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Objectives: To identify significant radiomics features derived from late gadolinium

enhancement (LGE) images in participants with hypertrophic cardiomyopathy (HCM) and

assess their prognostic value in predicting sudden cardiac death (SCD) endpoint.

Method: The 157 radiomic features of 379 sequential participants with HCM who

underwent cardiovascular magnetic resonance imaging (MRI) were extracted. CoxNet

(Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net) and Random

Forest models were applied to optimize feature selection for the SCD risk prediction and

cross-validation was performed.

Results: During a median follow-up of 29 months (interquartile range, 20–42 months),

27 participants with HCM experienced SCD events. Cox analysis revealed that two

selected features, local binary patterns (LBP) (19) (hazard ratio (HR), 1.028, 95% CI:

1.032–1.134; P = 0.001) and Moment (1) (HR, 1.212, 95%CI: 1.032–1.423; P = 0.02)

provided significant prognostic value to predict the SCD endpoints after adjustment

for the clinical risk predictors and late gadolinium enhancement. Furthermore, the

univariately significant risk predictor was improved by the addition of the selected

radiomics features, LBP (19) and Moment (1), to predict SCD events (P < 0.05).

Conclusion: The radiomics features of LBP (19) and Moment (1) extracted from LGE

images, reflecting scar heterogeneity, have independent prognostic value in identifying

high SCD risk patients with HCM.
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INTRODUCTION

Hypertrophic cardiomyopathy is an autosomal dominant genetic
disease with a prevalence of 1:500 in the general adult
population (1). Although most the patients with hypertrophic
cardiomyopathy (HCM) have a good prognosis, it still is one of
the primary reasons for sudden cardiac death (SCD) events (2).
Therefore, early, precise stratification and further identification
of patients with high risk, so as to provide appropriate preventive
therapy in the form of an implantable cardioverter-defibrillator
(ICD) placement, is important in clinical practice.

Previous studies reported the extent of late gadolinium
enhancement (LGE) with more than or equal to 15% is associated
with adverse outcomes in patients with HCM (3–5). However,
HCM patients with a low amount of LGEmay experience sudden
cardiac death events. For example, 25 out of 37 events (6) and 28
out of 60 events (7) occurred in patients with HCM with an LGE
extent (<15%). Thus, there remains a clinical need to identify
novel LGE markers to improve risk stratification.

Since the performance of existing clinical models for
predicting SCD in patients with HCM is, by and large, considered
insufficient, there is potential value in employing radiomic
models in conjunction with machine learning approaches as
tools to further explore precise stratification (8, 9). Smole et al.
reported that machine learning approaches have the potential
of improving the accuracy in predicting ventricular tachycardia
occurrence, heart failure, and ICD activation with AUCs of 0.9,
0.88, and 0.87, respectively (10). Cheng et al. reported three
LGE-texture parameters that were significantly associated with
composites of cardiovascular death in 67 patients with HCM
with systolic dysfunction and (P < 0.05) (11). In addition,
previous studies demonstrated that the location and patterns
of LGE are associated with cardiovascular adverse events in
cardiomyopathies (12, 13). For example, scar heterogeneity,
quantified by entropy, has been used to assist appropriate ICD
therapy decisions (12), and the combined presence of septal
and free-wall LGE has been previously associated with SCD
risk in patients with dilated cardiomyopathy (13). However,
the prognostic value of LGE patterns in patients with HCM
is unknown. Currently, LGE-radiomics features have been
demonstrated to allow for the quantification of image features,
as well as cater to potential pattern identification (11, 14, 15). The
purpose of the current study was to identify significant radiomics
features of LGE images in participants with HCM and assess their
potential value in predicting SCD endpoint.

MATERIALS AND METHODS

Study Population
The current study prospectively recruited 383 sequential
participants with HCM, who underwent 3-T cardiovascular
MRI imaging during the period between August 2012 and
October 2018. Four participants were excluded from the study
due to the poor quality of LGE images that were obtained
for them. HCM was diagnosed based on the presence of an
increased left ventricle (LV) wall thickness (≥15mm), identified
in one or more myocardial segments (or ≥13mm in a first

degree relative of an index patient with HCM), measured by
echocardiography and cardiovascular MRI in the absence of
secondary causes of hypertrophy (16). This study was approved
by the Institutional Ethics Committee of West China Hospital,
Sichuan University, and written informed consent was obtained
from each participant. In addition, the study was registered with
the Chinese clinical trial registry (URL: http://www.chictr.org.cn;
Unique identifier: ChiCTR1900024094).

