
Hindawi Publishing Corporation
BioMed Research International
Volume 2013, Article ID 170580, 8 pages
http://dx.doi.org/10.1155/2013/170580

Research Article
Secure Encapsulation and Publication of Biological Services in
the Cloud Computing Environment

Weizhe Zhang,1 Xuehui Wang,1 Bo Lu,2 and Tai-hoon Kim3

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
2Network and Information Center, Harbin Institute of Technology, Harbin 150001, China
3 School of Computer and Information Science, University of Tasmania, Virginia Court, Sandy Bay, Hobart, TAS 7001, Australia

Correspondence should be addressed to Weizhe Zhang; wzzhang@hit.edu.cn

Received 5 June 2013; Accepted 19 June 2013

Academic Editor: Sabah Mohammed

Copyright © 2013 Weizhe Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic
function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and
function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between
users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the
GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by
using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype
system of the biological cloud is achieved.

1. Introduction

In recent decade years, bioinformatics is a leading branch
of biological science which deals with the study of methods
for storing, retrieving, and analyzing biological data [1]. The
rising of bioinformatics software becomes a specialized field.
Some bioinformatics software products, such as Blast (data-
base search) [2], Clustalw (multiple sequence match) [3],
phylip (biological phylogenetic analysis software) [4], and
EMBOSS (large sequence analysis) [5], have become an indis-
pensable tool for molecular biology research. Open, public,
and common are the main features of bioinformatics soft-
ware. These software products are usually used in various
forms of open source code copyright statement and take the
Linux operating system as themain platform.They aremainly
developed by scientific research institutions, colleges, univer-
sities, and other academic departments freely and provide
public use. In the bioinformatics software’s directory of GNU
Project, there exist 15 kinds of software products, and, in
the bioinformatics software’s directory of the Open Science
project, there exists 51 kinds.

However, the development of the open source software
usually aims at solving some specific issues for a particular

research field.The academic research is its main purpose, and
personal interest is its main driving force. So the program
often lacks detail documents and necessary user supports.
Installation and configuration of this software will need a
certain knowledge and experience of computer programming
and system maintenance, which makes this software difficult
to be used bymost biologists in their research. Even if the user
is biological information scientist or even the professional
system administrator, it is difficult for them to face many
software products with limited documents. In addition, with
the rapid increasing of biological information’s data scale
and the further research for the data, some software will be
needed in a research project [6].The common bioinformatics
software, including both free software from academic unit
and expensive commercial software, far cannot satisfy the
above requirements. For the data format, the same DNA or
protein sequences in different databases have different storage
format and use different input/output formats in different
applications. The user must first be familiar with the conver-
sion between these formats [7]. While, there are hundreds of
kinds of sequence analysis software products, if the user is not
familiar with their application and use methods, he needs to
learn how to use the software and how to analyze the results,

http://dx.doi.org/10.1155/2013/170580

2 BioMed Research International

which is often wrong as well as time consuming. Although
there have been many web-based analytical tools [8], the
development of bioinformatics software still cannot get rid of
the basic layout which takes the separate calculation method
as basis, the individual computer program as the center, and
the single calculation results as the goal, and some software’s
output results are difficult to understand for the biologists.

With the development of the web service in the cloud
computing, we gradually pay more attention on this tech-
nology which contains a huge processing power. However,
for the various bioinformatics products, even if we improve
the processing power with the web service technology, we
cannot solve the problem that the users need to spend a lot of
time and energy to be familiar with different bioinformatics
software’s use methods or data organization structure.There-
fore, it is necessary to provide unified and single software
encapsulation for the bioinformatics software. Through the
encapsulation, a unified interface and simple operation will
be provided; thus the backstage software implementation
details can be shielded off, and the users’ requirements can
be completed correctly and efficiently.

The following sections of this paper are organized as fol-
lows: Section 2 introduces the bioinformatics software objects
to encapsulation and publication; Section 3 puts forward
the outline of the bioinformatics software’s encapsulation and
publication and implements the encapsulation and publica-
tion on both Windows and Linux operating systems; Sec-
tion 4 conducts functional tests for the bioinformatics soft-
ware to check the correctness of the encapsulation and pub-
lication.

