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Attentional fluctuations induce shared variability in
macaque primary visual cortex
George H. Denfield 1,2, Alexander S. Ecker1,2,3,4, Tori J. Shinn1,2,

Matthias Bethge2,3,4,5 & Andreas S. Tolias1,2,4,6

Variability in neuronal responses to identical stimuli is frequently correlated across a

population. Attention is thought to reduce these correlations by suppressing noisy inputs

shared by the population. However, even with precise control of the visual stimulus, the

subject’s attentional state varies across trials. While these state fluctuations are bound to

induce some degree of correlated variability, it is currently unknown how strong their effect

is, as previous studies generally do not dissociate changes in attentional strength from

changes in attentional state variability. We designed a novel paradigm that does so and find

both a pronounced effect of attentional fluctuations on correlated variability at long time-

scales and attention-dependent reductions in correlations at short timescales. These effects

predominate in layers 2/3, as expected from a feedback signal such as attention. Thus,

significant portions of correlated variability can be attributed to fluctuations in internally

generated signals, like attention, rather than noise.
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Neuronal responses to repeated presentations of identical
stimuli are highly variable1. This trial-to-trial variability
can be correlated across populations of neurons2–4 and is

often referred to as “noise correlation”5. Many studies have
investigated the implications of these correlations for population
coding4,6–10. However, the origin of these correlations is still not
clear. Here we focus on this latter question: what causes noise
correlations?

One factor modulating correlations is attention. Studies of
population activity in V4 found that attending to a stimulus
inside the receptive fields of the recorded neurons reduced cor-
relations in the trial-to-trial variability of the responses of those
neurons to identical stimuli, compared to conditions in which
attention was directed away from the receptive field11,12. These
studies concluded that increasing the strength of attention
reduces correlated variability by suppressing the shared, noisy
input sources thought to give rise to correlated variability in a
population3,4,13. This perspective on the relationship between
correlated variability and attention is illustrated in Fig. 1a.

However, because the subject’s state of attention can be con-
trolled only on average but not precisely across trials, the strength
and focus of attention may vary from trial to trial even within a

given attention condition14,15. Here, we refer to such variability as
fluctuations in the attentional state. Therefore, shared neuronal
variability could also be driven by variability in the state of
attention and changes in the level of that variability over time8.
Indeed, the patterns of shared variability induced by fluctuations
in gain-modulating signals such as attention are consistent with
experimental data8,16 if attentional state variability decreases as
the strength of attention increases (Fig. 1b).

In other words, correlated variability during attention tasks can
be interpreted as evidence for both a suppression of common
noise by attention11,12,17 as well as trial-to-trial fluctuations of
attentional state8,14,15. Thus, it is unknown to what extent fluc-
tuations in the state of attention indeed contribute to correlated
variability in population responses, because the paradigms
employed in these studies did not manipulate the level of atten-
tional state variability behaviorally.

Therefore, we developed a novel, cued change-detection task
that can dissociate changes in the strength of attention from
changes in the variability of the attentional state by manipulating
the behavioral relevance of two simultaneously displayed stimuli
across task conditions. When only one stimulus is behaviorally
relevant, subjects can maximize reward by focusing their atten-
tion on a single spatial location over time. However, when two
stimuli are relevant, subjects need to attend to both stimuli to
some degree. We expect attentional fluctuations to be highest in
this latter scenario, if subjects shift the focus of attention between
the two stimulus locations, as supported by recent work18,19.

Thus, if the dominant factor governing levels of correlated
variability is attentional suppression of common noise, we expect
correlations to decrease as attentional strength increases, resulting
in intermediate levels of correlations when both stimuli need to
be attended (Fig. 2a). Alternatively, if fluctuations in attention are
the dominant factor modulating correlations, we predict corre-
lations to be highest when both stimuli need to be attended and
attentional fluctuations are most pronounced (Fig. 2b)8.

We recorded neuronal responses from primary visual cortex of
macaque monkeys while they performed this task and find that
attention modulates firing rates of V1 neurons. On a timescale of
one second, we find that shared variability is highest when both
stimuli are behaviorally relevant and lowest in conditions in
which only one stimulus is the focus of attention, arguing that, at
this timescale, fluctuations in the state of attention, induced by
changes in attentional allocation strategies, are an important
factor governing shared neuronal variability. On a faster timescale
of 200 ms, we find attention-dependent reductions in correlated
variability consistent with previous studies. Both effects
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Fig. 1 Attention and correlated variability. a Hypothesis 1: Attentional gain is
increased, but relatively stable under both conditions (top left). Correlated
variability is driven by a common noise source (top right), which is
suppressed by attention11,12. b Hypothesis 2: Attentional gain is increased,
but fluctuates from trial to trial8,14,15. Correlated variability is driven by
fluctuations of attentional state. The reduction in correlations under
attention would imply that the attentional gain is less variable when
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Fig. 2 Predicted effects of attention on correlations when attending one or two stimuli. a Scenario in which attentional fluctuations are negligible and
attention primarily acts by suppressing common noise sources. In this case, we expect intermediate correlations when attending two stimuli (“Attend
Both”). b Scenario in which fluctuations in attention induce correlations. In this case, we expect attention to switch randomly between the two targets in the
“Attend Both” condition, resulting in the highest correlations in this condition
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predominate in supragranular cortical layers, as expected from a
feedback signal such as attention20–23.

Results
Change detection task and manipulation of attention. We
trained two rhesus macaque monkeys to perform a cued,
orientation-change detection task (Fig. 3a). A trial was initiated
when the subject fixated a central fixation spot. Two “noisy”
Gabor patches appeared symmetrically in the lower left and lower
right visual field 300ms later. During the zero-coherence period
(ZCP), these patches randomly changed their orientation every
frame (10 ms per frame; 36 orientations evenly spaced between 0
and 175 degrees). After a random period of time, drawn from an
exponential distribution (minimum: 0.01 s, mean: 2.17 s, max-
imum: 5 s), one of the two stimuli entered the Coherent Period

(CP). During the CP one particular orientation, called the “signal”
orientation, was shown with a higher probability than the other
orientations. By varying this probability, we could control the
“coherence” of the stimulus, making the occurrence of the signal
orientation more or less obvious over the background orientation
noise, to manipulate the difficulty of a trial. The occurrence of this
signal orientation was the change the monkey had to detect,
which he reported by making a saccade to the changed stimulus
within a short reaction time window. On 10% of trials no signal
orientation occurred, and the monkey was rewarded for main-
taining fixation throughout the trial.

We used a cued block design to manipulate the focus of the
subject’s attentional state (Fig. 3b), where the cue was the color of
the fixation spot. Two of these conditions, “Attend In” (AI) and
“Attend Out” (AO), were similar to those in typical spatial
attention tasks, where the stimulus overlapping the neurons’
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Fig. 3 Task diagram with behavioral results. a Orientation change-detection task. Two stimuli (L: left, R: right) randomly change their orientation during the
ZCP (length 10–5000ms). One stimulus (R in this example) then enters the CP (300ms) when the signal orientation is shown (coherence exaggerated for
clarity). This period is followed by another 200ms ZCP to allow time for a behavioral response. b Illustration of attention conditions. Attention is cued
according to fixation spot color. This color scheme is used in all figures to represent each condition. Percentages below the stimuli indicate the probability
that the change occurs in this stimulus on a given trial. One stimulus overlaps the recorded neurons’ receptive fields. c Example session psychophysical
performance. Individual points represent fraction of changes detected at a given coherence. Solid lines indicate fit of logistic function to the data. Inset
shows 50% detection threshold with 95% CIs. d Behavioral summary. Same as inset in c, but averaged across sessions in our dataset (N= 30; mean ±
SEM). e Percentage of changes detected in each condition averaged across sessions (mean ± SEM)
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receptive fields is cued in the AI condition, and the other stimulus
is cued in the AO condition. The cues for these conditions (red
for AI, blue for AO) were 100% valid, such that the change
occurred only at the cued location. In the condition labeled
“Attend Both” (AB), indicated by a black fixation spot, either
stimulus had an equal probability (50%) of showing the change
on a given trial.