Cardiovascular MRI Scans
Cardiovascular MRI gated by electrocardiogram was performed
on a 3-T scanner (MAGNETOM Trio Tim, Siemens Healthcare
Ltd., Erlangen, Germany) with a 32-channel cardiac phased-array
receiver coil. Detailed MRI acquisition protocols are available in
the Supplemental Methods section, which are also detailed in a
previous report (17).

Feature Extraction of LGE Images
A total of 157 quantitative features were extracted from all short-
axis LGE-phase sensitive inversion recovery (PSIR) images for
each participant and the process of image filtering and feature
extraction was performed with MATLAB 2014 (Mathworks,
Natick, MA, USA). The myocardium was initially manually
delineated within the images and then the radiomic features
were extracted from the segmented myocardium. These features
were extracted from each slice of all the acquired LGE images
separately and then they were combined. Detailed descriptions of
each feature are provided in Supplementary Table 1. The feature
extraction approach is consistent with a previously published
work (18).

Cardiovascular MRI Analyses
Left ventricle (LV) function and LGE measurement were
analyzed using commercially available software (QMASS 8.1;
Medis Medical Imaging Systems, Leiden, the Netherlands) by
two experienced radiologists with 4 years of cardiovascular
MRI experience. Both these radiologists were blinded from any
clinical and other cardiovascular MRI information and data
related to this study. All analysis methods were consistent with
previous reports (17–19). LV maximal wall thickness (MWT)
was defined as the greatest dimension anywhere within the
LV myocardium. LGE was defined quantitatively by myocardial
signal intensity of 6 SD from the normal myocardium (20,
21) and the amount of LGE was semi-automatically quantified
using the QMASS 8.1 software (Medis Medical Imaging Systems,
Leiden, the Netherlands) and manual adjustments were applied
when necessary.

Follow-Up
The start time of follow-up was defined as the time when
the participants underwent cardiovascular MRI examination
at baseline. The duration of follow-up was defined from the
initial cardiovascular MRI visit until October 2019 or SCD
(or aborted SCD) event. Follow-up data were retrieved from
participants’ medical records as well as telephone interviews.
We documented the SCD endpoint, including the SCD event
which was defined as a natural death caused by a cardiac
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FIGURE 1 | Radiomic workflow.

cause characterized by a sudden loss of consciousness that
occurs within 1 h after the onset of acute symptoms (22),
as well as aborted SCD events consisting of ICD discharge
due to ventricular tachycardia (VT) or fibrillation, and
sustained VT.

Feature Selection of LGE Images
Given the high dimensionality of the dataset consisting of
379 patients and 157 different features, we performed feature
selection through two different approaches: regularized linear
model (CoxNet) (23) and non-linear model [Random Forest
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FIGURE 2 | Feature selection. Ranking of important features of CoxNet with alpha = 1 i.e., LASSO (A) and alpha = 0.5 i.e., EN, (B) and Random Forest (C)

algorithms. The features selected can be seen in light blue and are those that have appeared above a particular threshold of times. EN, elastic net; LASSO, Least

Absolute Shrinkage and Selection Operator.
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FIGURE 3 | Final selected features by CoxNet and Random Forest models. EN, elastic net; LASSO, Least Absolute Shrinkage and Selection Operator.

