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Lacticaseibacillus rhamnosus
alleviates intestinal inflammation
and promotes microbiota-
mediated protection against
Salmonella fatal infections
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Mohammed Elbediwi1, Reshma B. Nambiar1,
Xiao Zhou1 and Min Yue1,2,3,4*

1Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of
Animal Science, Zhejiang University, Hangzhou, China, 2Hainan Institute of Zhejiang University,
Sanya, China, 3Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine,
Hangzhou, China, 4State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,
National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious
Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
The fatal impairment of the intestinal mucosal barrier of chicks caused by

Salmonella significantly resulting economic losses in the modern poultry

industry. Probiotics are recognized for beneficially influencing host immune

responses, promoting maintenance of intestinal epithelial integrity,

antagonistic activity against pathogenic microorganisms and health-

promoting properties. Some basic studies attest to probiotic capabilities and

show that Lacticaseibacillus rhamnosus could protect intestinal mucosa from

injury in animals infected with Salmonella Typhimurium. However, the

mechanisms underlying its protective effects in chicks are still not fully

understood. Here, we used the chick infection model combined with

histological, immunological, and molecular approaches to address this

question. The results indicated that L. rhamnosus significantly reduced the

diarrhea rate and increased the daily weight gain and survival rate of chicks

infected with S. Typhimurium. Furthermore, we found that L. rhamnosus

markedly improved the immunity of gut mucosa by reducing apoptotic cells,

hence effectively inhibiting intestinal inflammation. Notably, pre-treatment

chicks with L. rhamnosus balanced the expression of interleukin-1b and

interleukin-18, moderated endotoxin and D-lactic acid levels, and expanded

tight junction protein levels (Zonula occluden-1 and Claudin-1), enhanced the

function of the intestinal mucosal epithelial cells. Additionally, investigations

using full-length 16S rRNA sequencing also demonstrated that L. rhamnosus

greatly weakened the adhesion of Salmonella, the mainly manifestation is the

improvement of the diversity of intestinal microbiota in infected chicks.
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Collectively, these results showed the application of L. rhamnosus against

Salmonella fatal infection by enhancing barrier integrity and the stability of the

gut microbiota and reducing inflammation in new hatch chicks, offering new

antibiotic alternatives for farming animals.
KEYWORDS
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Introduction

Salmonella is a Gram-negative bacterium belonging to the

Enterobacteriaceae family. It has been recognized as one of the

most common pathogens causing gastroenteritis and systemic

infections to chickens (1), resulting in a substantial economic

loss to poultry industries (2–4). To date, at least 2,659 serovars

have been described (5), where S. Gallinarum biovars

Gallinarum and Pullorum have been considered the usual

agents causing infections in chickens (4, 6–9). However, the

implementation of successful programs has tackled the

emergence of S. Gallinarum in poultry farms, especially in

developed and some developing countries (10, 11).

Nevertheless, recent surveillance studies have reported the

involvement of non-host specific Salmonella serovars in many

chicken infections, including serovars Typhimurium, Enteritidis,

Thompson, and others (2, 12–14), which challenge efforts

provided to ensure the safety of chicken herds.

Salmonella infections occur via fecal-oral transmission,

where the pathogen overcomes multilayered intestinal barriers

(from the intestinal lumen to the tissue: digestive juice,

antibacterial substances secreted by symbiotic bacteria, water

layer, glycocalyx, and mucus layer, etc.) to interact with the

intestinal epithelium and penetrate deeper into the tissues of

the host (13, 15–20). The intestinal epithelial barrier (IEB) is the

body’s first line of defense against the invasion of harmful

substances and pathogens in the external environment,

composed of a mucus layer, a single cell layer of epithelial cells

and an inherent layer rich in immune cells (15). A series of

different cellular junctions, including tight junctions (TJs),

adherence junctions (AJs), gap junctions and desmosomes, are

essential to the proper functioning of the IEB (21). The AJC is a

crucial node maintaining epithelial permeability by selectively

limiting the paracellular diffusion (15, 22, 23). Previous studies

have shown that Salmonella adheres to epithelial tissue and

destroys cell junctions, leading to intestinal inflammation and

diarrhea (24–26). Hence, maintaining the integrity of epithelial

tissue may reduce the pathogenicity and severity of

Salmonella infections.
02
There is an interaction between the IEB homeostasis and the

