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Viral entry encompasses the initial steps of infection starting from

virion host cell attachment to viral genome release. Given the

dynamic interactions between the virus and the host, many

questions related to viral entry can be directly addressed by live

cell imaging. Recent advances in fluorescent labeling of viral and

cellular components, fluorescence microscopy with high

sensitivity and spatiotemporal resolution, and image analysis

enabled studies of a broad spectrum across many viral entry

steps, including virus-receptor interactions, internalization,

intracellular transport, genomic release, nuclear transport, and

cell-to-cell transmission. Collectively, these live cell imaging

studies have not only enriched our understandings of the viral

entry mechanisms, but also provided novel insights into basic

cellular biology processes.
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Introduction
As microscopic Trojan horses, viruses usurp host cell

machinery to deliver their genome into the cell for

initiating productive infection. Viral entry is extremely

dynamic and consists of multiple steps. The process

begins with virion attachment to the cell surface, typically

via low affinity electrostatic interactions with the glyco-

calyx, followed by specific binding to receptors. Receptor

engagement allows viruses to either directly release their

genome into the cell at the plasma membrane, or to enter

cells through endocytosis. Endocytosed virus particles

typically traffick through endosomal vesicles by actin-

dependent and/or microtubule-dependent transport to
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rapidly navigate through the dense cytoplasm. Specific

environmental cues trigger either fusion of enveloped

virus with the endosome, or membrane penetration by

capsid proteins for non-enveloped viruses, allowing viral

genetic material to be released into the cytoplasm. For

DNA viruses and a few RNA viruses, nuclear import of

the viral genome precedes viral replication, protein

expression, and assembly. For most RNA viruses how-

ever, subsequent steps of the infection cycle follow

immediately after viral genome release (Figure 1) [1,2].

Given the dynamic and multi-step nature of viral entry,

many questions can benefit from studying viral entry in

live cells. For example, how does the virus initiate intern-

alization? How are host proteins spatially and temporally

recruited during viral entry? Furthermore, since viruses

may enter through multiple uptake pathways, yet not all

routes lead to productive infection, what are the specific

entry pathways that result in successful viral genome

release and where does this process happen? Answering

these questions not only elucidates mechanisms of viral

entry, but also — oftentimes — provides new insights

into the cellular uptake pathways [2].

Live cell imaging with fluorescent microscopy offers a

powerful tool for studying the dynamic viral entry

events. To allow successful detection, viruses and

relevant cellular components are often labeled with

fluorescent probes, but cautionary steps should be

taken to ensure that viral infectivity and cellular func-

tions are not impaired by fluorescent labeling (Table 1).

Depending on the purpose of study, viral membrane,

capsid proteins or viral genome contents are often

labeled separately or simultaneously (Table 2). A num-

ber of different imaging modalities such as confocal,

total internal reflection (TIR) and Epi-illumination

fluorescence microscopy have been used. Furthermore,

development of image analysis algorithms has enabled

researchers to track a large number of viral entry events

in three-dimensions with high speed and precision

[3,4,5�,6,7]. We refer the reader to several reviews on

instrumentation and analysis for live cell virus tracking

[3,8–10].

Live cell imaging has substantially improved our un-

derstanding of viral entry. Because of the limited space,

we can highlight only a small subset of recent studies,

though additional studies of interest are summarized in

Table 3. The following section reviews the virological

insights garnered from live cell imaging in combination

with other cell biological and virological assays. We will

focus on how dynamic imaging of living cells can be used
www.sciencedirect.com
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36 Virus entry
to enhance our understanding of viral entry, including

virus-receptor engagement, internalization, intracellular

trafficking, viral genome release, and cell-to-cell trans-

mission (Figure 1).

Virus-receptor interactions
To initiate infection, viruses typically first nonspecifically

bind to attachment factors on the plasma membrane.

After attachment, several viruses, such as murine polyoma

virus-like particle (MPy VLP), murine leukemia virus

(MLV), avian leukosis virus (ALV), human immunode-

ficiency virus (HIV), vesicular stomatitis virus (VSV),

vaccinia virus (VV), human papillomavirus-16 pseudo-

virus (HPV-16 PsV), hepatitis c virus (HCV), and herpes

simplex virus type 1 (HSV-1) navigate along the cell body

in an actin-dependent manner [11�,12,13��,14�,15,16].