(RF)]. The radiomic workflow was shown in Figure 1. The
CoxNet method fits the Cox proportional hazards regression
model regularized by a specific penalty (23). We used two
different penalty values (Figures 2A,B), alpha = 0.5 for elastic
net (EN) behavior (24) where the penalty is less stringent and the
correlated features were maintained, and alpha = 1 for a Least
Absolute Shrinkage and Selection Operator (LASSO) behavior
(25). The RF feature importance was determined based on a
permutation method (26). In order to increase the robustness of
our results, bootstrapping was performed, dividing the data into
400 different partitions. Additionally, 10-fold cross-validation for
the optimum lambda was applied in each of the bootstrapped
samples. The number of times a feature appears in a model,
across all models generated by the different bootstraps, are
reported and the features that appear more frequently across the
models are assigned with a higher frequency value. Therefore,
the chosen covariates correspond to those with the stronger
and more robust effect across all linear and non-linear models.
A detailed description is provided within the Supplemental
Methods section. Figure 2 presents the top-ranking features
across all different bootstraps.

Furthermore, all selected features were then combined at
the end (Figure 3). Therefore, the covariates were chosen
to correspond to those with the stronger and more robust
effect on hazard across all linear and non-linear models.
Additionally, the correlation between selected features
was checked (Supplementary Figure 1) and the resulting
uncorrelated ones were subsequentially chosen for the posterior
survival analysis.

Statistical Analyses
The CoxNet and Random Forest models were applied to select
the most important radiomics features for the prediction of

SCD endpoint and then 10-fold cross-validation was performed.
The survival curves were established based on the Kaplan-Meier
method, and comparisons were made using the log-rank test.
The C-index was applied to evaluate the prognostic performance
among different radiomics models. Univariable Cox regression
analysis was used to evaluate the prognostic value of selected
features or clinical variables for predicting the SCD endpoint.
Factors with a P-value < 0.10, identified in univariable analysis,
were used for the multivariable Cox regression analysis, and
a stepwise backward elimination was conducted to determine
independent variables. So as to ensure the reproducibility of
our radiomics analysis, the coefficient of variation (COV) and
the intraclass correlation coefficient (ICC) were both reported.
P < 0.05 values were considered statistically significant. All
statistical analyses were performed using the R (version 3.5.2;
The R Project for Statistical Computing, Birmingham, UK) and
MedCalc (version 13; Ostend, Belgium) software.

RESULTS

Demographic and Baseline Clinical
Characteristics
Table 1 presents the baseline clinical and CMR characteristics of
the HCM patients, as well as a comparison between participants
with HCM reaching an SCD endpoint and ones without an
SCD endpoint. Most participants were treated with β blockers
(70%). There were no significant differences in the baseline
clinical characteristics of sex, body mass index, body surface area,
blood pressure, cardiac function, and MWT between the two
subgroups (all P > 0.05). However, age and hypertension history,
coronary artery disease (CAD), non-sustained VT (NSVT), and
syncope showed significant differences in the two subgroups
(Table 1). In addition, women were more likely to have an
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TABLE 1 | Demographic and clinical characteristics in recruited participants with hypertrophic cardiomyopathy.

Variable HCM (n = 379) Patients without SCD endpoint (n = 352) Patients with SCD endpoint (n = 27) P

