red/UltraRed Stop Reagent,
and 96-well black flatbottom plate (see Section 6.3.2).

6.5.3. Reagents

e Reagent S1: 600 U/mL PLD, 25 U/mL r-amino acid oxidase, 50 mM NaCl, and 50 mM Tris-HCl
(pH7.4).

e Reagent S2: 6.25 U/mL peroxidase, 187.5 uM Amplex Red, 0.125% Triton X-100, 50 mM NacCl,
and 50 mM Tris-HCI (pH 7.4).

e  Solubilize brain PS (average M.W. 824.97) at 25 mM in 10% Triton X-100 aqueous solution, and then
dilute with water to 2.5 mM in 1% Triton X-100 solution. To prepare PS standard solutions, 2.5 mM
brain PS in 1% Triton X-100 is sequentially diluted with 1% Triton X-100 solution. The 25 mM
brain PS in 10% Triton X-100 solution is stored at —20 °C.

6.5.4. Procedure

Pipette each sample or PS standard solution (10 puL) into a 96-well black plate.

Add Reagent S1 (10 pL) to each well and incubate at 25 °C for 240 min.

Add Reagent S2 (80 pL) to each well and incubate at room temperature for 15 min.

Add Amplex Red Stop Reagent (20 uL) to each well.

Measure the fluorescence intensity at 544 nm (excitation) and 590 nm (emission) using a
microplate reader.

AR A

6.5.5. Sensitivity and Specificity

The standard curve for the PS measurement is linear at concentrations below 50 uM and hyperbolic
between 50 and 1000 uM [21]. The detection limit is 5 uM (50 pmol in the reaction mixture). There are
no differences in the fluorescence changes in response to brain PS, soy PS, 1-palmitoyl-2-oleoyl PS,
and LPS, indicating that this PS measurement is not affected by the chain length or the number of
double bonds, and does not distinguish between PS and LPS. In this PS assay, other amine-containing
phospholipids, PC and PE, lead to no increase in fluorescence. In the recovery test using the cellular
lipid extract, the mean recovery of 1-palmitoyl-2-oleoyl PS in concentrations of 25-125 uM is 98.6% [21].
This PS enzymatic fluorometric assay and TLC-phosphorus assay correlate well [21].

6.6. Protocol for Enzymatic Fluorometric Measurement of PA

6.6.1. Strategy

There are three reaction steps for the enzymatic fluorometric measurement of PA [20] (Figure 3d).

1.  PAis hydrolyzed by lipase to G3P and two fatty acids.
2. G3Pis oxidized by G3P oxidase, generating H,O, and dihydroxyacetone phosphate.
3. In the presence of peroxidase, H,O; reacts with Amplex Red to produce resorufin.

6.6.2. Materials

e Lipase (lipoprotein lipase) from Pseudomonas sp. (129-04501, FUJIFILM Wako Pure Chemical).
e  G3P oxidase (L-x-glycerophosphate oxidase) from Streptococcus sp. (I-60, Asahi Kasei Pharma).
e Egg PA (1-x-PA sodium salt from chicken egg) (840101P, Avanti Polar Lipids).

e  The 0.2-ml PCR tube with a flat cap (FG-021F, NIPPON Genetics, Tokyo, Japan).
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e  Triton X-100 (see Section 6.2.1). Peroxidase, Amplex Red, Amplex Red/UltraRed Stop Reagent,
and 96-well black flatbottom plate (see Section 6.3.2).

6.6.3. Reagents

e Reagent Al: 40,000 U/mL lipase, 50 mM NaCl, and 50 mM Tris-HCl (pH 7.4).

e Reagent A2: 10 U/mL G3P oxidase, 5 U/mL peroxidase, 300 uM Amplex Red, 0.2% Triton X-100,
50 mM NaCl, and 50 mM Tris-HCl (pH 7.4).

e  Solubilize egg PA (average M.W. 706.16) at 25 mM in 10% Triton X-100 aqueous solution, and then
dilute with water to 2.5 mM in 1% Triton X-100 solution. To prepare PA standard solutions, 2.5 mM
egg PA in 1% Triton X-100 is sequentially diluted with 1% Triton X-100 solution. The 25 mM egg
PA in 10% Triton X-100 solution is stored at —20 °C.

6.6.4. Procedure

1.  Pipette each sample or PA standard solution (20 puL) into a 0.2-ml tube.

2. Add Reagent A1l (80 pL) to each tube, incubate at 37 °C for 30 min, and then heat at 96 °C for
3 min using a thermal cycler.

Precipitate the denatured enzyme by centrifugation (7200x g, 5 min, room temperature).
Pipette the supernatant (50 pL) into a 96-well black plate.

Add Reagent A2 (50 uL) to each well and incubate at room temperature for 30 min.