For HSV-1, MLV, VSV, ALV, VV, HPV-16 PsV, and

HCV, attachment is followed by transport along microvilli

or filopodia toward the cell at a speed consistent with the

actin retrograde flow [11�,13��,14�,15,16]. In addition,

many viruses require actin-polymerization for plasma

membrane surfing, and only exhibit firm attachment after

engaging in multivalent interactions with specific recep-

tors. Virus-induced clustering of receptors can either

trigger conformational changes in the receptor-bound

viral protein to prime viral genome release directly at

the plasma membrane, or more commonly, transduce

intracellular signaling to initiate endocytosis [2]. Because

of the transient interaction between the virus and re-

ceptor molecules, the detailed mechanisms of how virus

binding induces receptor clustering or signal transduction

is difficult to investigate by biochemical assays. Live cell

imaging of canine parvovirus (CPV) and its receptor,

transferrin receptor (TfR), revealed that CPV capsids

cluster limited TfRs on the cell surface and a small

fraction of receptor-bound capsids rapidly diffuse into

clathrin-coated pits after viral attachment. The low affi-

nity binding between CPV capsids and TfR causes 76% of

the initially bound virus particles to detach before enga-

ging the endocytic machinery [17]. Another live-cell re-

ceptor-virus study determined how the presence or

deletion of TVA receptor transmembrane domain affects

avian sarcoma and leukosis virus (ASLV) internalization

and fusion kinetics. The authors found that ASLV

particles infecting cells expressing the full length TVA
Schematic of the different viral entry pathways. Viral entry encompasses the

transport, genome release, and in some cases, nuclear import. To begin an

filopodia (a). Cell surface interactions are typically characterized by low elec

cellular receptors. Virus binding to receptors may directly lead to genome re

receptor engagement induces downstream signaling events, resulting in inte

macropinocytosis (c), clathrin-mediated endocytosis (d and e), caveolin-depe

(g). Upon endocytosis, viruses hijack either the actin cytoskeleton (h) or micr

to relying on the cytoskeleton for transport, viruses also utilize compartment

trigger genome release through viral fusion for enveloped viruses or membran

few RNA viruses, genome translocation into the nucleus (l) precedes subse

cytoplasm immediately after uncoating. After viral replication, some viruses s

the infected cell to another neighboring, uninfected cell (m).
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receptor exhibited an increased rate of internalization,

but resulted in a longer hemifusion state than ASLV

particles infecting cells expressing only the GPI-linked

TVA protein. How ASLV differentially engages with the

full-length or GPI-linked TVA receptor remains unclear

[18�]. Additional live cell studies have been conducted to

visualize receptor-virus interactions between CD81 and

HCV, DC-SIGN and Uukuniemi virus (UUKV), and

GM1 and simian virus 40 (SV40) [4,15,19,20]. An inter-

esting future direction regarding virus-receptor inter-

actions is to probe the spatiotemporal sequence of

events for multiple receptor-engaging viruses such as

HCV and coxsackievirus B (CVB) [2,21–23]. For CVB,

viral entry begins on the apical domain with attachment to

Decay Accelerating Factor (DAF), which initiates Rac-

dependent actin rearrangements required for lateral

transport of the virus to the tight junctions. Transport

to tight junctions is required for CVB engagement with its

receptor, coxsackievirus and adenovirus receptor (CAR),

and for receptor-mediated endocytosis [24�]. Similar to

CVB, HCV viral entry into polarized cells also begins with

binding to co-receptors on the apical domain followed by

lateral transport to tight junctions, the viral entry site.

However, the process is even more complicated, requir-

ing engagement with up to five different protein receptors

[23]. One can expect that visualization of these complex

viral entry processes will provide interesting new insights

about entry dynamics.