2. Example of Bioinformatics Software

This paper chooses three bioinformatics software products
as example, namely, gene sequences conversion tools seqret,
gene sequences ORF search tools getorf, and the molecular
clock based maximum likelihood estimation tools proml.
Among them, the two executive programs seqret and getorf
are, respectively, encapsulated on both Windows and Linux
operating systems. Proml is an application running on the
Windows platform, so it is only encapsulated on Windows
platform.

2.1. Gene Sequences Conversion Tools Seqret. Seqret is mainly
used to transfer the sequence files with different formats.
For example, if the data provided by the user needs to be
processed by phylip’s software encapsulation, but the phylip’s
software encapsulation only supports the sequence file with
.phy format, then the transfer of the file sequence’s format is
necessary. Here, it needs to call seqret.exe. Next, the param-
eters of seqret are introduced.

Seqret has two main parameters: one parameter is the
sign of the input file format and the file name and the other is
the sign of the output file format and the file name.

The described file manner is required to correspond
with the description format specified in Uniform Sequence
Address (USA). The USA formats are described as follows.

(i) “file”: name of the input file. File is a sequence file
with .seq as extension name.

(ii) “file:entry”: combination form of file name and
sequence ID.

(iii) “format::file”: combination form of input file’s organi-
zation format and name.

(iv) “format::file:entry”: combination form of file’s organi-
zation format, name, and index ID.

(v) “database:entry”: combination formof database name
and index ID.

(vi) “database”: database name.
(vii) “@file”: read each line in the file as an input sequence.
Seqret can recognize the form “format::file.” For example,

if we have a sequence file file.seq of the fasta type, we can
express it as “fasta::file.seq.”

In addition, seqret still contains two senior parame-
ters: -feature shows the characteristics information of the
sequence applied, and -firstonly indicates that the program
terminates after reading a sequence from the sequence file.

2.2. ORF Search Tools Getorf. Getorf is used to find the
ORF in the known RNA sequence and translate the obtained
polypeptides.

The parameters of getorf are as follows.
(1) Input sequence file: nucleic acid sequence that corre-

sponds with the USA formats.
(2) Output sequence file: gene sequence file that includes

the orf search results.
(3) Senior options: -circular indicates whether the gene

sequence is a ring, -reverse indicates whether to find
ORF in the gene’s completely reverse sequence, and
-flanking indicates choosing a chain of branched gene
sequence between the beginning and ending codons.

(4) Additional limited options: -minsize, -maxsize, -find,
and -table.

(a) -minsize indicates that the program needs to
search a peptide sequence with the length not
less than minisize.

(b) -maxsize indicates that the program needs to
search a peptide sequence with the length not
more than maxisize.

(c) -find is followed with digital options.Themean-
ing of specific number is described in Table 1.

(d) -table is followed with menu number from 0
to 23 to represent the organism’s types. Here
we do not describe the interpretation of specific
number in detail.

2.3. Molecular Clock Based Maximum Likelihood Estimation
Tools Proml. Proml is mainly used to construct amino acid
sequence tree based on molecular clock maximum like-
lihood estimation. Proml has one input parameter which
is a sequence file with phy format, and the sequence file
includes numbers of amino acid sequences. Although the
input parameter of Proml is very simple, but it has complex
parameters settings, here we leave out the specific set options
list.

BioMed Research International 3

Table 1: Interpretation of -find’s digital options.

Digital
option Interpretation

0 Translate the orf between adjacent end codons
1 Output the orf between the beginning and ending codons
2 The nuclear sequences between end codons

3 The nuclear sequences between the beginning and end
codons

4 The nucleosides side linking with the beginning codon
5 The nucleosides side linking with the start end codon
6 The nucleosides side linking with the terminal end codon

3. Framework of Bioinformatics Software’s
Encapsulation and Publication

Firstly, according to the characteristics of bioinformatics soft-
ware, we extract a unified interface tomake it easy to integrate
a lot of bioinformatics software. Thus, we encapsulate a layer
of shell over the bioinformatics software, just as described in
Figure 1. The shell program exposes a simple interface to the
outside, thus making it convenient to publish the service.

Secondly, we embed the encapsulated bioinformatics soft-
ware in the compiled GRAM service [9]; GRAM called this
application and provided bioinformatics software’s service to
the outside [10]. The publishing part usually uses the web
service. In the publishing interface, we premise that the users
already know the existence of GRAM service, so that we
can use the API that is provided by GRAM service to call
the application sources that the GRAM contains; then bioin-
formatics software’s publishing is realized.