Our paradigm therefore differs from typical covert attention
tasks used to study neuronal variability in two respects. First,
during the AI and AO conditions in our task, there are no catch
trials with invalid cues11 or signals in the distractor that need to
be ignored17. While catch trials are typically used to measure the
behavioral shift due to attention, they are likely to induce
attentional fluctuations, as they render the cue unreliable and
encourage some degree of attentional focus on the non-cued
stimulus by rewarding successful performance at that location. As
our goal in the AI and AO conditions is to minimize attentional
fluctuations, we used 100% reliable cues. In our AB condition,
either stimulus was equally likely to change. We used this
condition as the baseline to measure the behavioral improvement
attributable to attention, analogous to how other paradigms use
catch trials.

There were, therefore, three attentional conditions but two
attentional strategies that our task engaged. To maximize reward
in the AI and AO conditions, attention should be focused on only
the cued stimulus. With attention deployed consistently across
trials with regard to spatial location, attentional state fluctuations
should be minimized. In the AB condition, attention should
fluctuate more strongly between the two spatial locations across
trials, as ignoring one of the stimuli is no longer a viable strategy
for maximizing reward. One way to conceive of this allocation
strategy is that the AB condition is comprised of a mixture of the
attentional states deployed in the AI and AO conditions. Note,
attentional state fluctuations need not be non-existent in the AI
and AO conditions but only decreased relative to the AB
condition in order to test our hypothesis.

If subjects used the strategies described above, there should be
some trials in the AB condition where the subject attended the
unchanged stimulus and required a higher coherence level to
notice a change in the correct stimulus on that trial. Such
occurrences would lead to a rightward shift in the psychometric
function and higher detection thresholds in the AB condition.
The example session in Fig. 3c exhibits a clear rightward shift in
the psychometric curve along with a significantly elevated
coherence threshold in the AB condition. This effect was
consistent across sessions (Fig. 3d, F(2,29)= 41.8, p < 10-10,
one-way repeated-measures analysis of variance (rmANOVA);
overall: AI 3.5 ± 0.1, AB 4.4 ± 0.1, AO 3.4 ± 0.1; Subject B: AI 3.7
± 0.2, AB 4.5 ± 0.2, AO 3.4 ± 0.3; Subject D: AI 3.5 ± 0.1, AB 4.4 ±
0.1, AO 3.3 ± 0.1; values indicate mean ± standard error of the
mean), being present in 25 out of 30 sessions (Supplementary
Fig. 1).

To avoid potential confounds from changes in task difficulty
across attention conditions, we balanced the overall percent
correct performance in each condition by raising coherence levels
one step in the AB condition. Overall, subjects identified an
average of 76 ± 1.4% of changes (Subject B: AI 77 ± 1.9%, AB 78
± 1.3%, AO 77 ± 1.7%; Subject D: AI 76 ± 2.0%, AB 74 ± 1.8%, AO
77 ± 1.8%), and there was no significant effect of attention
condition on performance (Fig. 3e, F(2,29)= 2.1, p= 0.13,
rmANOVA). Reaction times were somewhat longer in the AB
condition (F(2,29)= 10.0, p= 0.0002, rmANOVA), but the
difference was only about 3% (overall: AI 334.3 ± 3.4 ms, AB
346.4 ± 2.2 ms, AO 336.5 ± 2.3 ms), and the effect was individu-
ally significant for only one subject (Subject D, F(2,22)= 23.0, p
= 2e−7; Subject B, F(2,6)= 3.4, p= 0.07). The false alarm rate

was on average lowest in the AB condition (AI 44.3 ± 1.5%, AB
37.6 ± 1.7%, AO 42.2 ± 2.3%, F(2,29)= 15.9, p= 3e−6, rmA-
NOVA), but this effect was again significant in only one subject
(Subject D, F(2,22)= 24.6, p= 7e−8; Subject B, F(2,6)= 0.1, p=
0.91, rmANOVA). These results are depicted in Supplementary
Fig. 1. We conclude that behavioral differences between the split
vs. focused attention conditions were not measurable in one
monkey and small in the other. Thus, changes in task difficulty
are unlikely to account for any of our physiological results,
though we address this point with an additional control further
below.

Overall, our goal was to develop a behavioral paradigm in
which attention could fluctuate or shift between two stimulus
locations—the AB condition—and remain focused on one
location in the other conditions. Recent work suggests that
attention is likely to operate in this fashion in the AB
condition18,19, and our behavioral results, particularly those
pertaining to psychophysical threshold, are consistent with this
attentional allocation strategy. However, these results are also
consistent with a strategy in which attention acts as a zoom
lens24, widening its focus to encompass both stimuli simulta-
neously. Note, the fact that detection thresholds are elevated in
the AB condition suggests that if attention is allocated to both
stimuli simultaneously, the stimuli are not processed to the same
degree as they are in the AI or AO conditions. That is, widening
the attentional field entails a reduction in attentional strength
within the field. As we will see, however, these strategies make
different predictions for the patterns of correlated variability we
expect to see across our task conditions.

Attentional modulation of neuronal firing rates. While subjects
performed the task, we recorded spiking responses from neurons
in primary visual cortex using 32-channel silicon probes with a
spacing of 60μm between channels (NeuroNexus V1x32-Edge-10
mm-60-177). We recorded 474 single units (15.8 ± 1 units
per session) across 30 sessions (N= 7 from Subject B, N= 23
from Subject D) from two male macaque monkeys. The two
Gabor stimuli in our task were placed symmetrically in the lower
visual field with one stimulus covering the receptive fields of the
recorded neuronal population. Given the laminar nature of our
recordings, receptive fields overlapped almost completely.

Our highly dynamic stimulus drove neurons strongly, with
mean firing rates of 22.4 ± 0.9 spikes/sec across sessions.
Consistent with previous studies we found that attention
increased firing rates of V1 neurons25,26, with on average ~31%
of single units being significantly modulated by attention in a
given session. This modulation was present in both the AI and
AB conditions and appeared strongest early in the ZCP
(Fig. 4a, b).

Note, our dataset contains fewer trials of long duration, given
the exponential distribution of ZCP lengths and a slight tendency
of subjects to prematurely abort longer trials (only ~40% of valid
trials are longer than 1 s, and ~15% are longer than 2 s). We thus
focused our analyses on the first second after stimulus onset, in
which attentional modulation of firing rates was strongest, and on
correct trials, where we can have the most confidence that
attention was oriented as desired in our task. Additionally, all
analyses of firing rates and spike counts were performed during
the ZCP, before any changes in stimulus coherence or behavioral
responses were made, ensuring that analyses were performed on
identical stimuli across conditions.

We first calculated fractional firing rate increases in the AI and
AB conditions, relative to the AO condition (Fig. 4c). During this
interval, firing rates in the AI and AB conditions were
significantly elevated relative to the AO condition (AI: 5.4 ± 1%
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increase, t(29)= 5.2, p= 0.00001, Bonferroni-corrected t-test,
α= 0.0167; AB: 4.1 ± 1%, t(29)= 4.1, p= 0.0003) but not
different from each other (t(29)= 1.4, p= 0.17). Amongst the
roughly 31% of units showing significant modulation of firing
rates by attention, around 32% showed pure gain modulation,
around 20% showed pure offset modulation, while the remainder
exhibited a mixture of multiplicative and additive modulation.
Examples of pure gain- versus pure offset-modulated cells are
shown in Fig. 4d. Note, these tuning curves were fit in a manner
that assumed preferred orientation and tuning width did not vary
as a function of attention condition25 (see Methods for further
details).