intestinal microbiota; the intestinal permeability is affected by

regulating the expression and assembly of TJs between intestinal

flora and epithelial cells. Birds’ gut microbiota is changing from a

migrant community to one that becomes increasingly complex

as they grow. Proteobacteria is the predominant phylum in the

new hatch chicks. With the growth, the dominant position is

gradually replaced by Firmicutes and Tenericutes (>14 days).

The structure of the microbial community of the older birds

have become significantly more diverse and the intestinal

homeostasis gradually formed (27).

Probiotics are live microorganisms that, when administered

adequately, confer health benefits on the host (28). In fact, one of

the essential cytoprotective effects of probiotics in the intestinal

mucosa is enhancing epithelial barrier functions through the

regulation of cellular junctions (29, 30). In this regard, Yu et al.

demonstrated the ability of Fructobacillus fructosus C2 to protect

the integrity of Caco-2 cells against the damage caused by

enterotoxigenic E. coli (ETEC) and S. Typhimurium infections

(31). Additionally, Hummel et al. found that some lactic acid

bacteria like Lactobacillus acidophilus, Lactobacillus gasseri,

Limosilactobacillus fermentum , and Lacticaseibacillus

rhamnosus, these agents increased transepithelial resistance in

T84 cells and modulated the expression of E-cadherin and b-
catenin (adherence junction proteins) (23). Moreover, the

probiotic mixture BEC showed the ability to increase the

laying rate and prevent the decrease in expression and

redistribution of the tight junction proteins occludin, zonula

occluden-1 (ZO-1) and Mucin-2 in coccidia and Clostridium

perfringens challenge in laying hens (32). Mennigen et al. (33)

found that a murine model of colitis was able to decrease

apoptosis by administering the probiotic mixture VSL#3,

which is another important pathway to enhance epithelial

barrier functions. Recently, Yang et al. (34) have demonstrated

the efficacity of Bifidobacterium lactis JYBR-190 in protecting

intestinal mucosal damage caused by Salmonella Pullorum in

chicks. Importantly, it has been shown that some probiotics may

participate in promoting immune response in chicks, where Hu

et al. have proved the efficacity of Limosilactobacillus reuteri in
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suppressing the LPS-induced expression of pro-inflammatory

genes (IL-1b and IL-8), and increasing the expression of anti-

inflammatory genes (TGF-b and IL-10) in the duodenum in

broilers (35).

L. rhamnosus is recognized as a safe probiotic and has been

used in different fields for its benefits on both human and animal

health (36). According to some newly published articles, L.

rhamnosus MTCC-5897 possessed protective effects on

intestinal epithelial barrier function in a colitis-induced

murine model (37). Additionally, L. rhamnosus FBB81

enhanced intestinal epithelial barrier function in an in vitro

model of hydrogen peroxide-induced inflammatory bowel

disease (38). However, to our knowledge, the beneficial effect

of L. rhamnosus on the intestinal barrier function of newly

hatched chicks challenged with Salmonella Typhimurium has

not yet been studied. Therefore, we aim in this study to evaluate

the ability of L. rhamnosus P118 to restore the intestinal barrier

disrupted by Salmonella Typhimurium infection in chicks, in

which we will investigate the effect of probiotic L. rhamnosus

P118 on the gut’s internal environment stability in the presence

and absence of Salmonella infection.
Materials and methods

Bacterial isolates, culture media, and
growth conditions

The potential probiotic strain used in this study was isolated

and confirmed previously in our lab. Briefly, strains of lactic acid

bacteria (LAB) were isolated from fermented yoghurt, confirmed

by whole genome sequencing (WGS) and compared with the

GenBank. A total of 292 LAB strains were isolated, the L.

rhamnosus P118 strain (PRJNA848987) for this study was

selected based on preliminary results obtained in vitro and in

silico. To obtain the inoculum of the LAB, L. rhamnosus strain

P118 was propagated twice in the DeMan, Rogosa, and Sharpe

(MRS, Oxoid Ltd, Hants, UK) broth at 37°C for 16h under

shaking. The concentration of bacterial suspension was

measured by spectrophotometer and presented as equivalent

to CFU/mL. Moreover, a spontaneous novobiocin-resistant S.