Endocytosis/internalization of viruses
In order to enter cells, viruses hijack different cellular

endocytotic pathways for internalization, among which

clathrin-mediated endocytosis is commonly used, though

viruses may also internalize through other pathways such

as macropinocytosis, caveolar/raft-dependent endocyto-

sis, and clathrin–caveolin/raft-independent pathways. We

refer readers to several reviews on this topic

[25,26,27��,28–33], and describe only some examples

here. Multicolor live cell imaging offers a powerful tool

to probe the orchestrated recruitment of endocytic

machinery during the virus internalization process. Using

this technique, researchers found that influenza A virus

(IAV), reovirus, and VSV induce de novo assembly of

clathrin machinery [34��,35–37], rather than diffusing into

nascent assembling clathrin-coated pits, as exhibited by
 following steps: virus-cell surface interactions, endocytosis, intracellular

 infection, virus particles absorb directly onto the cell surface or onto

trostatic interactions with the glycocalyx before specific binding with

lease at the plasma membrane (b). More commonly, however, virus-

rnalization through one or more of the following pathways:

ndent endocytosis (f), or alternative, less characterized uptake pathways

otubule network (i) to navigate through the dense cytoplasm. In addition

-specific environmental cues, such as low pH or enzymatic cleavage, to

e penetration for non-enveloped viruses (j and k). For DNA viruses and a

quent replication steps, while all other viruses replicate within the

uch as HIV have the capability of mediating direct transfer of virions from

www.sciencedirect.com
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Table 1

Example cellular and organelle markers used previously for studying viral entry in live cell

Markers for probing virus–host interactions Genetically encoded [reference] Chemical label or cargo [reference]

Plasma membrane

Filopodia surfing

Actin [13��], LifeAct [84] Octadecyl rhodamine [7], cell mask, DiI

Microinjection of fluorescently

labeled phalloidin, or plasma membrane

markers

Virus-receptor engagement Virus dependent (e.g. TfnR for CPV [17],

TVA for ASLV [18�])

Endocytosis

Clathrin-mediated endocytosis Clathrin light chain, clathrin heavy chain [33], AP2

(e.g. s2 subunit) [36], dynamin [34��], auxillin [34��],

epsin [55�], SNX9, synaptojanin, amphiphysin [33]

Transferrin, EGF, LDL [68]

Macropinocytosis Sorting nexin 5 [46], actin, PAK1, PI3K,

Ras, Src, HDAC6 [33]

Fluid phase marker (e.g. dextran) [33]

Caveolar or lipid raft dependent Caveolin 1 [41], src, PKC, actin [33] Cholera toxin [33]

Phagocytosis Dynamin [34��], actin, RhoA, RohG, Ras, PKC [27��] Fibronectin-coated beads

Flotillin Flotillin-1, Flotillin-2 [33]

Arf6 Arf6, Arf1 [27��]

Intracellular transport

Microtubule-dependent Tubulin [41] Microinjected chemically labeled

Tubulin [57]

Actin-dependent Actin, cortactin, Arp3 [34��], LifeAct [84] Microinjection of fluorescently

labeled phalloidin

Endosomal trafficking

Macropinosome Sorting nexin 5 [46], Rab8 [33] Fluid phase marker (e.g. dextran) [33]

Recycling endosome Rab4, Rab11 [85] Transferrin

Early endosomes Rab5 [68], EEA1, Rabadaptin-5, Rabenosyn-5 [85]

Intermediate compartment ESCRT (e.g. Hrs) [71], Rab5 + Rab7 [68]

Late endosome and lysosomes Rab7 [68], Lamp, Rab9 [71], ESCRT, HOPS [64] LysoSensor or Lysotracker

Endoplasmic reticulum CellLight ER-GFP ER tracker

Nuclear import H2B [61�] Dapi/Hoechst, DRAQ5, Syto dyes
CPV and dengue virus (DenV) [17,38]. HCV, DenV, and

VSV internalize cells exclusively through clathrin-

mediated endocytosis [15,34��,35,38,39], while SV40

and PyV may enter cells through a clathrin-independent

and caveolin-independent pathways [40–42]. A number
Table 2

Virus labeling strategies for live cell imaging

Labeling strategy Location 

Lipophilic dye (DiI, R18, DiD) Envelope IAV [37

pseudo

(HBsAg

Non-specific covalent linkage

(NHS, hydrazine, maleimide)

Membrane protein,

capsid, tegument

MPy V

reoviru

FMDV 

UUKV 

Genetically encoded FPs

(GFP, mcherry, ecliptic

pHluorin)

Incorporated

viral or host protein

VV [13

HSV-1

Genetically encoded

small peptides (FlAsH)

Membrane or

encapsulated protein

HIV [61

Enzymatic labeling (SNAP,

sortase, biotin ligase)