Differentiating the effects of attention on shared variability.
Our results so far, beyond demonstrating that our task engages
attention, are consistent with two different attentional allocation
strategies in the AB condition, while we conclude that attention is
primarily focused on the single, relevant stimulus in the AI and
AO conditions. The first strategy involves widening the focus of
attention to encompass both stimuli. In this case, we would
expect attentional fluctuations to be negligible. This scenario
would support the interpretation that attention suppresses a
common noise source11,12, and we would expect correlations to
be intermediate in the AB condition (Fig. 2a). The second strategy
involves shifting the focus of attention randomly between the two
stimuli. In this case, we would expect correlations to be highest in
the AB condition (Fig. 2b). Note that this scenario does not rule

out the possibility that attention suppresses a common noise
source, as both mechanisms could be at play. However, given that
the same dataset has been interpreted as evidence that attention
suppresses noise11 and that attention fluctuates14, it is an
important question to quantify to what degree attentional fluc-
tuations induce trial-to-trial variability.

Attentional modulation of shared variability. To measure the
degree to which attentional fluctuations induce trial-to-trial
variability, we calculated pairwise spike count correlations over
repeated presentations of identical ZCP sequences in each
attention condition. Our results match the predictions in Fig. 2b
and support the hypothesis that fluctuations in the state of
attention are the dominant factor inducing shared neuronal
response variability in our dataset (Fig. 5a). Spike count corre-
lations were significantly modulated by attention condition (F
(2,29)= 15.1, p= 5e–6, rmANOVA), correlations were highest in
the AB condition (t(29)= 5.7, p= 4e–6, t-test, see methods), and
correlations in the AI and AO conditions were not significantly
different from one another (p= 0.8, post-hoc Tukey’s test). This
relationship held individually for both subjects (Fig. 5b “task”;
Subject B: F(2,6)= 6.5, p= 0.013, Subject D: F(2,22)= 9.1, p=
0.0005, rmANOVA). Task-evoked correlations were higher
overall in Subject D than in Subject B, though both subjects had
more comparable correlation levels during fixation when no sti-
mulus was present (Fig. 5b “fix”). Despite a clear modulation of
shared variability across attention conditions, Fano factors, a
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measure of individual neuronal variability, assessed over the same
time interval were not modulated significantly by attention con-
dition (F(2,29)= 1.8, p= 0.18, rmANOVA). We believe this
result is due to a lack of statistical power, because the expected
effect size for Fano factors is smaller than that for the correlation
coefficients.

Next, we wanted to investigate the timescale of the correlation
effect we found, to better understand its origin. Synaptic
processes unfold on the millisecond scale whereas cognitive
processes, such as attention, unfold over longer timescales.
Behavioral work suggests that voluntarily shifting attention
between different stimuli takes on the order of several hundred
milliseconds18,19,27,28. Thus, if attention is indeed shifting
between the two stimulus locations during the AB condition,
these psychophysical results provide a lower bound for the
timescale over which we expect to see correlations rise in the AB
condition.

Using the relationship between spike count correlations and
cross-correlograms, described in Bair et al.3 and modified in
Ecker et al.29, we calculated spike train cross-correlograms for
neuronal pairs in each attention condition and integrated them
from 1 to 1000 ms, our maximum counting window. Examining
the point at which the resulting correlation levels saturate
provides an estimate of the timescale of correlation. The results in
Fig. 5c show that correlations in the AB condition began to
diverge from the AI and AO conditions after 200 ms, and
correlations in the AI and AO condition saturated to similar
levels near 400 ms, while AB correlations continued to rise for
several hundred milliseconds more. The time course of these
results fits well with the estimated time course of changes in
attentional state18,19,27,28. Interestingly, between 40 and 400 ms,
the level of correlations appeared lower in the attended versus
unattended conditions (Fig. 5c), consistent with earlier
work11,12,17, suggesting that attention may indeed suppress
common noise at this faster timescale. However, despite being
consistent with previous results, this trend was not statistically
significant for our overall dataset (F(2,29)= 1.8, p= 0.18 at 200
ms, rmANOVA).

It is worth pointing out here that our analyses in this paper
focus on a set of recording sessions in which the two stimuli were
horizontally separated from one another by at least 6° (that is,
each stimulus was at least 3° from monitor center on the
horizontal axis; see Methods for details). We also recorded some
sessions in which the stimuli were closer to the vertical meridian.
In these sessions, we failed to observe our predicted effect. We

reasoned that this lack of effect was likely because the two stimuli
were too close to each other, allowing the monkey to attend to
both simultaneously. Indeed, the difference between correlations
in the AB condition and the average of AI and AO increased as
the two stimuli were further separated from one another (Fig. 5d;
Pearson’s r= 0.44, t(50)= 3.5, p= 0.001, N= 52; Subject B: r=
0.64, t(11)= 2.8, p= 0.018, N= 13; Subject D: r= 0.51, t(37)=
3.6, p= 0.001, N= 39). To verify that this effect was not a false
positive due to post-hoc analysis, we collected an independent 10-
session dataset at high eccentricities from Subject D, which
confirmed the effect (Fig. 5d squares; see Methods for details).

Laminar profile of attention effects. To examine the laminar
profile of the attentional modulation of firing rates and shared
variability, we calculated the current source density (CSD)30

across channels for each session from the task-stimulus evoked
local field potentials (Fig. 6a). These profiles were quite consistent
across sessions, with the most prominent stimulus-evoked sink-
source configurations in L5–6 and L1–2/3, largely washing out
the earliest sink-source switch typical of the L4–5 boundary (van
Kerkoerle et al.31 report a similar effect). We computed CSDs to
aid in the grouping of single units into the supragranular (S),
granular (G), or infragranular (I) layers, but we also took
advantage of known electrophysiological characteristics of cells in
different layers32. The most reliable such property was the high
spontaneous activity associated with L4C32, which was readily
discernible from multi-unit activity and was located consistently
close to the L4–5 boundary determined from the CSD. Additional
factors included the weaker orientation tuning of the deep
granular layer and smaller receptive fields (Fig. 6a). The first
channel below the L4–5 boundary was our zero-point for relative
unit depths. We defined the granular layer as the first 400 μm
superficial to the L4–5 boundary, consistent with previous his-
tological33,34 and recent electrophysiological studies35,36. All units
above this 400 μm band were labeled supragranular, and all those
below it were labeled infragranular. The G-I (L4–5) boundary
could be determined most reliably across sessions, but the S-G
boundary could not always be determined as precisely. We
therefore varied the cut-off boundary between the supragranular
and granular groups over a span of nearly 200 μm and re-
calculated the results presented in Fig. 6. Doing so did not qua-
litatively affect our results.

Attentional modulation of V1 neuronal responses is thought to
be a feedback process37–39, and anatomical work has shown that
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feedback projections from higher order visual areas target the
supra-granular and infra-granular layers20–23. As a result, we
expected the strongest attentional modulation of firing rates to
manifest there. In the supragranular group, firing rate modulation
was significant in both the AB and AI conditions relative to the
AO condition (Fig. 6b; AB: 5.5 ± 1.1%, t(29)= 4.7, p= 0.0001, AI:
6.0 ± 1.2%, t(29)= 4.7, p= 0.0001, Bonferroni-corrected t-test,
α= 0.025). In the infragranular group, there was significant
modulation of firing rates in the AI condition but not the AB
condition (AB: 3.3 ± 1.4%, t(28)= 2.2, p= 0.034, AI: 5.3 ± 1.8%,
t(28)= 2.8, p= 0.0087, α= 0.025). In the granular group, firing
rates were again significantly elevated in the AI but not the AB
condition (AB: .25 ± 1.7%, t(27)= 0.1, p= 0.8887, AI: 4.4 ± 1.5%,
t(27)= 2.7, p= 0.0111, α= 0.025). Thus, firing rates were
significantly elevated in all laminar groups in the AI condition
and only significantly elevated in the supragranular group in the
AB condition.