Add Amplex Red Stop Reagent (20 uL) to each well.

Measure the fluorescence intensity at 544 nm (excitation) and 590 nm (emission) using a
microplate reader.

N o G

6.6.5. Sensitivity and Specificity

The standard curve for the PA measurement is quadratic at concentrations below 50 pM and
linear between 50 and 250 uM [20]. The detection limit is 5 uM (50 pmol in the reaction mixture).
There are no differences in the fluorescence changes in response to egg PA and LPA, indicating that
this PA measurement is not affected by the chain length or the number of double bonds, and does not
distinguish between PA and LPA.

6.7. Protocol for Enzymatic Fluorometric Measurement of PI

6.7.1. Strategy

There are four reaction steps for the enzymatic fluorometric measurement of PI [24] (Figure 3e).

1.  Plis hydrolyzed by PLD to myo-inositol and PA.

2. The oxidation of myo-inositol and the reduction of NAD" are catalyzed by myo-inositol
dehydrogenase, generating scyllo-inosose and NADH, respectively.

3. NADH is oxidized by NADH oxidase, generating H,O, and NAD™.

4. In the presence of peroxidase, HyO; reacts with Amplex Red to produce resorufin.

6.7.2. Materials

e  PLD from Streptomyces chromofuscus (T-222, Asahi Kasei Pharma).

e  myo-Inositol dehydrogenase from Bacillus subtilis (E-INDHBS, Megazyme, Bray, Ireland).

e NADH oxidase from Bacillus licheniformis (23626-52, Nacalai Tesque, Kyoto, Japan).

e NAD" (B-nicotinamide adenine dinucleotide) (24338-31, Nacalai Tesque).

e Liver PI (L-x-PI sodium salt from bovine liver) (840042P, Avanti Polar Lipids).

e  Triton X-100 (see Section 6.2.1). Peroxidase, Amplex Red, Amplex Red/UltraRed Stop Reagent,
and 96-well black flatbottom plate (see Section 6.3.2). 0.2-mL tube (see Section 6.6.2).
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6.7.3. Reagents

e Reagent I1: 200 units/mL PLD, 2.4 mM CaCl,, 50 mM NaCl, and 50 mM Tris-HCI (pH 7.4).

e  Reagent I2: 25 units/mL myo-inositol dehydrogenase, 10 mM NAD™*, 150 mM NaCl, and 150 mM
Tris-HCl (pH 7.4).

e Reagent I3: 1 U/mL NADH oxidase, 6.25 units/mL peroxidase, 187.5 uM Amplex Red, 0.125%
Triton X-100, 50 mM NaCl, and 50 mM Tris-HCl (pH 7.4).

e  Solubilize liver PI (average M.W. 902.13) at 25 mM in 10% Triton X-100 aqueous solution, and then
dilute with water to 2.5 mM in 1% Triton X-100 solution. To prepare PI standard solutions, 2.5 mM
liver PI in 1% Triton X-100 is sequentially diluted with 1% Triton X-100 solution. The 25 mM liver
PI in 10% Triton X-100 solution is stored at —20 °C.

6.7.4. Procedure

1.  Pipette each sample or PI standard solution (10 uL) into a 0.2-mL tube.

2. AddReagentI1 (10 pL) to each tube, incubate at 37 °C for 60 min, and then heat at 96 °C for 3 min
using a thermal cycler.

Precipitate the denatured enzyme by centrifugation (7200x g, 5 min, room temperature).
Pipette the supernatant (10 uL) into a 96-well black plate.

Add Reagent 12 (10 pL) to each well and incubate at 25 °C for 120 min.

Add Reagent 13 (80 pL) to each well and incubate at 45 °C for 60 min.

Add Amplex Red Stop Reagent (20 pL) to each well.

Measure the fluorescence intensity at 544 nm (excitation) and 590 nm (emission) using a

® NSO W

microplate reader.

6.7.5. Sensitivity and Specificity

The standard curve for the PI measurement is hyperbolic at concentrations below 500 uM [24].
The detection limit is 2 uM (20 pmol in the reaction mixture). There are no differences in the fluorescence
changes in response to liver PI, soy PI, 1,2-dioleoyl PI, 1-palmitoyl-2-oleoyl PI, LPI, PI(4)P, and PI(5)P,
indicating that this PI measurement is not affected by the chain length or the number of double
bonds, and does not distinguish among PI, LPI, PI(4)P, and PI(5)P. On the other hand, PI(3)P, P1(3,4)P,,
PI(3,5)P,, PI(4,5)P,, and PI(3,4,5)P5 exhibit no or negligible fluorescence increases. In this PI assay,
PC, PE, PS, PA, PG, CL, and SM lead to no increase in fluorescence. In the recovery test using the
cellular lipid extract, the mean recovery of liver PI in concentrations of 25-250 uM is 99.8% [24].
Excellent linearity of the PI assay is obtained when the cellular lipid extract is serially diluted [24].