Therefore, we form the framework of bioinformatics
software’s encapsulation and publishing, as Figure 2 shows.

As shown in Figure 2, in the upper level of our encap-
sulated software, GRAM encapsulates another layer, namely,
the GRAM component internal service layer. The software is
published with GRAM service’s publication. During the pub-
lication, we use the API that is provided by GRAM to publish
the bioinformatics software’s function to the users and finally
realize the bioinformatics software’s publication.

3.1. Software Encapsulation on Windows Platform. As the
software that will be encapsulated is all executable files, we
create process to execute the exe files and deal with the inter-
active process by redirecting the standard input and output.
During the encapsulation process, the main part is the
application of redirection technology.

The specific redirecting process is as follows: we assume
that there are two anonymous pipelines, two one-way pipe-
lines: pipeline A and pipeline B; each pipeline has one input
terminal and one output terminal.

First step: if we want to execute a command, we need
to put this command to the execution file’s process. We use
hStdInput to stand for standard input; it is originally respon-
sible for receiving the user’s input from the keyboard; here
we hang it up on pipeline A’s output terminal and make it
responsible for receiving pipeline A’s output data.

· · ·EXE 1 EXE 2 EXE n

Shell interface service manage layer

External interface

Figure 1: Encapsulation of the bioinformatics software.

Second step: now we have connected pipeline A’s output
terminal to the input terminal of execution file’s process;
namely, pipeline A’s output terminal is execution file’s input
terminal, so that, if we write a command to pipeline A’s input
terminal, the execution file can get our command through
pipeline A.

Third step: as known, it is impossible for pipeline A to
receive the output data of execution file, so we need another
pipeline, pipeline B, to receive it. We use hStdOutput to stand
for standard output, it is originally sent to the screen, and here
wehang it up onpipelineB’s input terminal andmake pipeline
B responsible for receiving exe file’s output data. What is
more, hStdError is standard error output, it is also originally
sent to the screen, and we hang it up on pipeline B’s input
terminal too.

Forth step: nowpipeline B’s input terminal is connected to
the output terminal of execution file’s process, so that pipeline
B’s output terminal is bioinformatics software’s output termi-
nal; software can receive data from this terminal and send it
to the users or use it for further judgment.

3.2. Software Encapsulation on Linux Platform. The first step:
create two pipelines in the parent process: pipeline 0 and
pipeline 1; each pipeline has two terminals, respectively, for
reading and writing. For each pipeline, two file descriptors
will be generated: one is used to read data from specific file
and the other is used to write data to the specific file.

The second step: call fork() to create a new child process.
So there are two pipelines for both the parent and child
processes, including four descriptors, respectively, for reading
andwriting two specific files.The two specific files are, respec-
tively, indicated by the four descriptors of the parent and child
processes. The general situation is shown in Figure 3.

The third step: for pipeline 0 and pipeline 1, respec-
tively, turn off one pipeline’s reading terminal and the other
pipeline’s writing terminal between the parent and child proc-
esses. For example, turn off pipeline 0’s reading terminal and
pipeline 1’s writing terminal in the parent process; accord-
ingly, turn off pipeline 0’s writing terminal, and pipeline 1’s
reading terminal in the child process.Thus, the parent process
can write data to pipeline 0’s file through its writing terminal,
and then the child process can read its parent process’s data
from pipeline 0’s reading terminal. And similarly, the child
process’s feedback information can be written to pipeline 1,

4 BioMed Research International

User UserGroup Group

Client’s APP

GRAM API

Client
module

GRAM

Interactive between APP and GRAM

Execute job Job control State query

Job 1 Job 2 Job 3 Job 4

GRAM
component
internal
service
layer

EX
E

1
EX

E
2

EX
E

1
EX

E
2

EX
E

1
EX

E
2

EX
E
n

EX
E

1
EX

E
2

EX
E
n

EX
E
n

EX
E
n

Software
package

· · · · · · · · · · · ·

Figure 2: Framework of bioinformatics software’s encapsulation and publication.