Next, we examined the laminar profile of attentional effects on
spike count correlations for the same 1000 ms interval evaluated
in Fig. 5 (Fig. 6c). Correlations were significantly modulated by
attention condition in the supragranular group (F(2,29)= 7.1,
p= 0.0018, rmANOVA). Post-hoc testing again showed

correlations were highest in the AB condition (t(29)= 3.1,
p= 0.004, t-test) and equivalently low in the AI and AO
conditions (p= 0.83, post-hoc Tukey’s test). In the granular
and infragranular groups, correlations were constant across
attention conditions (F(2,22)= 0.1, p= 0.92, F(2,26)= 0.01, p
= 0.99, respectively, rmANOVA). Although there was a down-
ward trend in overall spike count correlation magnitude from
superficial to deep, there was no significant effect of layer at this
timescale (F(2,29)= 0.6, p= 0.53, rmANOVA; S: rsc= 0.10 ±
0.02, G: rsc= 0.09 ± 0.02, I: rsc= 0.08 ± 0.02).

Considering the consistency of the finding in previous studies
that correlations are reduced in attended conditions, at least at
shorter timescales, and the trend we observed at such timescales
when not conditioning on laminar position (Fig. 5c), we analyzed
correlations at a 200 ms interval by laminar position as well
(Fig. 6d). In the supragranular group, correlations were
significantly modulated by attention condition (F(2,29)= 3.5,
p= 0.036, rmANOVA), and consistent with previous studies,
correlations were lower in the AI condition relative to the AO
condition (t(29)= 2.9, p= 0.007, t-test). Correlations were once
again not significantly modulated by attention in the granular
layer (F(2,22)= 0.1, p= 0.926, rmANOVA) or in the
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infragranular layer (F(2,26)= 0.5, p= 0.612, rmANOVA). How-
ever, at this shorter timescale there was a significant effect of layer
on correlation magnitude (F(2,29)= 3.5, p= 0.037, rmANOVA;
S: rsc= 0.05 ± 0.01, G: rsc= 0.01 ± 0.01, I: rsc= 0.05 ± 0.01).

Fixational eye movements cannot account for our results.
Fixational eye movements, also called micro-saccades, have been
reported to modulate neuronal activity in the visual system40,41,
contribute to neuronal response variability42,43, and act as an
index of the focus of covert spatial attention based on subtle
changes in their directionality with attention condition44. Given
these findings, we considered two means by which micro-
saccades could account for our results. First, micro-saccade
direction may vary as a function of attention condition, differ-
ently modulating neuronal firing activity across conditions and
potentially generating the pattern of correlated variability we
report. However, the direction of micro-saccades did not vary
across attention conditions in our task (Fig. 7a; F(2,7,29)= 1.2,
main effect of attention condition, p= 0.32, two-way, rmA-
NOVA). Second, an increase in the frequency of micro-saccades
in the AB condition might explain the elevation in correlations
seen in this condition. However, there was no difference in the
number of micro-saccade events across attention conditions
(Fig. 7b; F(2,29)= 0.5, p= 0.63, rmANOVA).

Changes in task difficulty cannot account for our results. A
further potential confounding variable is task difficulty. Recent
work has shown that increasing task difficulty is associated with
lower spike count correlations, presumably by modulating the
overall level of arousal of the subject45. If behavioral conditions in
which two stimuli must be monitored for a possible change are
more difficult than conditions in which only one stimulus needs
monitoring, then correlations should be lowest in the AB con-
dition of our task. In fact, we found correlations to be highest in
the AB condition (Fig. 5a), suggesting that increased task diffi-
culty does not account for our results in the AB condition.

As noted previously, however, to attempt to balance task
difficulty across conditions, we increased coherences by one step
in the AB condition. One could argue that this change in
coherence may have over-corrected for task difficulty and made
the AB condition easier, leading to higher correlations in the AB

condition by the converse of the above argument. Several
observations argue against this possibility. If the AB condition
were easier than the other conditions, we would expect the
percentage of changes detected to be higher in the AB condition,
which was not the case (Fig. 3e). Additionally, decreased task
difficulty in the AB condition cannot account for the positive
correlation between stimulus eccentricity and the degree to which
correlations are elevated in the AB condition (Fig. 5d), because
task difficulty is likely to increase, rather than decrease, with
eccentricity.

Finally, exploiting the relationship between task difficulty and
arousal level45 and using pupil size as a measure of the overall
arousal level of a subject46,47, we assessed whether changes in
arousal level across task conditions could account for our results.
Because we had not recorded pupil size for the sessions reported
above, we collected a new set of behavioral sessions in which we
recorded pupil size and for which stimulus parameters were
matched to those used in our original dataset. We found no
significant difference of pupil sizes between the attention
conditions in this new dataset, suggesting that our results cannot
be explained by changes in the level of arousal either (Fig. 7c;
F(2, 7)= 2.7, p= 0.11, rmANOVA).

Other potential confounds. Further, our results are not trivially
explained by changes in firing rates across conditions, as firing
rates in the AI condition were elevated compared to the AO
condition (Fig. 4b), but correlation magnitudes were not sig-
nificantly different in these conditions (Fig. 5a, b). In fact, this
dissociation between attentional modulation of firing rates and of
spike count correlations is consistent with the predictions of our
previously published model of attention8,48. Finally, changes in
stimulus coherence cannot function as an explanation for ele-
vated correlations in the AB condition, as spike counts were
analyzed during the ZCP before any changes in the stimulus
coherence occurred.

Discussion
We developed a task to dissociate changes in the strength of
attentional modulation from changes in variability in the atten-
tional state by varying the behavioral relevance of two simulta-
neously presented stimuli and encouraging the use of different
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attentional allocation strategies across task conditions. We found
the effects of attention on correlated variability to differ
depending on the timescale analyzed. At a timescale of 1000 ms,
levels of shared variability were highest in the condition in which
both stimuli were behaviorally relevant, supporting the idea that
this condition introduced competition for attentional resources,
which increased attentional state variability. In contrast, shared
variability was lowest in the conditions in which attention could
be focused on only one stimulus, and there was no difference in
correlations in the AI and AO conditions at this timescale. These
results are consistent with the scenario presented in Fig. 2b, in
line with our previous predictions8, and support the hypothesis
that fluctuations in the state of attention can be a prominent
source of shared neuronal response variability. More generally,
these results suggest that a significant fraction of shared varia-
bility in neuronal populations can be attributed to fluctuations in
behaviorally-relevant, internally generated signals, rather than
shared sensory noise8,16,29,48–52.

Further, at a timescale of 200 ms, we found correlations
between neurons in the supragranular cortical layers were lower
in the AI relative to the AO condition, consistent with earlier
work that considered faster timescales, both in V4 and in
V111,12,17,53, and with the scenario depicted in Fig. 2a. Verhoef
and Maunsell54 recently demonstrated how the reduction of
correlations under attention could be due to a suppression of
(variable) normalizing inputs from the unattended surround54,
largely consistent with previously hypothesized explanations11,12.
Taken together, these results suggest that both mechanisms—
suppression of common noise and attentional fluctuations—
impact levels of correlated variability, but they operate at different
timescales.