Clinical data

Age (years) 48.6 ± 16.3 47.9 ± 16.3 58.5 ± 14.1 0.001*

Male gender, n (%) 203(54) 191(54) 12(44) 0.32

BMI (kg/m2 ) 23.7 ± 3.7 23.7 ± 3.6 23.9 ± 4.6 0.56

BSA (m2) 1.7 ± 0.2 1.7 ± 0.2 1.7 ± 0.2 0.65

SBP (mmHg) 123 ± 18 124 ± 18 121 ± 19 0.36

DBP (mmHg) 76 ± 12 75 ± 12 71 ± 13 0.1

HR (bpm) 73 ± 12 73 ± 11 74 ± 17 0.86

Diabetes mellitus, n (%) 26(7) 22(6) 4(15) 0.09

Hypertension, n (%) 92(24) 81(23) 11(41) 0.04*

CAD, n (%) 29(8) 24(7) 5(19) 0.03*

Peak LVOT obstruction, (mmHg)
†

13.0 (5.0, 53.8) 11.0 (5.0, 55) 26.0 (5.0, 49.8) 0.55

NSVT, n (%) 59(16) 48(14) 11(41) <0.001*

Family history of SCD, n (%) 50(13) 44(13) 6(22) 0.15

History of Syncope, n (%) 70(19) 57(16) 13(48) <0.001*

Cardiac medications

β blocker, n (%) 265(70) 243(69) 22(82) 0.17

CMR data

LVEF (%) 62.6 ± 10.2 63.0 ± 9.5 59.0 ± 14.3 0.25

LVEDVi (mL/ m2) 82.0 ± 21.9 80.9 ± 18.2 95.7 ± 48.1 0.19

LVESVi (mL/ m2 ) 31.5 ± 16.7 30.5 ± 13.2 43.5 ± 39.6 0.23

RVEF (%) 60.9 ± 9.2 61.0 ± 9.2 59.3 ± 9.3 0.25

RVEDVi (mL/ m2 ) 65.3 ± 15.5 65.6 ± 15.5 61.8 ± 15.4 0.12

RVESVi (mL/ m2) 25.5 ± 8.9 25.6 ± 9.0 24.7 ± 6.8 0.85

LA size (mm) 40.2 ± 7.5 40.0 ± 7.4 43.2 ± 8.3 0.05

Maximum LV wall thickness (mm) 22.5 ± 5.7 22.6 ± 5.7 21.6 ± 6.1 0.43

LV Massi (g/m2) 99.4 ± 36.5 98.8 ± 35.2 107.6 ± 50.3 0.90

LGE% 8.6 ± 8.8 7.8 ± 7.9 14.4 ± 11.7 0.001*

*P < 0.05; HCM, hypertrophic cardiomyopathy; BMI, body mass index; BSA, body surface area; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; LV, left

ventricle; RV, right ventricle; EF, ejection fraction; SCD, sudden cardiac death; CAD, coronary artery disease; NSVT, non-sustained ventricular tachycardia; LOVT, left ventricular out?ow

tract gradient; EDVI, end-diastolic volume index; ESVI, end-systolic volume index; LV massi, LV mass index; LGE, late gadolinium enhancement.
†
Obstructive HCM was defined as LV

outflow tract gradient ≥30 mmHg at rest at echocardiography.

SCD, sudden cardiac death LBP, Local binary patterns; HGRE, high gray-level run emphasis; GLN, gray-level non-uniformity; LGRE, low gray-level run emphasis; LRE, long-run emphasis.

increased marker for SCD risk, based on European Society
Cardiology HCM risk predictors, as well as being more likely
to have a history of syncope and higher peak LVOT obstruction
(Supplementary Table 2).

Furthermore, there was a significant difference in LGE
burden, when quantified as LGE% (14.4 ± 11.7 % vs. 7.8 ±

7.9 %; P =0.001), in participants with HCM with an SCD
endpoint compared to patients without an SCD endpoint.
Overall, participants with HCM who reached an SCD endpoint
were had higher incidences of hypertension, CAD, syncope,
NSVT, and higher LGE% (all P < 0.05, Table 1).

Outcomes
During a follow-up period of 29 months (interquartile range
[IQR] 20–42 months), 27 (7%) participants reached an SCD
endpoint, including 10 (37%) participants that experienced
SCD, 17 participants (63%) experienced aborted SCD events,
including 9 patients with appropriate ICD discharge events
due to VT or ventricular fibrillation (VF), and 8 patients
sustained VTs.

Features Extraction and Performance of
Selected Features in Predicting SCD
Endpoint
The application of CoxNet and Random Forest resulted in the
selection of eleven, out of 157 radiomics features, namely local
binary patterns (LBP) (19), moment (1), variance, high gray-
level run emphasis (HGRE) (1), low gray-level run emphasis
(LGRE) (3), long-run emphasis (LRE) (1), homogeneity (1),
energy (1), contrast (1), gray-level non-uniformity (GLN) (1)
and correlation (1) (Figure 3). The correlations among the 11
features are presented in Supplementary Figure 1. LBP (19) is
the only feature that is not statistically associated with other the
10 radiomics features.

Survival Analysis
The univariable Cox regression analysis revealed that age, CAD,
NSVT, syncope history, LVEDVi, LA size, and LGE% were
significantly associated with the SCD endpoint (P < 0.05,
Table 2). In addition, each of the 11 features had a significant
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TABLE 2 | Univariable and multivariable Cox regression analysis of clinical variables and selected radiomics features for predicting the sudden cardiac death endpoint in

participants with HCM.