File descriptor File descriptor

Parent Child

File 0

File 1

File 2

File 3

File 4

File 5

Pipeline 0 file Pipeline 1 file

FD0 |0|

FD1 |1|

FD2 |2|

FD3 |3|

Pip1 |7|

Pip1 |6|

Pip0 |5|

Pip0 |4|

FD0 |0|

FD1 |1|

FD2 |2|

FD3 |3|

Pip1 |7|

Pip1 |6|

Pip0 |5|

Pip0 |4|

Figure 3: Mapping of parent and child process’s file descriptor table.

BioMed Research International 5

File descriptor File descriptor

Child processParent process

Pointer directing arrows Data flow arrows

File 0

File 1

File 2

File 3

File 4

File 5

Pipeline 0 file Pipeline 1 file

FD0 |0| P0

FD1 |1| P1

FD2 |2| P2

FD3 |3| P3

Pip0 |4| P4

Pip0 |5| P5

Pip1 |6| P6

Pip1 |7| P7

FD0 |0| P0

FD1 |1| P1

FD2 |2| P2

FD3 |3| P3

Pip0 |4| P4

Pip0 |5| P5

Pip1 |6| P6

Pip1 |7| P7

Figure 4: Piping communication schemes of the parent and child processes.

and then the parent process can receive the child process’s
information. So the communication between the child pro-
cess and parent process is realized. The specific procedure is
shown in Figure 4.

The forth step: we need to redirect the standard input/
output of the child process. Here, we need to call function
dup2() in the child process, change the file that the child
process’s standard input/output indicates by dup2(), and
finally finish the redirecting of the standard input/output.

3.3. Bioinformatics Software’s Publication. After encapsulat-
ing bioinformatics software, we should publish it next. Firstly,
we further encapsulate the software with a GRAM service
provided by Globus. Secondly, we publish the GRAM service.
By these two steps the bioinformatics software is published.

We compile a client application by using GRAM compo-
nent’s API, and the users can call the bioinformatics software
through this application. Next, we introduce the client’s reali-
zation in detail.

Firstly, we take a look at the GRAM API that Globus
project team [11] provides to us. Globus project team pub-
lishes an encapsulation named org.globus.gram, and this
encapsulation realizes all the necessary API functions that are
needed when calling the GRAM function.Wemainly call the
functions of classGram andGramJobListener to complete the
client program and realize the process that submitting remote
services through the GRAM components.

Secondly, we consider the specific process to submit
services. When the users call GRAM services’ specific appli-
cation, themain task is to finish the compiling of the resource
description file, namely, forming an RSL file. RSL is a cloud
resource description language based on XML language. RSL
defines various kinds of labels to describe the resource,
methods, and details of the calling process.

The users’ tasks can be divided into two kinds, namely,
single job task and multiple jobs task. For example, the RSL
file is a description file of single job task. A single job task
contains only one job, while a multiple jobs task contains
numbers of jobs.

The submitting modes of user’s tasks can be also divided
into two kinds, namely, batch mode and no batch mode. In
batchmode, the application programwill be blocked after the
user submits tasks and return after the tasks are completed
and the results are returned, while, in no batch mode, the
application program returns after the user submits tasks, so
that the user can continue to deal with other tasks. If the user
wants to observe the specific conditions of the submitted task,
he can query the task’s status by calling the task examination
management interface provided by GRAM.

The XML documents form the standards and principles
of the communication between applications. We united
describe the communication content between the client and
the server through XML documents, and the specific com-
munication form is described in Figure 5.

As shown in Figure 5, line 1 shows that client program
sends the information that the user requires to the stub
module called by the client. Line 2 shows that the stubmodule
encapsulates the information into standard format according
to the provision way andmeasure and sends the encapsulated
information to the server stub module. Line 3 shows that
the server stub module analyzes the received information
and gets the information that the user demands and then
sends this information to the service realization program,
so that the program can deal with the user’s requirements.
Line 4 shows that the service realization program sends
the processed information back to the stub module. Line 5
shows that the server stubmodule encapsulates the processed

6 BioMed Research International

2Client Server

Service
realization

Client
program

1

3

46

STUB

Internet

5

Figure 5: Description of the communication between client and server.

information and sends it to the client stub module. Line 6
shows that the client stub module analyzes the information
and feeds it back to the client program.