The importance of timescale could explain why a recent study
that employed an attention task with conditions similar to ours,
including a neutrally-cued condition akin to our AB condition,
found correlations to be intermediate between the attend-in and
attend-out conditions at a timescale of 200 ms55. Further, both
Mayo and Maunsell55 and Cohen and Maunsell14 collected data
simultaneously from both hemispheres but reported no sig-
nificant correlation, or anti-correlation as one would expect with
a shifting spotlight-like attentional allocation strategy, amongst
neurons in opposite hemispheres. Perhaps such a correlation does
exist at timescales longer than was analyzed in those studies.
Unfortunately, our data cannot resolve this question, as we
recorded from only one hemisphere at a time.

Because the impact of variability in the attentional state on
correlations manifested on a timescale of individual trials in our
task, should we therefore expect that fluctuations in internal
signals, in general, only induce correlations on long timescales?
Ultimately, this timescale is likely to depend on the mechanism
by which such signals impact neuronal populations. Work on
orienting of attention and attentional dwell time suggests that
voluntarily shifting attention between different stimuli takes on
the order of several hundred milliseconds27,28. In an experimental
paradigm similar to our AB condition, attention was found to
alternate between two stimulus locations roughly every 250 ms (4
Hz)18,19. This shifting of attention between stimulus locations is
the strategy we were hoping to induce in our paradigm and
appears to be the likeliest explanation for how attention is allo-
cated across trials in our AB condition, given our behavioral and
neurophysiological results. We would, thus, expect that AB cor-
relations should be elevated on a timescale of at least several
hundred milliseconds, which is what we found (Fig. 5c).

Note that this line of reasoning stands regardless of whether
the shift in attention that occurs involves a narrowly-focused
attention field encompassing only one stimulus at a time—
resembling the spotlight or narrowly-focused Zoom Lens

models24,56—or whether some degree of attention is allocated to
both stimuli simultaneously, but with one stimulus receiving a
greater degree of attention than the other on a given trial—
resembling the variable precision model of resource allocation57.
In this latter case, the shift of attention corresponds to alterna-
tions in which stimulus receives the greater strength of attentional
focus on a given trial. The key, however, is that some change in
attentional resources allocated to the receptive field stimulus
occurs across trials. Therefore, our results are not consistent with
models of attention that suggest that both stimuli are processed
simultaneously and that a consistent or uniform degree of
attentional processing is distributed across the full field of
attention.

Interestingly, we also found a correlation between the hor-
izontal eccentricity of the stimuli and the degree to which cor-
relations in the AB condition were elevated compared to the AO
and AI conditions (Fig. 5d). We interpret this finding to suggest
that when stimuli are closer to each other, it is easier to attend
both simultaneously, resulting in a lower degree of attentional
fluctuation in the AB condition. As the stimuli are placed farther
apart, attending to both simultaneously becomes increasingly
difficult, and subjects are more likely to deploy a switching
allocation strategy, leading to more pronounced attentional
fluctuations and, thus, higher correlations in the AB condition.

While alternating which stimulus receives the greater strength
of attentional processing on a given trial is one means by which
attentional state variability increases (across trials), there may be
other sources of variability in the attentional state as well. For
example, a number of studies have shown that improvements in
behavior due to attention, rather than being continuous across
time within a trial, appear to exhibit a theta-frequency periodicity,
which is related to theta-band cortical oscillations and can occur
even with attention focused on only one stimulus58–60. If atten-
tion operates in a periodic manner, as these studies suggest, such
oscillations could represent an additional source of variability in
the attentional state beyond that induced by alternating attention
between stimulus locations. Further studies have suggested that
shifts in attention between stimulus locations are also linked to
theta-band oscillatory activity19,59,61, raising a number of inter-
esting questions. Does attention itself truly operate periodically,
or do ongoing cortical oscillations mediate the effects of an
otherwise more continuous attention signal, giving the appear-
ance of periodicity? Are shifts in attention only possible at certain
phases of these ongoing cortical rhythms? Ultimately, these are
important empirical questions that future research should
address. To do so will require a combination of behavioral
paradigms that allow attention-related performance to be tracked
more explicitly over time18 and multi-electrode array recordings
with single-unit-resolution population analyses such as those
undertaken in the present study.

Another interesting question is how correlations in an atten-
tion task impact behavioral performance. Quantifying precisely
how correlations affect the information encoding capacity of a
neuronal population in an experimental setting is a challenge
because one would have to decode from a large population of
simultaneously recorded neurons9. Because we do not have such a
sufficiently large dataset, we cannot draw any conclusions
regarding the impact of correlations on performance. None-
theless, this is a critical topic for future work to address.

Recent studies have examined the laminar profile of attentional
modulation of firing rates31 or of spike count correlations during
passive fixation35,36. Only one study has examined the laminar
relationship between attentional modulation and shared varia-
bility62, and ours is the first to do so in V1. Nandy et al.62 found
significant attentional modulation of firing rates in all layers, with
the strongest effects in the granular layer. In contrast, van
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Kerkoerle et al.31 found the weakest attentional modulation of
firing rates in the granular layer of V1. Similar to Nandy et al.62,
we found significant modulation of firing rates by attention in all
layers in the AI condition. However, considering both the AB and
AI conditions, our results are in better agreement with those of
van Kerkoerle et al.31, as we found the strongest attentional
modulation of firing rates in the supragranular, followed by the
infragranular layers, as expected given the anatomical distribution
of feedback cortical connections20–23.

Regarding correlation magnitude across layers, we observed
different patterns of results at the two main timescales we ana-
lyzed, 200 and 1000 ms. At the 1000ms interval there was no
significant effect of layer on correlation magnitude, whereas at the
200 ms interval, correlations were lowest in the granular layer,
consistent with previous laminar studies in V135,36. This 200 ms
interval is similar to the window size used in Hansen et al.35

While Smith et al.36 found a similar pattern over a 1280 ms
interval, they recorded from anesthetized animals where the
mechanisms driving correlated fluctuations are likely to be very
different from those during wakefulness29.

At both timescales, attentional modulation of correlations was
confined primarily to the supragranular layers and was not pre-
sent in the infragranular layers, despite attentional modulation of
rates in the AI condition. One reason may be a lack of sufficient
statistical power. Most of our isolated single units were from the
supragranular layers (just over eight units per session on average),
with about half that number isolated in the infragranular layers,
and fewer still from the granular layer. The difference could also
be attributable to the anatomical and computational character-
istics of each layer, which by no means are completely under-
stood34,63,64. The infragranular layers additionally receive
feedback from and send projections to subcortical regions65 and
such signals may modulate shared variability differently. Ulti-
mately, the finding that attention predominantly modulates cor-
relations in the supragranular layers matches the location where
we found the most pronounced attentional modulation of firing
rates and accords well with the known anatomy of corticocortical
interactions, particularly for feedback signals.

Nandy et al.62 also found attentional modulation of correla-
tions to be strongest in the same layer in which they found
attentional modulation of firing rates to be strongest. Interest-
ingly, this layer was not the supragranular layer but rather the
granular layer. As suggested by Nandy et al.62, it is possible that
the input layer in V4 inherits the correlation pattern from the
output (supragranular) layers of V1. Our results at the 200 ms
interval in the supragranular layers are consistent with this pos-
sibility and match the findings reported by Nandy et al.62 It is also
possible that attention operates somewhat differently in V4 than
in V1, with attentional modulation of firing rates typically being
stronger overall and occurring earlier in the response period in
V425,37.

Overall, correlations in the present study were a bit higher than
in our earlier studies with awake fixating animals49. The primary
difference between these studies is that subjects in the present
study perform a demanding task engaging feedback processes
such as attention, and our main results demonstrate the effect
that fluctuations in such signals have on levels of correlated
variability. Although attentional fluctuations are reduced in the
focused attention conditions, they are unlikely to be entirely
absent, so some elevation in correlation magnitude above zero in
these conditions is to be expected. Additionally, correlations are
also likely to be somewhat higher given that the highly dynamic
stimulus in the current study drives the neurons much more
strongly than static or drifting gratings.