Variables Univariate analysis P Multivariate analysis P

HR (95% CI) HR (95% CI)

Sex, n (%) 1.441(0.677, 3.069) 0.346

Age (years) 1.047(1.018, 1.076) 0.001* 1.051(1.021,1.082) 0.001*

Height (cm) 0.997(0.966, 1.029) 0.854

Weight (kg) 1.002(0.972, 1.032) 0.925

BMI (kg/m2 ) 1.020(0.920, 1.131) 0.708

BSA (m2) 0.885(0.149, 5.261) 0.885

SBP (mmHg) 0.990(0.968, 1.012) 0.384

DBP (mmHg) 0.091(0.936, 1.005) 0.085

HR (bpm) 1.005(0.974, 1.038) 0.746

Diabetes mellitus, n (%) 2.157(0.744, 6.260) 0.159

Hypertension, n (%) 1.927(0.896, 4.146) 0.104

CAD, n (%) 2.739(1.040, 7.217) 0.043*

Peak LVOT obstruction, (mmHg) 1.002(0.991, 1.013) 0.728

NSVT, n (%) 4.019(1.885, 8.569) 0.001* 2.763(1.258, 6.067) 0.012*

Family history of SCD, n (%) 2.118(0.853, 5.256) 0.108

History of Syncope, n (%) 4.309(2.032, 9.137) <0.001* 3.761 (1.688, 8.379) 0.001*

CMR parameters

LVEF (%) 0.972(0.941, 1.004) 0.082

LVEDVi (mL/m2 ) 1.018(1.009, 1.028) <0.001*

LVESVi (mL/m2 ) 1.023(1.013, 1.034) <0.001

RVEF (%) 0.985(0.948, 1.024) 0.442

RVEDVi (mL/m2) 0.988(0.964, 1.012) 0.330

RVESVi (mL/m2 ) 0.990(0.947, 1.035) 0.662

LA size (mm) 1.059(1.006, 1.113) 0.029*

Maximum LV wall thickness (mm) 0.964(0.895, 1.038) 0.335

LV Massi (g/m2) 1.005(0.996, 1.015) 0.301

LGE % 1.065(1.033, 1.099) <0.001*

Contrast (1) 1.164(1.094,1.239) <0.001*

Variance 2.208(1.562,3.122) <0.001*

Energy (1) 3.482(2.112,5.741) <0.001*

HGRE (1) 1.461(1.145,1.863) 0.002*

LGRE (3) 1.598(1.206,2.116) 0.001*

LRE (1) 1.585(1.195,2.102) 0.003*

GLN (1) 1.187(1.103,1.277) <0.001*

Homogeneity (1) 3.115(1.978,4.907) <0.001*

Correlation (1) 1.703(1.273,3.378) <0.001*

Moment (1) 1.087(1.050,1.126) <0.001* 1.082(1.032,1.134) 0.001*

LBP (19) 1.332(1.125,1.576) 0.003* 1.212(1.032, 1.423) 0.020*

*P < 0.05; The bold values are less than 0.1; abbreviation as Table 1.

prognostic value for predicting SCD endpoints (all P < 0.05,
Table 2). In the multivariable Cox analysis, the age [HR: 1.051
(1.021, 1.082); P = 0.001], NSVT [HR: 2.763 (1.258, 6.067);
P = 0.012], history of syncope [HR: 3.761 (1.688, 8.379); P
= 0.001], LBP(19) [HR: 1.212 (1.032, 1.423); P = 0.02] and
Moment (1) [HR: 1.082 (1.032, 1.134); P = 0.001] remained as
independent predictors for SCD endpoints (Table 2). The HCM
patients, with higher LBP (19) of (≥4.277 cutoff value), exhibited
a significantly higher rate of reaching the SCD endpoint (P =

0.004; Figure 4A). In addition, higher moment (1) (≥4.262) also
exhibited a significantly higher rate of reaching the SCD endpoint
(P < 0.001, Figure 4B). To further assess the predictive power
of the selected radiomics features to predict SCD endpoint, we
first fitted a Cox regression model to the univariately significant
risk predictors (age, CAD, NSVT, syncope history, LVEDVi,
LA size, and LGE%). The C index of the risk model for
predicting SCD endpoints is 0.834 ± 0.041. The risk model
was slightly improved by the addition of the selected radiomics
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features (LBP 19 and Moment 1) with a C index of 0.852 ±

0.038. In addition, the univariately significant risk predictor was
improved by the addition of the selected radiomics features,
namely LBP (19) and Moment (1), to predict SCD events
(Table 3).