Typhimurium SL1344 kept in our lab was grown overnight in

the Luria-Bertani (LB) broth at 37 °C in an orbital shaking

incubator at 180 rpm/min, sub-cultured twice, and then the

CFU/mL was determined by spectrophotometer.
Chicks’ management and
experimental design

A total of 160 chickens, 80 were used for clinical trials and 80

were used to observe survival and growth. At the same time, the

same grouping method and feeding conditions were used. One
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hundred and sixty 1-day-old healthy female Babcock chicks

(License No.: 2021-0005) were purchased from a standardized

hatchery (ChunPai hatchery, CiXi, Zhejiang, China). Four

groups of chicks were randomly divided (n=40 in each group),

and each chick was given its own unique number. In each group,

20 chicks are used to count the weight, growth status and

survival rate, and the other 20 chicks are used to monitor

clinical symptoms, and obtain tissue samples and other

biomaterials used in subsequent experiments. The treatment

groups were as follows: (I) the negative control (no L. rhamnosus

P118 pretreatment and no Salmonella infection, designed as C);

(II) the L. rhamnosus P118-pretreated group (108 CFU L.

rhamnosus P118, designed as P); (III) the Salmonella-infected

group (108 CFU S. Typhimurium SL1344, designed as S); and

(IV) the L. rhamnosus P118-pretreated and Salmonella-infected

group (108 CFU L. rhamnosus P118 and 108 CFU S.

Typhimurium SL1344, designed as P+S) (Figure 1A). For the

duration of the experiment, all chicks received free access to

water and a starter feed without antibiotics. Throughout this

study, all experimental protocols were approved by the Ethics

Review Committee of Experimental Animal Welfare of Zhejiang

University (Ethical Approval ZJU20190093) and the safety

procedures were followed.
Tissue collection and storage

At the five- and seven-day post-infection periods, six chicks

from each group were selected randomly. Under respiratory

anesthesia (Matrx VMR, Midmark, OH, USA), chicks were

subjected to cardiac blood collection using vacuum blood

collection vessels (BD Vacutainer ®, NJ, USA). Blood samples

were incubated for one hour at room temperature before

centrifugation at 2,000 g for 10 min to separate serum.

Chickens were euthanized by cervical dislocation under

anesthesia. One arm of cecum contents, duodenum, liver,

spleen and fecal were collected for Salmonella enumeration.

To prepare for the follow-up observation of intestinal

ultrastructure, a segment (~1 cm) of cecum and duodenum

were fixed in 2.5% glutaraldehyde solution (electron

microscope fixing solution). Duodenum and jejunal mucosa

were scraped using a glass slide (10 cm length), and segments

were stored at −80°C for total RNA isolation. Meanwhile, a

segment from another arm of the cecum was collected and

separated into two parts. One part was fixed in 4%

paraformaldehyde, while the other part was kept in liquid

nitrogen for further research.
Enumeration of Salmonella

The tissue samples (duodenum, cecum, liver, spleen, and

feces) were aseptically collected from the euthanized animals at
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5- and 7-days post-infection (dpi). Samples were serially diluted

in sterile saline (0.9% NaCl) and aliquots were transferred to

xylose lysine deoxycholate (XLD) agar (Land Bridge Co., Ltd.,

Beijing, China) plates supplemented with 50mg/mL nalidixic

acid (BBI life science, Shanghai, China), which were incubated

under aerobic conditions at 37°C for 24 h. Logarithmically

transformed (log10) Salmonella counts were expressed in

colony-forming units per gram (CFU/g). For the samples that

showed no growth in the agar plate, the backup samples from the

same source were partially diluted and transferred to buffered

peptone water (BPW) (Land Bridge Co., Ltd., Beijing, China)

incubated at 37°C for 24 hours under shaking. Then, they were

plated onto brilliant green agar (Land Bridge Co., Ltd., Beijing,

China) plates to detect Salmonella.
Frontiers in Immunology 04
Histopathology scoring

Tissue blocks from the duodenum, cecum and liver were

fixed in the 4% paraformaldehyde buffer for 24 hours, rinsed

with PBS repeatedly for 5 times, and then embedded in paraffin.