4. Experiments

4.1. Encapsulation Interface Test on Windows Platform. First
of all, we test the correctness of the bioinformatics software
onWindows platform.We encapsulate three application pro-
grams, namely, seqret.exe, getorf.exe, and proml.exe. As
described in the design, the encapsulation interface has three
required parameters, including the file name, the input file,
and the output file, and two optional domains, namely, the
static input parameter and the dynamic input parameter.

Firstly, we test the correctness of seqret’s encapsulation
with the three required parameters; the result is shown in
Figure 6. Obviously, the test is successful.

After calling seqret’s encapsulation, the corresponding
result file seqret-out.phy is generated in the directory from
which the program runs, and the corresponding log file is
also generated in the LogFile folder. The result is shown in
Figure 7.

Next, we test proml’s encapsulation. As proml is an appli-
cation program onWindows platform, so we only test its en-
capsulation on Windows platform. Proml chooses the inter-
active parameters to communicate with the users. In our
test, we choose the parameter –I and import three interactive
parameters: u, 5, and y.

The test results are shown in Figure 8.
The log files record the implementation details of this

software’s calling process successfully, and its format is the
same to the log file of seqret; here we leave out the details of
the log file.

4.2. GT’s Local Task Submitting Test on Linux Platform.
The operating system we use is Red Hat Enterprise Linux
Advanced Server 4 [12], and the GT’s version is Globus
Toolkit 4.0.2 [13]. In the submitting test, the description file
is shown in Figure 9.

Firstly, we submit the task by using the command globus-
run-ws of GT’s command line tool. Before the submit, we
need to generate an agent with the command grid-proxy-init
firstly; this is because the agent can help do some necessary
operation when the GRAM calls other remote file transfer
tasks, and the user’s certification is needed to be identified.
Therefore, the user’s certification is the precondition of
GRAM components’ application.

Figure 6: Schematic diagram of calling seqret’s encapsulation
Windows platform.

Figure 7: Result of the sequence’s transformation.

Figure 8: Result of file of proml.

Figure 9: Task description file.

BioMed Research International 7

[wtk1984@freedom ∼]$ ll job/∗orf.out job/LogFile/∗.log
-rw-r--r-- 1 wtk1984 wtk1984 722 Jun 29 22:44 job/LogFile/Fri-Jun-29-14:44:15-
2007-93250.log
-rw-r--r-- 1 wtk1984 wtk1984 1044826 Jun 29 22:44 job/orf.out

Box 1

IP: 192.168.111.6
Name: candydog

Cluster inner node

IP: 192.168.111.5

Cluster inner node
Name: candy

IP: 173.26.100.215
Task submit host

IP: 173.26.100.198

IP: 192.168.111.7

Cluster inner node
Name: easy

IP: 202.118.224.133
Name: freedom

Cluster master node

IP: 202.118.224.129
Lab gateway

173 segment gateway

173 segment LAN

Figure 10: Frame of the network on which the test is conducted.

Next, we take the task description file shown in Figure 9 as
one of the parameterswe input in the command line to submit
our task. In the task description file, we call getorf and input
parameters sodium mrna.fasta, orf.out, and -find 3-minsize
2000 as static parameters.

The result file and log file are as shown in Box 1: as the
red front shows, the result file and log file are generated suc-
cessfully. We check the records in the two files, and they are
both correct.

4.3. Client Remote Calling Test. We divide the test types of
this part into five kinds: 0 cloud node and its service query,
1 remote submitting of nonbatch mode and single job task,
2 remote submitting of batch mode and single job task, 3
remote submitting of batch mode and multiple jobs task, and
4 query of the status of the task that is submitted with batch
mode. Then we show the task submitting test of types 0, 1, 3,
and 4 in detail.

Before the test, we describe the logic of the network on
which the test is conducted. Its frame is shown in Figure 10.

The red font shows the task submitting node and the
cluster master node, the place where our task is processed.
Our encapsulated software is stored in the master node. The
red arrows indicate the flow of the information.

We test the task’s submitting with test type 1, call seqret
job, and process the gene sequence transfer job. Figure 11
shows the process of this test.

Figure 11: Submitting of no batch mode and single job task.

As Figure 11 shows, we can choose the task and their
modes in the most left red box, set the task’s parameters
through the popup dialog box, and then submit the task by
Submit Job button. As the submitted task is nonbatch, the
application program blocks after the submitting until the
remote execution is finished, and the completion signal is
returned.

Next, we login the server and check the result file and the
log file; they are both correct. Here, we leave out the details of
the inspection.