Finally, there has been an increasing interest in recent years in
leveraging population recording and latent-variable modeling

techniques to infer the state of internally-generated, cognitive
signals, such as attention, on more behaviorally-relevant time-
scales, to better understand the nature of these signals and their
impact on decision-making and behavior16,66–68. To make such
inferences, these methods make use of the patterns of covariance
in population activity and rely on the assumption that this
variability occurs in a low-dimensional space (e.g., the “attention
axis”14). A further, but critical, assumption of these techniques is
that much of this shared variability is not noise but is attributable
to the action of behaviorally-relevant, internally generated signals.
However, a clearer demonstration that changes in internal signals
indeed contribute significantly to shared neuronal variability was
lacking. We presented a paradigm designed specifically to test for
such a contribution, and our results provide support for this
critical assumption. Additionally, our results demonstrate the
subtlety of the effects that internal signals such as attention have
on correlated variability, exemplified by the two timescales over
which attention modulated correlations.

Methods
Experimental model and subject details. All behavioral and electrophysiological
data were obtained from two healthy, male rhesus macaque (Macaca mulatta)
monkeys (B and D) aged 12 and 13 years and weighing 11 and 10 kg, respectively,
during the time of study. All experimental procedures complied with guidelines of
the NIH and were approved by the Baylor College of Medicine Institutional Animal
Care and Use Committee (permit number: AN-4367). Animals were housed
individually in a large room located adjacent to the training facility, along with
around ten other monkeys permitting rich visual, olfactory and auditory interac-
tions, on a 12 h light/dark cycle. Regular veterinary care and monitoring, balanced
nutrition and environmental enrichment were provided by the Center for Com-
parative Medicine of Baylor College of Medicine. Surgical procedures on monkeys
were conducted under general anesthesia following standard aseptic techniques. To
ameliorate pain after surgery, analgesics were given for 7 days. Animals were not
sacrificed after the experiments.

Visual stimuli and behavioral paradigm. Visual stimuli were two Gabor patches
(size: diameter of 2–3° depending on eccentricity; spatial frequency: 3–3.5 cycles
per degree; contrast: 100% Michelson; eccentricity: 3.7–8.9°) presented on CRT
monitors (at a distance of 100 cm; resolution: 1600 × 1200 pixels; refresh rate: 100
Hz) using Psychophysics Toolbox69. The monitors were gamma corrected to have a
linear luminance response profile. Video cameras (DALSA genie HM640; frame
rate 200 Hz) with custom video eye tracking software developed in LabView were
used to monitor eye movements.

Monkeys performed a noisy, orientation–change detection task. Trials were
initiated by a sound and the appearance of a colored fixation target (~0.15°).
Monkeys were required to fixate within a radius of 0.5°–1°, but typically fixated
much more accurately, as revealed by offline analysis. After fixating for 300 ms, two
Gabor patches were presented symmetrically in the lower left and right visual
fields. During what we labeled the Zero-Coherence Period (ZCP), these stimuli
changed their orientation pseudo-randomly every 10 ms (uniform distribution over
36 orientations spaced by 5° between 0 and 175°) for a random period of time
drawn from an exponential distribution with a minimum of 10 ms, mean of 2170
ms, and maximum of 5000 ms.

After this time one of the two stimuli entered the coherent period (CP), where
one particular orientation, called the “signal” orientation, was shown with a higher
frequency than the other orientations. The CP lasted 300 ms (30 frames), and from
trial to trial the number of frames in the CP showing the signal orientation was
selected from a set of five unique “coherences” chosen for that session, which
allowed us to vary the difficulty of the trials within a session and compute
psychometric functions. After this period, the stimulus returned to the ZCP for a
further 200 ms to allow sufficient time for subjects to report whether or not they
noticed the presence of the signal orientation by making a saccade to the stimulus
showing the change. Subjects were prevented from responding within the first 100
ms of the CP to minimize guessing. Successful identification of the signal
orientation was rewarded with a small drop of juice. On 10% of trials in each
attention condition no change occurred, and subjects were rewarded for
maintaining fixation. Orthogonal signal orientations were used in the left (135°)
and right (45°) stimuli.

Note, occurrences of the signal orientation during the CP were not constrained
to occur in successive frames. Also note that the left and right stimuli displayed
different orientation sequences, so that subjects could not identify a change simply
by noticing when the two orientation sequences diverged. Orientation sequences
were described as pseudo-random for the following reason. For each trial a random
number generator seed was chosen from a set of five such seeds selected for a given
recording session. Doing so meant there were five unique stimuli that could be
repeated across attention conditions for the purposes of calculating spike count
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correlations and Fano factors over identical stimuli. Sequences were constrained to
show each orientation once before any repetitions were allowed so that the
maximum number of signal orientations that could occur by chance in a period of
time equal to the CP (300 ms) was two.

Attention was cued in blocks of trials by the color of the fixation spot (Fig. 3b).
In the attend out (AO) condition, 100% of the changes occurred in the non-
receptive field stimulus. In the attend in (AI) condition, 100% of changes occurred
in the receptive field stimulus. In the attend both (AB) condition, the change was
equally likely to occur in either stimulus (50% chance that the change was in the
receptive field stimulus). Block transitions occurred after a total of 60 hit and miss
trials was achieved (i.e., false alarms did not count). Blocks were randomized in sets
of three so that each attention condition was seen before one was allowed to repeat.
Coherences were increased by one frame in the AB condition to keep task difficulty
approximately constant across conditions.

Surgical methods. Our surgical procedures followed a previously established
approach70. A cranial headpost was first implanted under general anesthesia using
aseptic conditions in a dedicated operating room. After premedication with atro-
pine (0.05 mg/kg prior to sedation), animals were sedated with a mixture of
ketamine (10 mg/kg) and dexdormitor (0.015 mg/kg). During the surgery anes-
thesia was maintained using isoflurane (0.5–2%).

After subjects were trained to perform the above described task, they were
implanted with a form-fitted titanium recording chamber, designed based on pre-
operatively obtained anatomical MRI scans, placed at a location over the
operculum in V1 determined by stereotactic coordinates70. This surgery was
performed under identical conditions as described for headpost implantation. The
chamber was attached to the skull using orthopedic screws only. We used a small
amount of dental cement to seal any openings between the bone and the lower
surface of the recording chamber. A custom-made chamber cap was then placed to
seal the chamber and prevent infection. A minimum of three weeks was provided
for the implant to heal. After healing, small 2–3 mm trephinations could be
performed, in aseptic conditions under ketamine (10 mg/kg) sedation with
ketoprophen (2 mg/kg) for analgesia and meloxicam (0.2 mg/kg for two days), to
enable access for subsequent daily electrophysiological recordings.

Electrophysiology in awake, behaving monkeys. We performed daily electro-
physiological recordings beginning 48 h after a craniotomy was performed.
Custom-designed 32 channel, linear silicon probes (NeuroNexus V1 x 32-Edge-
10mm-60-177) with inter-channel spacing of 60 μm, contact site dimensions of
roughly 12 × 15 μm, contact site area of 177 μm2 and typical impedances around 1
mega-Ohm were mounted in a Narishige microdrive (MO-97) with a nested,
stainless steel guide tube composed of one extra-thin walled 23-gauge piece,
spanning most of the length of the probe shaft, and a smaller 27-gauge piece
(roughly 6 mm long) nested inside such that 4 mm of the smaller tubing protruded
beyond the large piece. This design enabled a tight fit around the probe to support
it during dural penetrations. We took care during the insertion procedure to ensure
that the dura was penetrated only by the probe itself, rather than the guide tube, to
minimize damage to the superficial layers of cortex. We alternated lowering the
guide tube in steps of 250 μm and extending the probe up to ~500 μm beyond the
guide tube, retracting and repeating as necessary, until either characteristic changes
in the LFP or multi-unit activity, or both, were observed, indicating successful
penetration of cortex.