Membrane protein VSV-G

Quantum dots Membrane protein AAV [5

lentivir

pH sensitive dye Membrane protein IAV [62

Nucleic acid (intercalating dyes) Genome PV [73

Diffusible fluorescent probe Internal viral

compartment

IAV [86

www.sciencedirect.com 
of viruses, including adenovirus type 35 (AdV), VV,

Ebola, CVB, and IAV internalize through macropinocy-

tosis [13��,22,28,43–46,47�]. Particularly for WB VV

strain, virus binding to the cell body triggers dramatic

transient membrane blebbing — a process referred to as
Specific examples [references]

,46,55�,62,68,86�,87], DenV [38], HCV [15], Ebola [46], HIV or HIV

virus (HIV PsV) [57,74��,88,89], hepatitis b surface antigen particles

 particles) [63], UUKV [19], ASLV [18�], VSV [90]

LP [12], HPV-16 PsV [14�], IAV [62,68,91], CPV [17], VSV [34��,35,39],

s [36], SV40 [40,41,53,71], PyV [42], AdV [45], AAV [54,59], SFV [58],

[60], PV [7,73��], Seneca valley virus (SVV) [7], HBsAg particles [63],

[19,67], echovirus-1 (EV-1) [92]
��], MLV, VSV, ALV, HIV or HIV PsV [11�,57,72,74��,77��,88,89,93],

 [16], ASLV [18�]

�]

 pseudotyped lentivirus or retrovirus [94], IAV [95]

4], SV40 virus-like particle (SV40 VLP) [4], VSV-G pseudotyped

us or retrovirus [94], IAV [95]

], PV [73��]
��]
�]

Current Opinion in Virology 2013, 3:34–43
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Table 3

List of studies using live cell imaging to probe the different viral entry steps

Live cell imaging and viral entry Virus examples [references]

Viral entry step

Virus-cell surface interactions

Actin-mediated mobility MPy VLP [12], VV [13��], ALV, HIV, MLV, VSV [11�], HPV-16 PsV [14�],

HCV [15], HSV-1 [16]

Virus-receptor engagement CPV [17], HCV [15], UUKV [19], ASLV [18�]

Endocytosis

Clathrin-mediated endocytosis IAV [37,55�], CPV [17], reovirus [36], VSV [34��,35,39], DenV [38], AAV [54]

Macropinocytosis VV [13��], Ebola [46], AdV [45],

Caveolar or lipid raft dependent SV40 [41], PyV [42], AAV [54]

Other IAV [37,55�], SV40 [40], PyV [42]

Intracellular transport

Microtubule-dependent IAV [62], SV40 [41], SFV [58], AAV [54,59], HIV [57,61�], FMDV [60]

Actin-dependent PV [7], HBsAg particles [63], HIV [61�]

Endosomal trafficking/low pH trigger (yes/no)/site of membrane penetration (yes/no)

Early endosomes IAV/(yes/no) [68], DenV/(yes/no) [38], SV40/(yes/no) [96], pseudotyped

lentivirus or retrovirus [94]

Intermediate compartment or late endosome DenV/(yes/yes) [38], SFV/(yes/yes) [58], Ebola/(yes/yes)

[46], IAV/(yes/yes) [68], UUKV/(yes/yes) [67], VSV(yes/debated) [90], SV40(yes/no) [71]

Other PV/(no) [73��], HIV PsV/(yes) [74��,93]

Genome release PV [73��], HIV [74��]

Nuclear import IVA [91], HIV [57,61�]

Cell-to-cell transmission HIV [77��]

Hemifusion and Fusion kinetics ASLV [89], HIV PsV [72,88], IAV [87]

In vitro systems SV40 (virus particle orientation) [4] SV40 (label free method) [20] IAV

(hemifusion and fusion) [86�]
apoptotic mimicry — induced by the high phosphotidyl

serine content on the virion. After triggering host cell

signaling indicative of macropinocytosis, VV internalizes

the cell during the bleb retraction process [13��].
However, different VV strains use distinct forms of

macropinocytosis for entry, with IHD-J VV inducing

filopodia on host cells rather than apoptotic mimicry [44].