Reproducibility of Feature Extraction
A very good intra- and inter-observer reproducibility of
feature extraction [inter-observer intraclass correlation
coefficient: 0.92(0.89–0.98); intra-observer ICC:0.91(0.87–0.96)]
was identified.

TABLE 3 | Comparisons of models including univariately significant risk predictors

and selected radiomics features for SCD prediction by C statistic in participants

with HCM.

Models* C statistic Estimated variance

Age 0.686 0.054

Age + LBP. (19) + Moment. (1) 0.815 0.039

CAD 0.547 0.039

CAD + LBP. (19) + Moment. (1) 0.745 0.051

NSVT 0.626 0.05

NSVT + LBP. (19) + Moment. (1) 0.743 0.056

syncope history 0.663 0.051

syncope history + LBP. (19) + Moment. (1) 0.777 0.051

LVEDVi 0.572 0.072

LVEDVi + LBP. (19) + Moment. (1) 0.703 0.066

LA size 0.612 0.061

LA size + LBP. (19) + Moment. (1) 0.702 0.067

LGE% 0.688 0.057

LGE% + LBP. (19) + Moment. (1) 0.724 0.059

*Abbreviation as Table 1.

DISCUSSION

We reported that radiomics features, namely LBP (19) and
Moment (1), derived from LGE images have independently
and significantly predictive value of SCD endpoint in patients
with HCM. Furthermore, the univariately significant clinical and
imaging risk predictor was improved by the addition of the
selected radiomics features.

Previous studies have confirmed the relationship between the
extent of LGE and life-threatening ventricular arrhythmias in
HCM patients (3). In addition, a recent study by Freitas et al.
(493 HCM patients; 23 SCD or aborted SCD events), reported
that the amount of LGE as a predictor (C-statistic 0.84; 95%
CI: 0.76–0.91) outperformed the AHA or the ESC risk model in
identifying patients with HCM at high SCD risk (4). Moreover,
the latest enhanced AHA model, proposed by Maron et al.,
demonstrated that the ESC risk model could get significant
improvement when adding LGE% with a cut-off value greater or
equal to 15% (27). However, patients with HCM with the LGE
extent (<15%) may experience high-risk cardiovascular events
due to the diverse HCM phenotypic spectrum (5, 6). This may
be partially explained by the different fibrosis patterns (28). The
heterogeneity of fibrosis could not only affect electric conduction
barriers but also facilitate the formation of critical isthmuses of
viable myocytes which support re-entrant circuits and further
cause arrhythmogenic cardiomyopathy (29). Furthermore, a
previous study reported that spatial heterogeneity of fibrosis
correlates directly with ventricular arrhythmia risk and the
degree of risk would be higher when the spatial size and degree
of fibrotic heterogeneity are increased (11, 15, 30). Therefore,
LGE heterogeneity may play an important role in predicting SCD
events necessitating the exploration of its prognostic value, the
identification of potential markers, and the improvement of the
characterization and stratification of LGE in patients with HCM.

FIGURE 4 | Kaplan-Meier (KM) curves for predicting sudden cardiac death endpoint in participants with HCM based on the median values of selected radiomics

features [A. Local binary patterns (LBP) (19); B. Moment (1)]. HCM, hypertrophic cardiomyopathy; SCD, sudden cardiac death.
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Our present study identified that radiomics features from LGE
images, representing different patterns of myocardial fibrosis,
have prognostic value for the identification of high-risk patients
with HCM.