Finally, we test the task’s submitting with test type 3. We
check the task’s status by calling the query function.

As shown in Figure 12, the list in the bottom shows the
tasks’ name and parameters in detail, and the upper windows
shows the results of the query; from it we can see two items:

8 BioMed Research International

Figure 12: Query of the task’s status.

the job handle and the job state.We can see that our submitted
task experiences the process of Unsubmitted->Active->Done.

5. Conclusion

According to the secure encapsulation and publishing of
bioinformatics software, this paper introduces the methods
of encapsulating and publishing the existing services in the
cloud environment and realizes a prototype system to publish
bioinformatics software in the grid and cloud computing
environment.

In the publishing part, the main process is the analysis
of the application software’s business and data flow. During
the analysis, according to the interaction between processes,
we use the communication mechanism of the processes to
simulate the man-machine interaction by the application of
the pipeline’s redirection technology. Finally, according to
the results of the analysis, we summarize the characteristics
of bioinformatics software’s external interface and make the
interface simple and universal.

We use the services provided by cloud development tools
in the publishing process, write interface processing program
for specific application programs, and publish it with cor-
responding publishing mechanism. Finally, we combine the
remote calling of bioinformatics softwarewith cloud environ-
ment and form the prototype system of the biological cloud.

Acknowledgments

This work was supported by the National Basic Research Pro-
gramof China underGrant no. G2011CB302605, theNational
Natural Science Foundation of China (NSFC) under Grant
no. 61173145, and the National High Technology Research
and Development Program of China under Grant no.
2011AA010705.

References

[1] D. Gilbert, “Bioinformatics software resources,” Briefings in
Bioinformatics, vol. 5, no. 3, pp. 300–304, 2004.

[2] C. Oehmen and J. Nieplocha, “ScalaBLAST: a scalable imple-
mentation of BLAST for high-performance data-intensive
bioinformatics analysis,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 17, no. 8, pp. 740–749, 2006.

[3] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “ClustalW:
improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, positions-specific gap
penalties and weight matrix choice,”Nucleic Acids Research, vol.
22, pp. 4673–4680, 1994.

[4] F. Joseph, Inferring Phylogenies, Sinauer Associates, 2003.
[5] P. Rice, L. Longden, and A. Bleasby, “EMBOSS: the european

molecular biology open software suite,” Trends in Genetics, vol.
16, no. 6, pp. 276–277, 2000.

[6] Y.-L. Chen, B.-C. Cheng,H.-L. Chen et al., “A privacy-preserved
analytical method for ehealth database with minimized infor-
mation loss,” Journal of Biomedicine and Biotechnology, vol.
2012, Article ID 521267, 9 pages, 2012.

[7] J. Chen, F. Qian,W. Yan, and B. Shen, “Translational biomedical
informatics in the cloud: present and future,” BioMed Research
International, vol. 2013, Article ID 658925, 8 pages, 2013.

[8] R. de Paris, F. A. Frantz, O. N. de Souza, and D. D. Ruiz, “wFRe-
DoW: a cloud-based web environment to handle molecular
docking simulations of a fully flexible receptor model,” BioMed
Research International, vol. 2013, Article ID 469363, 12 pages,
2013.

[9] B. Sotomayor, GT4 Programmer’s Tutorial, Globus Toolkit
Develope Team, 2004.

[10] L. Ferreira and V. Berstis, Introduction to Grid Computing with
Globus, IBM Redbooks, 2003.

[11] J. Pedraza, M. A. Patricio, A. de Aśıs, and J. M.Molina, “Privacy
and legal requirements for developing biometric identification
software in context-based applications,” International Journal of
Bio-Science and Bio-Technology, vol. 2, no. 1, pp. 13–24, 2010.

[12] D.-Y. Lee, S. Bae, J. H. Song et al., “Self-Organized Software
Platform (SOSp)-based mobile chronic disease management
with agent-based HL7 interface,” International Journal of Bio-
Science and Bio-Technology, vol. 5, no. 1, pp. 59–72, 2013.

[13] H. Kim, Y. Kim, and P. Lee, “Reconfiguration mechanisms for
virtual organization using remote deployment of grid service,”
International Journal of Grid and Distributed Computing, vol. 2,
no. 1, pp. 27–38, 2009.