6.8. Protocol for Enzymatic Fluorometric Measurement of PG + CL

6.8.1. Strategy

There are five reaction steps for the enzymatic fluorometric measurement of PG + CL [23]
(Figure 3f).

CL is hydrolyzed by PLD to PG and PA.

PG is hydrolyzed by PLD to glycerol and PA.

Glycerol is phosphorylated by glycerol kinase to G3P.

G3P is oxidized by G3P oxidase, generating H,O, and dihydroxyacetone phosphate.

O e

In the presence of peroxidase, H,O, reacts with Amplex Red to produce resorufin.

6.8.2. Materials

e  PLD from Streptomyces chromofuscus (T-222, Asahi Kasei Pharma).
e  Glycerol kinase from Cellulomonas sp. (GYK-301, Toyobo, Osaka, Japan).
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e ATP (adenosine 5'-triphosphate disodium salt trihydrate) (018-16911, FUJIFILM Wako
Pure Chemical).

e Heart CL (CL disodium salt from bovine heart) (840012P, Avanti Polar Lipids).

e  Triton X-100 (see Section 6.2.1). Peroxidase, Amplex Red, Amplex Red Stop Reagent, and 96-well
black flatbottom plate (see Section 6.2.1). G3P oxidase (see Section 6.6.2).

6.8.3. Reagents

e Reagent L1: 5 U/mL PLD, 1.5 mM CaCl,, 50 mM NaCl, and 50 mM Tris-HCl (pH 7.4).

e Reagent L2: 5 U/mL glycerol kinase, 10 U/mL G3P oxidase, 5 U/ml peroxidase, 300 uM Amplex
Red, 4.5 mM ATP, 2 mM MgCl,, 0.2% Triton X-100, 50 mM NaCl, and 50 mM Tris-HCI (pH 7.4).

e  Solubilize heart CL (average M.W. 1494.32) at 25 mM in 10% Triton X-100 aqueous solution,
and then dilute with water to 2.5 mM in 1% Triton X-100 solution. To prepare CL standard
solutions, 2.5 mM heart CL in 1% Triton X-100 is sequentially diluted with 1% Triton X-100 solution.
The 25 mM heart CL in 10% Triton X-100 solution is stored at —20 °C.

6.8.4. Procedure

1.  Pipette each sample or CL standard solution (10 pL) into a 96-well black plate.
Add Reagent L1 (40 pL) to each well and incubate at 37 °C for 30 min.

Add Reagent L2 (50 uL) to each well and incubate at room temperature for 30 min.
Add Amplex Red Stop Reagent (20 uL) to each well.

Measure the fluorescence intensity at 544 nm (excitation) and 590 nm (emission) using a
microplate reader.

O N

6.8.5. Sensitivity and Specificity

The standard curve for CL measurement is linear at concentrations below 150 uM [23].
The detection limit is 1 pM (10 pmol in the reaction mixture). There are no differences in the
fluorescence changes in response to heart CL, tetraoleoyl CL, egg PG, soy PG, 1-palmitoyl-2-oleoyl PG,
and LPG, indicating that this measurement is not affected by the chain length or the number of double
bonds, and does not distinguish among CL, PG, and LPG. Therefore, this assay quantifies the sum
of PG and CL (PG + CL). In the recovery test using the cellular lipid extract, the mean recovery of
heart CL in concentrations of 12.5-100 uM is 100.2% [23]. Excellent linearity of the PG + CL assay is
obtained when the cellular lipid extract is serially diluted [23].

6.9. Protocol for Enzymatic Fluorometric Measurement of SM

6.9.1. Strategy
There are four reaction steps for the enzymatic fluorometric measurement of SM [22] (Figure 3g).
SM is hydrolyzed by SMase to phosphocholine and ceramide.

Phosphocholine is dephosphorylated by alkaline phosphatase to choline.
Choline is oxidized by choline oxidase, generating two H,O, molecules and betaine.

Ll .

In the presence of peroxidase, HyO, reacts with Amplex Red to produce resorufin.