Radiomics forms a fairly recent image analysis technique
that could be employed to describe the various distribution
and patterns of signal intensity (SI) within segmented regions
of interest (ROI). It provides a standardized formula for the
quantification of intensity, shape, and texture features in medical
images (31). Therefore, radiomics analysis, by identifying these
unique SI patterns, may improve diagnosis (32, 33) and
prognostic accuracy (34). Neisius et al. reported that the
selected texture features from T1 mapping images could help
to differentiate HCM from hypertension patients with the c-
statistic of 0.89 (95% CI:0.77–1) (32). In addition, Baeßler
et al. reported texture features from non-contrast T1-weighted
images to have excellent accuracy to discriminate between
HCM patients and healthy controls (sensitivity: 91%; specificity:
93%) (33). However, the prognostic value of radiomics features
derived from T1 images is unknown. Kotu et al. recruited 34
individuals with chronic myocardial infarction and reported
the texture features extracted from LGE images, including size,
location, and heterogeneity of the scar, showed the excellent
discriminative ability to detect high-risk arrhythmic patients with
post-myocardial infarction (34). In a study of 23 patients with
HCM, Amano et al. also identified significant differences in
LGE texture features between patients with HCM with a history
of ventricular tachyarrhythmias and those with not, which
suggested that LGE texture analysis could provide information in
patients with HCM with ventricular tachyarrhythmias (28). Our
study further found that radiomics features from LGE-MRI have
independent prognostic value for the identification of high SCD
risk patients with HCM.

Cheng et al. included 67 patients with HCM with systolic
dysfunction and reported that three texture parameters,
namely X0_H_skewness (HR = 0.783, CI: 0.691–0.889),
X0_GLCM_cluster_tendency (HR = 0.735, CI: 0.616–0.877)
and X0_GLRLM_energy (HR = 1.344, CI: 1.173–1.540), were
significantly associated with composites of cardiovascular death
(P < 0.05) (11). The following points differentiate the work
presented here from this work. First, Cheng et al. recruited a
small HCM cohort (67HCMpatients) and based the validation of
the significant prognostic value of three features on a univariable
Cox analysis. Following a multivariable Cox analysis, and
after adjusting for other clinical variables, these three features
did not retain a statistically similar prognostic performance.
Furthermore, the endpoints in that study were defined as
composites of cardiovascular deaths events, including cardiac
death due to progression of heart failure and unscheduled heart
failure hospitalization. In our study, not only did we validate the
independent prognostic value of radiomics features to identify
specific SCD events in a larger cohort, but also, we were able to
confirm that the combination of different, independent radiomic
features resulted in increased performance, demonstrating that
their inclusion into clinical models has incremental value.

LBP represented a rotation-invariant image descriptor,
computed from discrete Fourier transforms of LBP histograms,

and high LBP values reflect increased pixel-level heterogeneity
in the myocardium scar (35). The feature of the moment was
acquired through the construction of a gray-level co-occurrence
matrix (GLCM) and reflected the local homogeneity from an
image (31). These features aim to quantify the heterogeneity
and complexity of the SI matrix. Therefore, these important,
selected LGE-MRI features may reflect the myocardial fibrotic
heterogeneity, and our study highlighted their importance in the
prognostic evaluation of HCM patients and may provide a new
sight into myocardial damage characterization. Furthermore,
more prospective studies are needed to assess whether radiomics
features, reflecting the heterogeneity of fibrosis, could be the
main criterion of ICD treatment potentially aiding and igniting
the further studies of the pathological mechanism of myocardial
fibrosis in patients with HCM.

Our study employed a radiomics based approach to explore its
prognostic value for identifying SCD endpoint in patients with
HCM and demonstrated that radiomics features significantly
improve our ability to stratify these patients. Our findings suggest
that the extraction of radiomics features could potentially entail
a new approach that caters to the exploration of individualized
precise risk stratification in patients with HCM.

STUDY LIMITATIONS

First, it is a single-center study, with all participants residing
within the same geographical region of China. Therefore,
external validation carried across other centers at different
geographical regions is necessary. Moreover, our study included
modest sample size, and it is important to validate the findings
across a larger HCM population.

CONCLUSION

In the present study population, we found that LV radiomics
features extracted from LGE images, reflecting myocardial
fibrosis heterogeneity, can provide an independent prognostic
factor for SCD events, as well as helping to improve risk
stratification in patients with HCM.
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