Two studies on VSV entry represent intriguing examples

of how large virus particles (�70 nm � 200 nm) can hijack

canonical endocytic pathways, despite having dimensions

larger than conventional clathrin-coated vesicles

(diameter �120 nm). Live cell imaging, in combination

with electron microscopy, showed that wildtype VSV

enters cells through partially coated clathrin vesicles.

Complete enclosure of the VSV-containing clathrin-

coated pits requires actin polymerization. Transient

recruitment of actin machinery including actin, Arp3

and cortactin follow after clathrin and adaptor proteins.

Drug treatments that inhibit actin polymerization reduce

the efficiency of viral uptake [34��]. Interestingly, a

mutant VSV with a shorter length enters cells through

completely coated clathrin vesicles, and does not require

actin polymerization [39]. These two studies exemplify

how live cell imaging can be utilized for studying non-

spherical virus entry, and future applications to highly

pleomorphic, filamentous influenza and paramyxoviruses

particles will likely further elucidate the entry mechan-

isms of these viruses [2,48–50,51�].
Current Opinion in Virology 2013, 3:34–43 
Many viruses such as IAV, SV40, and adeno-associated

virus (AAV) enter cells through multiple endocytic routes

[37,40,47�,52–54]. In some cases, blocking one

pathway — for example, inhibiting clathrin-mediated

endocytosis for IAV — only shunts the virus to the

alternative pathway, but does not affect overall infectiv-

ity, making the study of host protein involvement in viral

entry very challenging. This problem can be overcome by

tracking individual virus trajectories that lead to success-

ful infection. Using this approach, it was found that epsin

1 is recruited in synchrony with clathrin at IAV entry sites,

while viruses that enter through the alternative pathway

do not require epsin 1. Depleting epsin 1 or overexpres-

sing a dominant-negative mutant only affects the clathrin-

dependent entry pathway, with most of the virus particles

routed through a clathrin-independent pathway. There-

fore, the total amount of internalized virus particles and

the viral infectivity are unaffected upon epsin 1 knock-

down [55�].

Intracellular transport
Upon internalization, viruses are usually sorted into endo-

somal vesicles and transported toward the perinuclear

region along microtubules. As shown by live cell imaging,

IAV, SV40, HIV, semliki forest virus (SFV), AAV, and foot

and mouth disease virus (FMDV) traffick along micro-

tubules at a speed of several microns per second

[30,41,56–60,61�,62]. Surprisingly, by tracking poliovirus

(PV) after internalization, Vaughan et al. discovered that a
www.sciencedirect.com
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substantial number of internalized virus particles display

actin-dependent fast, undirected movement with speeds

of up to 5 mm/s. The unusually high actin-dependent

transport speed observed in this study is nearly a magni-

tude greater than previously reported actin-dependent

motility. Therefore, the underlying mechanism for the

rapid actin-dependent transport remains unclear [7].

Recently, HbsAg particles have also been found to hijack

actin for rapid intracellular transport [63]. Future work is

required to determine whether this novel trafficking

pattern contributes to productive infection, and what

endosomal populations and molecular motors mediate

the rapid actin-dependent transport.

Trafficking in endosomes and viral genome
release
Cargos that are internalized through different endocytic

pathways are delivered to different endosomal compart-

ments. For example, cargos internalized through clathrin-

mediated endocytosis, caveolin-mediated endocytosis

and some cargos internalized through clathrin-indepen-

dent and caveolin-independent pathways, are first deliv-

ered to early endosomes, before being trafficked either

back to the plasma membrane directly by recycling

endosomes, or to late endosomes and lysosomes for

eventual degradation [64]. Cargos internalized via macro-

pinocytosis are first delivered to macropinosomes before

sorting to degradative or recycling endosomes [28].

Viruses have evolved mechanisms to co-opt these endo-

somal compartments not only for efficient navigation

through the dense cytoplasm, but also to access specific

intracellular environments for triggering viral genome

release. Viruses including VSV and respiratory syncytial

virus (RSV) undergo viral uncoating within early endo-

somes [35,65,66]. Many other viruses, such as IAV, Ebola,

DenV, SFV, and UUKV, require trafficking from early to

maturing or late endosomes before uncoating

[38,46,58,62,67,68]. The pH drop during the endosomal

maturation process is likely to trigger conformational

changes in viral proteins that lead to viral fusion, although

viruses like Ebola and severe acute respiratory syndrome

coronavirus (SARS-CoV) require additional acid-depend-

ent enzymatic cleavages [69,70]. SV40 is sorted from late

endosomes to the ER, where the ER-associated degra-

dation machinery facilitates the disruption of the capsid

for viral genome release [41,71]. Live cell imaging with

proper labeling schemes not only helps to detect where

genome release occurs (Table 1), but also sheds light on

the fundamental endosomal trafficking pathways.