The probe was then lowered in ~250 μm steps at <10 μm per second, pausing
for several minutes after each step, until activity was seen on all channels. As a
result of this procedure there would be variable degrees of tissue compression.
Some of this compression was relieved early in the positioning of the probe by
retracting the guide tube by ~500 μm after the probe was several hundred microns
inside the cortex. If compression remained after completely lowering the probe, we
could successfully relieve it by slowly retracting the guide tube further. The single
most reliable indicator of the position of our probe in cortex before receptive field
mapping was a band of high spontaneous activity corresponding to layer 4 C32,
which could be clearly seen to span roughly 6–7 channels. In general, we found the
basic laminar properties described by Snodderly and Gur32 to be very reliable
guidelines. After final positioning of the probe, we allowed between 30 and 60 min
for tissue settling and recording stability to become established. The entire
insertion procedure typically took around 3–4 h, from penetrating the dura to the
start of recording. Receptive field mapping experiments were performed (see Data
analysis below for details) to determine where to place one of the two stimuli such
that it covered the recorded neurons’ receptive fields for that session.

Data acquisition and spike sorting. The methods described below for spike
detection and spike sorting were adapted for use with multi-channel silicon probes
from our previous methods used for tetrode recordings29. Neural signals were
digitized at 24 bits using analog acquisition cards with 30 dB of onboard gain (PXI-
4498, National Instruments, Austin, TX) and recorded continuously at 32 KHz as
broad-band signal (0.5 Hz to 16 kHz). Eye movement traces were sampled at 2 kHz.

Spikes were detected offline when the signal on a given channel crossed a
threshold of five times the standard deviation of the corresponding channel. To
avoid artificial inflation of the threshold in the presence of a large number of high
amplitude spikes, we used a robust estimator of the standard deviation, given by

σ =median(|x|)/0.674571. Spikes were aligned to the center of mass of the
continuous waveform segment above half the peak amplitude. Code for spike
detection is available online at [https://github.com/atlab/spikedetection].

Virtual electrodes consisting of six channels were constructed in a sliding
window (stride 2) spanning the length of the probe to aid in the spike sorting
process by enabling some degree of triangulation, as with tetrodes. Given a channel
spacing of 60 μm, in many cases the waveforms of a single neuron could be
detected by several channels. To extract features for spike sorting, we performed
principal component analysis on the extracted waveform segments (individually for
each channel). This step reduced the data to three dimensions per channel,
resulting in an 18-dimensional feature vector. We fit a mixture of t distributions
with a Kalman filter on the cluster means to track waveform drift72.

The number of clusters was determined based on a penalized average likelihood,
where the penalty term was a constant cost per additional cluster. Code for spike
sorting is available online at [https://github.com/aecker/moksm]. Following this
automatic step, results of the model were examined manually for each virtual
electrode and single units were flagged at this time according to degree of cluster
isolation, uniqueness of waveforms and size of refractory period. To avoid
duplicate single units due to overlapping channel groups used for spike sorting, we
included only those single units that had their largest waveform amplitude on one
of the two central channels of the group (this was not an issue for the first and last
two channels on the probe).

Dataset and inclusion criteria. Our dataset included 30 sessions (N= 7, Subject
B; N= 23, Subject D), yielding 474 single units (N= 83, Subject B; N= 391, Subject
D). We included recording sessions with at least 10 single units that were visually
responsive and significantly orientation tuned in each attention condition. To
ensure reliable estimates of neuronal (co-)variability, sessions were also excluded if
there were fewer than three (of five possible) valid seed conditions. A seed con-
dition was considered invalid if in any of the three attention conditions there were
fewer than three correct trials generated using that seed that had sufficient ZCP
length available for spike count analysis. On average for the 1-s analysis window,
included sessions had ~10 correct trials per seed per attention condition.

After having collected a complete dataset of 13 sessions from Subject B and a
dataset of 29 sessions from Subject D, we found that sessions with recording
locations close to the vertical meridian did not exhibit our predicted main effect.
We reasoned that this lack of effect was likely because the two stimuli were too
close to each other, allowing the monkey to attend to both simultaneously. To
verify that this result was not a false positive due to post-hoc analysis, we collected
an independent 10-session dataset at high eccentricities from Subject D (the
termination condition of 10 sessions was set before starting to collect additional
data), which confirmed the effect at high eccentricity. The results reported in this
paper, except in Fig. 5d, include all sessions with x-axis receptive field eccentricities
of at least 3° (representing the median such eccentricities for Subject B), including
the separate validation dataset from Subject D.

Data analysis. Data were analyzed in Matlab, using custom Matlab software and
the DataJoint processing pipeline73.

Trial results were classified as “hits”, “misses”, “correct rejections” (for
successful completion of trials with no change) and “false alarms” (for saccades
made to a stimulus before any change occurred). For each session, behavior was
analyzed by calculating the fraction of changes detected (hits / [hits+misses]),
both conditioned on and marginalized over coherence in each attention condition.
Psychometric functions were plotted as the fraction of changes detected versus
coherence in each attention condition. Using the psignifit toolbox74,75 in
MATLAB, logistic functions were fit to the attention condition specific curves using
the method of maximum likelihood, and 50% performance thresholds were
extracted. Reaction times could be calculated using only hit trials and reaction time
distributions for each session were quantified by calculating the median deviation
for each condition in each session. False alarm rates were calculated using all valid
trials (“hits”, “misses”, “correct rejections”, “false alarms”).

Prior to starting the main task, we quantitatively mapped receptive fields based
on unsorted multi-unit responses using a white noise random dot stimulus. A
single square dot of size 0.29° of visual angle was presented on a uniform gray
background, changing location and color (black or white) randomly every three
frames, or 30 ms, for 1 s. Receptive field profiles were obtained by spike-triggered
averaging. Average diameter of multi-unit receptive fields across sessions was 1.14
± 0.05°.

Our task allowed us to compute orientation tuning curves for each neuron. We
binned the spike counts in bins of 10 ms and used linear regression based on a one-
hot encoding of the 15 stimuli directly preceding the response (i.e., the stimulus is a
36 × 15-dimensional vector, because there were 36 possible stimulus orientations).
We defined the optimal latency of each neuron as the time delay that produced the
strongest response modulation across orientations (determined by taking the
variance of the regression weights across orientations). The optimal latency of most
neurons was 50 ms. We then re-estimated the regression using only that single time
lag to obtain a tuning curve. Significance of tuning was then tested by projecting
the weight vector onto a complex exponential with one cycle, the norm of which
was compared to its null distribution calculated by randomly shuffling orientation
labels. A p-value was obtained by performing 1000 iterations of the shuffling
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procedure and using the fraction of runs in which the norm of the shuffled
projection was greater than that observed in the real data. Signal correlations were
computed for pairs of neurons by calculating the correlation coefficient between
the two cells’ tuning curves.