6.9.2. Materials

e  SMase from Bacillus cereus (S9396, Sigma-Aldrich, St. Louis, MO, USA).

e  Alkaline phosphatase from calf intestine (47785055, Oriental Yeast).

e Egg SM (SM from chicken egg) (860061P, Avanti Polar Lipids).

e  Triton X-100 (see Section 6.2.1). Choline oxidase, peroxidase, Amplex Red, Amplex Red/UltraRed
Stop Reagent, and 96-well black flatbottom plate (see Section 6.3.2).
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6.9.3. Reagents

e Reagent M1: 1 U/mL SMase, 20 U/mL alkaline phosphatase, 1.5 mM MgCl,, 50 mM NaCl,
and 50 mM Tris-HCI (pH 7.4).

e  Reagent M2: 4 U/mL choline oxidase, 5 U/mL peroxidase, 300 pM Amplex Red, 0.2% Triton X-100,
50 mM NaCl, and 50 mM Tris-HCl (pH 7.4).

e  Solubilize egg SM (average M.W. 710.70) at 25 mM in 10% Triton X-100 aqueous solution, and then
dilute with water to 2.5 mM in 1% Triton X-100 solution. To prepare SM standard solutions, 2.5 mM
egg SM in 1% Triton X-100 is sequentially diluted with 1% Triton X-100 solution. The 25 mM egg
SM in 10% Triton X-100 solution is stored at —20 °C.

6.9.4. Procedure

1. Pipette each sample or SM standard solution (10 uL) into a 96-well black plate.

Add Reagent M1 (40 pL) to each well and incubate at 37 °C for 30 min.

Add Reagent M2 (50 uL) to each well and incubate at room temperature for 30 min.

Add Amplex Red Stop Reagent (20 pL) to each well.

Measure the fluorescence intensity at 544 nm (excitation) and 590 nm (emission) using a
microplate reader.

O e N

6.9.5. Sensitivity and Specificity

The standard curve for the SM measurement is quadratic at concentrations below 10 uM and
linear between 10 and 100 uM [22]. The detection limit is 0.5 uM (5 pmol in the reaction mixture).
There are no differences in the fluorescence changes in response to egg SM, brain SM, and palmitoyl
SM, indicating that this SM measurement is not affected by the chain length or the number of double
bonds. In this SM assay, other choline-containing phospholipids, SPC, PC, and LPC, lead to no or
negligible increases in fluorescence. In the recovery test using the cellular lipid extract, the mean
recovery of palmitoyl SM in concentrations of 12.5-50 uM is 100.3% [22]. Excellent linearity of the SM
assay is obtained when the cellular lipid extract is serially diluted [22].

7. Future Directions

Our enzyme-based fluorometric methods enable simple and high-throughput, but not
time-consuming, quantification of major phospholipid classes. All enzymes and compounds used
in these assays are commercially available at present. These assays have high sensitivity and high
accuracy (Table 1), and will be applied to cells, intracellular organelles, tissues, fluids, lipoproteins,
and extracellular vesicles for elucidating physiological, pathological, and molecular mechanisms and
for identifying disease biomarkers.

Table 1. Sensitivities and specificities of enzymatic fluorometric assays.

Assay Detection Limit (pmol) Detectable Phospholipid Class
PC assay 10 PC, plasmanylcholine
PE assay 10 PE, plasmenylethanolamine, LPE
PS assay 50 PS, LPS
PA assay 50 PA, LPA
PI assay 20 PI, LPI, PI(4)P, PI(5)P
PG + CL assay 10 PG, CL, LPG
SM assay 5 SM

These enzymatic fluorometric assays are more sensitive than the assays using TLC or HPLC.
Mass spectrometry has extremely high sensitivity (femto-molar range) to detect phospholipid
molecular species. However, it is difficult to quantify phospholipid classes using mass spectrometry.
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In addition, mass spectrometry takes a longer time to analyze many samples than the enzymatic assays.
The combination of enzymatic fluorometric assays and mass spectrometry will make it possible to
comprehensively characterize the phospholipid compositions in biological membranes. On the other
hand, enzymatic fluorometric assays for measuring lysophospholipid classes still need to be developed.
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Abbreviations

4-AA 4-amino antipyrine

ABC ATP-binding cassette

CL cardiolipin

DAOS N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline
ER endoplasmic reticulum

G3P glycerol-3-phosphate

GPL glycerophospholipid

GPL-PLD  glycerophospholipid-specific phospholipase D
HDL high density lipoprotein

HPLC high-performance liquid chromatography
HPPA 3-(4-hydroxyphenyl)propionic acid

LDL low density lipoprotein

LPA lysophosphatidic acid

LPC lysophosphatidylcholine

LPE lysophosphatidylethanolamine

LPG lysophosphatidylglycerol

LPI lysophosphatidylinositol

LPS lysophosphatidylserine

Lp-X lipoprotein-X

PA phosphatidic acid

PC phosphatidylcholine

PE phosphatidylethanolamine

PG phosphatidylglycerol

PI phosphatidylinositol

PLD phospholipase D

PS phosphatidylserine

SM sphingomyelin

SMase sphingomyelinase

SpPC sphingosylphosphorylcholine

TLC thin-layer chromatography

TOOS N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline
VLDL very low density lipoprotein
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