Live-cell tracking of Rab5 (early endosome marker) and

Rab7 (late endosome marker) shows that early endosomes

consist of two populations: a dynamic population that

rapidly matures into late endosomes and a static popu-

lation with much slower kinetics. Interestingly, IAV and

other degradative cargoes, primarily sort into the dynamic
www.sciencedirect.com 
population of early endosomes, while recycling cargoes

such as Tfn non-discriminately sort into both populations.

The study revealed that sorting signals can come from the

plasma membrane rather than beginning at the early

endosomes. Furthermore, tracking IAV within the

dynamic population revealed that viral fusion occurs

within Rab5+ and Rab7+ endosomes [68], which is differ-

ent from DenV, a virus that primarily fuses within Rab7+

late endosomes [38]. Recent studies have also defined

macropinocytosis as an important entry pathway for IAV

[47�]. For this pathway, it remains unclear whether IAV

can undergo fusion directly within macropinosomes, or

whether IAV in macropinosomes eventually are sorted

into degradative, low pH endosomal compartments for

uncoating.

In contrast to viruses that require endocytosis for viral

fusion, several enveloped viruses including HIV, HSV,

sendai virus (SendV), and a number of non-enveloped

viruses such as PV, have been reported to release their

genome at the plasma membrane [29,72]. These

viruses often rely on viral protein-receptor confor-

mational changes that are usually pH-independent.

However, endocytosis of these viruses is often

observed, making it difficult to identify the productive

entry pathway. Single-virus tracking provides an ideal

approach to directly probe the exact viral genome

release site. Using this approach, PV RNA release

was shown to occur rapidly near the plasma membrane

by using Syto82 to label the vRNA and Cypher5, a pH

sensitive dye, to the label the capsid. By quenching

the non-internalized Cypher5 fluorescence with

alkaline buffer, the authors found that PV RNA

release occurs only after the virus particles interna-

lized. Taken together, these PV studies decisively

proved that PV vRNA release occurs within the cell

in vesicles close to the plasma membrane [73��]. A

single-virus tracking study was also performed to

revisit the exact HIV entry site using membrane-

labeled HIV containing a diffusible core content mar-

ker. Three categories of HIV-cell fusion events were

observed: partial fusion at the plasma membrane with-

out releasing its content, bona fide endosomal viral

fusion, and a more complicated two-step fusion event

with membrane mixing at the cell surface, followed by

content release inside the cell. Furthermore, interna-

lized HIV particles require dynamin before fusion

within endosomal compartments, which likely leads

to productive infection [74��,75]. Future work using

similar assays will help to identify the sites of genome

release for other viruses that do not require low pH for

membrane fusion or penetration.

Nuclear import
After delivery into the cytoplasm, the viral genome con-

tents of DNA viruses and a few RNA viruses must

undergo nuclear import to initiate subsequent steps of
Current Opinion in Virology 2013, 3:34–43



40 Virus entry
the infection. A recent study using FlAsH-labeled inte-

grase incorporated into infectious HIV-1 particles showed

that the HIV-1 complexes sequentially exhibit four

distinct stages of movement: first, microtubule-depend-

ent transport; second, actin-directed trafficking; third,

confined mobility upon docking at the nuclear mem-

brane; and fourth, diffusive intranuclear movement

[61�]. Interestingly, data suggest that HIV reverse tran-

scription may already occur sometime during stage 1

movement [57]. In another study, Strunze et al. found

that kinesin-1 mediates the interaction between adeno-

virus viral capsid and nuclear pore complex components,

and further disrupts the capsid to facilitate nuclear import

[76]. Future studies of interest will likely use similar

techniques to elucidate how other viruses hijack the host

cell machinery to deliver their viral genome into the

nucleus.