For each unit, a von Mises distribution function, parameterized as

Y ¼ w1 þ exp w2 þ w3 cos x � w4ð Þð Þ;

was fit to the tuning curve obtained across all trials via the method described above.
From this fit, the shape and preferred orientation parameters, w3 and w4, were
obtained. These parameters were assumed not to change across attention
conditions, leaving only the offset, w1, and gain, exp(w2), terms to vary across
conditions. New von Mises functions were then fit for each attention condition
using a linear regression model with a binary indicator variable for attention
condition and an interaction term. To illustrate, we write the response y to
orientation i as

yi ¼ w1 þ exp w2 þ w3 cos xi � w4ð Þð Þ ¼ b1 þ b2θi;

where θi ¼ exp w3 cos x � w4ð Þð Þ and was obtained from the overall tuning curve as
described. Our linear regression model comparing fits in the AO and AI condition,
for example, then became:

yi¼β0 þ β1Xi1 þ β2Xi2 þ β3Xi1Xi2;

where Xi1 ¼ θi and Xi2 2 f0; 1g, with 0 coding the AO condition and 1 coding the
AI condition. In this manner we enabled different gain and offset terms to be fit to
different attention conditions. We then assessed whether significant attentional
modulation was present by performing an F-test comparing the full model above to
the reduced model containing only the β0 and β1 terms, and when significant, we
tested whether the offset and gain parameters differed between conditions with t-
tests.

Visual responsiveness of neurons was determined by comparing firing rates in
the 300 ms fixation interval before stimulus onset to those in the 300 ms
immediately following stimulus onset. A t-test was performed to test for a
significant change in rate following stimulus onset. Spike density functions (SDFs)
were calculated first for a given neuron, across all hit trials grouped by attention
condition and stimulus seed, by counting spikes in 50 ms bins relative to stimulus
onset and averaging across trials. Averages were then taken across seeds and
smoothed with a Gaussian window. To calculate SDFs for a given session,
individual neuron SDFs were normalized by the average response in the AO
condition, starting from 100 ms after stimulus onset, before averaging across
neurons. Fractional firing rate increases were also calculated first at the individual
neuronal level, by averaging all available bins from the first second following
stimulus onset conditioned on the stimulus seed for each attention condition, and
then averaging across seeds. The rates were again normalized by the AO condition
rate before averaging across neurons to get a session-level rate modulation for each
attention condition. Finally, responses in the AI and AB conditions were converted
to fractional changes relative to the AO responses.

Fano factors and spike count correlations were computed on the first 1000
ms of the response. Fano factors were computed as the variance of the spike
count divided by its mean. Spike count correlations were computed as the
covariance of the two neurons’ z-scored responses to identical repetitions of the
same stimulus condition (seed). Z-scoring and Fano factor calculations were
performed in a block-wise fashion to control for slow fluctuations in firing rate
across a recording session. For the analysis of correlation timescale we used the
relationship between spike count correlations and cross-correlation functions
first described in Bair et al.3 to compute a cumulative correlation coefficient,
rCCG. We compute a spike train cross-correlation function for a pair of neurons
j and k, as well as a shift-predictor, which is the cross-correlation function of the
spike density functions of neurons j and k. The shift-predictor is subtracted
from the cross-correlation function to control for stimulus-induced correlation.
This shift-corrected cross-correlation is denoted Cjk(τ). The cumulative cross-
correlation is given by

Ajk ¼
Z τ

�τ
CjkðtÞdt

Following Ecker et al.29, the cumulative correlation coefficient is

rCCGðτÞ ¼
AjkðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AjjðTÞAkkðTÞ
q ;

where T is the last time point in the counting window, in our case 1000 ms.
The CSD profile at each time point was calculated as the second spatial

derivative of the task-stimulus evoked LFPs across channels, smoothed with a
Gaussian kernel to aid visualization30. The granular layer was identified according
to several criteria used in conjunction. The earliest current sink to source transition
(identified by an arrow in Fig. 6a) is one indicator, immediately below which is a
complementary source to sink transition in L5. We used additional criteria,
described by Snodderly and Gur32, to verify this positioning, because there was a

prominent current sink to source transition in L6 as well. These criteria included
higher spontaneous activity and more poorly defined orientation tuning curves
characteristic of the granular layer32. Additional reports have described the
granular layer to contain smaller receptive fields76,77, which we also saw (Fig. 6a).
In general across sessions, all of these granular layer features were quite consistent,
allowing for confident determination of the L4–5 boundary. The first L5 channel
was labeled as the zero-point for depth. Negative depths are more superficial to this
point. The granular layer was defined as a roughly 400 μm band just superficial to
the zero-point33–36. The supragranular group (L1–3) was defined as everything
superficial to the top of the granular layer, and the infragranular group (L5–6) was
defined as everything deeper than and including the zero-point.

We identified micro-saccades our subjects made during the ZCP of our task
(when spike counts were analyzed) to determine whether our correlation results
could be accounted for by an increase in micro-saccade frequency in our AB
condition, relative to the AI and AO conditions. Periods of stable gaze were taken
to be those intervals during which eye position remained within a 0.1° window, and
deviations greater than 0.1° in 10 ms (10°/s velocity) were taken to be micro-
saccades78. The number of micro-saccades during analysis periods was counted for
each attention condition in each session and a repeated-measures ANOVA was
performed to determine whether micro-saccades differed across conditions. Micro-
saccades were also grouped according to the direction in which the saccade was
made (unit circle divided into 8 equal direction bins) and a two-factor, repeated-
measures ANOVA was used to assess for effects of direction and condition (the two
factors). Pupil size was measured for a set of N= 8 sessions recorded from Subject
B using the same camera and software used for eye-tracking described above.
Stimulus parameters were matched with those used for the original dataset. Pupil
size was determined based on the number of pixels above a threshold brightness
value and an effect of attention condition on pupil size was determined using a
repeated-measures ANOVA.

Quantification and statistical analysis. Although customary in the field, we did
not consider units or pairs as independent samples. Treating units as independent
samples ignores the session-to-session variability and leads to underestimated
confidence intervals and, consequently, inflated false positive rates. Instead, we first
averaged our measurements across observations within a session and then per-
formed all statistical tests across sessions, treating the session averages as inde-
pendent samples. While this approach sacrifices some statistical power, it leads to
conservative estimates of p values.

For statistical analyses involving our attention conditions, repeated-measures
ANOVAs were used, with session as the random factor and attention condition
as the fixed factor. F-statistic values are reported as F(x,y), where x represents the
number of degrees of freedom for the fixed factor of attention condition, and y is
the equivalent for the random factor of session. The Tukey-Kramer method was
primarily used for post-hoc analyses. To test for significantly elevated AB
condition correlations, we performed a one-tailed t-test on a contrast between
the AB condition and the average of the AO and AI condition results. This
choice is justified by our previously published model8, which predicts this effect
and its direction and was hypothesized and specified before data collection.
Statistics for the t-test are reported as t(x), where x represents the degrees of
freedom. Note, in the section discussing laminar results, any reductions in the
number of degrees of freedom are due to instances in which insufficient single
units were isolated in a particular layer for that session to be included in that
particular analysis.

A two-factor, repeated-measures ANOVA was used to test changes in
microsaccade direction with attention condition. In this case the F-statistic is
reported as F(x,y,z), where x represents the number of degrees of freedom for the
factor of attention condition, y represents that for the factor of direction, and z
represents that for the random factor of session. For assessments of visual
responsiveness and significant increases in fractional firing rates, two-tailed t-tests
were used, which, for rate increases, were Bonferroni-corrected for multiple
comparisons. Orientation tuning significance was assessed according to the
permutation test described above. Statistical comparisons were considered
significant at p < 0.05 (p < 0.0167 for Bonferroni-corrected tests for firing rates in
association with Fig. 4c, as there were three comparisons; p < 0.025 for those
associated with Fig. 6b, given two comparisons). All error bars show the standard
error of the mean (SEM; either directly calculated or estimated via ANOVA),
except in the Fig. 3c inset, which shows 95% confidence intervals. No blinding was
used in the analysis.

Code availability. The code used to process and analyze the data for the current
study are available from the corresponding author on reasonable request. Links to
some of this code have been provided in the Methods section “Data acquisition and
spike sorting.”

Data availability. The datasets generated during and analyzed during the current
study are available from the corresponding author on reasonable request.
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