Cell-to-cell transmission
Most live cell viral entry studies are performed with

purified virus particles infecting cultured cells. However,

many viruses such as HIV, human T cell leukemia virus

type (HTLV-1), and VV can propagate themselves

through cell-to-cell transmission [29]. Virus spread

through cell-to-cell transmission may mimic pathogenesis

in vivo. Live cell imaging provides a powerful tool to

study the transmission process in real time. A recent study

shed light on how HIV virus transfers through virological

synapses by visualizing an infectious fluorescent HIV

clone with GFP inserted within the Gag interdomain

(HIV Gag-GFP). During the transmission process,

time-lapse imaging revealed that Gag accumulates at

the synaptic buttons after forming stable adhesion with

adjacent primary T cells. Proximal to the existing buttons,

Gag puncta are highly dynamic and individual puncta can

penetrate, release, and infect the neighboring target cells

[77��].

Conclusions
Viruses have evolved sophisticated mechanisms to

hijack host cell machinery for the purpose of delivering

its genome into the cell for initiating productive in-

fection. Before the broad application of live cell ima-

ging, many viral entry pathways had been extensively

characterized. However, as discussed in this article,

live cell imaging of viral entry captures the dynamic,

transient, and multi-step processes unascertainable

through traditional ensemble and fixed cell assays.

Despite the extensive body of knowledge obtained

through live cell virus imaging, the technique has its

own limitations and future improvement is definitely

needed. Firstly, due to the small size of virus particles,

only a limited amount of fluorescent probes can be

attached to the virus without impairing viral infectiv-

ity. This problem poses a challenge for studies tracking

slow entry processes that require long imaging acqui-

sition times. Furthermore, contents within the virus are
Current Opinion in Virology 2013, 3:34–43 
typically labeled during the growth of the virus and

incorporated during viral packaging [8,73��]. However,

few probes exhibit sufficient brightness and stability

without significantly perturbing viral assembly and

subsequent infectivity. Future technical advances in

fluorescent probe development and application of nov-

el labeling schemes will prove extremely  useful for

real-time tracking of viral genome release in living

cells, and for labeling viruses that can tolerate only a

few dye molecules before affecting infectivity. Sec-

ondly, the low throughput nature of single particle live

cell imaging proves a daunting barrier for scaling-up to

high throughput studies. Particularly, over the recent

years, a number of genome-wide studies have ident-

ified host dependency and susceptibility proteins

involved in the virus infection cycle, many of which

play critical roles in viral entry [78]. Given that viruses

exploit a variety of cellular machineries to enter cells,

live cell imaging will undoubtedly provide an indis-

pensible tool for dissecting the dynamic roles of the

identified host proteins in viral entry. Development of

high-throughput and high-content live cell imaging

methods for analyzing the large body of data will

tremendously abet future work [79,80�]. Thirdly, given

that each virus trajectory contains a wealth of infor-

mation, improvements in analysis algorithms are

needed for maximal extraction of information on the

different types of viral transport behavior and inter-

actions between viruses and cellular machinery in an

unbiased manner. Integrating such tracking algorithms

with high-throughput imaging may not only provide

further insights into individual particle behavior, but

also define dynamic patterns of virus-host interactions

at a population level [81]. Fourthly, interactions be-

tween virus and cellular factors occur at the nanometer

scale. For instance, initiation of clathrin-mediated

endocytosis by viruses and other cargoes lead to a

highly specific, well-orchestrated and ordered cellular

protein distribution within the clathrin-coated pit [82].

Under conventional light microscopy, the precise local-

ization of the proteins is blurred by the diffraction limit

of light. The recent development of superresolution

techniques that overcome the diffraction limit and

provide nanometer-scale image resolution will open

up a window for more detailed investigation of virus-

cell interactions [83�]. Lastly, as highlighted by the

visualization of HIV cell-to-cell transmission, most live

cell imaging studies on virus entry are performed with

tissue culture systems. Viral tracking in conditions that

more accurately mimic in vivo conditions are likely to

give additional insights in the entry process. The

exciting discoveries made possible by live cell virus

tracking within the recent years represent just the tip

of the iceberg of knowledge that may be acquired

through live cell imaging in the future. In combination

with the development of new technologies and dis-

covery of novel biological processes and unknown
www.sciencedirect.com
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viruses, future live cell viral entry studies will undoubt-

edly further enrich our understanding of virology and

basic cellular biology.
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