Tissues were cut into serial sections (~5 mm thickness) and

stained with hematoxylin and eosin (HE staining), the best

overall quality section was used for histopathological analysis.

According to Bandara et al. (39) and Memon et al. (40), two

blinded investigators were scored histological inflammation and

clinical appearance, including the degree of inflammation of

liver and intestinal tissues, crypt damage, and the percentage of

involvement of inflammatory area in each slide (Table 1,

Figures 2A–C).
A

B

D E

C

FIGURE 1

Study design and protective effect of LAB against Salmonella fatal infections. At the beginning of three days of age, chicks in groups P and P+S
received 0.2ml phosphate-buffered saline (PBS) containing 1 × 108 CFU of the L. rhamnosus P118. On the fourth morning, groups S and P+S
received 1 × 108 CFU of the S. Typhimurium SL1344, via oral gavage. The chicks in the C group received 0.2ml of sterile PBS (A), chick survival
rate (B), chick growth status (C) and determination of bacterial load in tissues and organs infected with Salmonella on 5-day (D) and 7-day-
post-infection (dpi) (E). a, b, c, d: indicated the same column with different letters differ significantly (P < 0.05).
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TABLE 1 Gross and microscopic pathology scoring criteria.

Score Macroscopic Microscopic

Appearance performance Severity of diarrhea Inflammatory infiltration or hemorrhage

0 None None None

1 Listlessness Minimal (Semi solid shape) Minimal (<5% of section)

2 Messy feathers Mild (Semi solid mixed with foam liquid) Mild (5–10% of section)

3 Difficult to stand Moderate (Liquid feces) Moderate (11–30% of section)

4 Weak breathing Marked (Bloody diarrhea) Marked (>30% of section)
Frontiers in Immunolo
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FIGURE 2

Pathological, changes of intestinal villus, clinical score and intestinal inflammation score in different groups. (A–C) Effects of different
treatments on histopathology and (D) changes of villi height and (E) ratios of villi height to crypt depth in the duodenum, and (F)
histological inflammation scores of each organization in newly hatched chicks. a, b, c: indicated the same item with different letters differ
significantly (P < 0.05).
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Transmission electron microscope
(TEM) observation

We performed samples according to the Zhejiang University

Bio-ultrastructure analysis Lab’s rules for animal sample

preparation. In brief, the samples underwent double fixation,

infiltration, embedding, ultrathin sectioning and staining, and

were observed in H-7650 TEM (Hitachi, Ltd., Tokyo, Japan).

Reagents used in the preparation process as glutaraldehyde, PBS,

ethanol, acetone, lead citrate and methylene blue are all

produced by Sinopharm Chemical Reagent Co., Ltd., Shanghai,

China. Osmic acid, Spurr resin embedding agent and uranyl

acetate are produced by Structure Probe, Inc. West Chester,

PA, USA.
Immunohistochemical analysis

Histomorphological status was examined by HE-stained

sections as described previously. Then the paraffin sections are

dewaxed to water, and the tissue sections are placed in EDTA

buffer (pH=9.0) at 95°C for antigen repair and maintained in sub

boiling state for 15 minutes. It is important to avoid excessive

evaporation of the buffer and to dry the slices as little as possible

during this process. After natural cooling, the slices were placed

in PBS (pH=7.4) and shaken for 15 min for decolorization. Then

they were put into the 3% hydrogen peroxide solution and

incubated at room temperature in the dark for 25 min to

block endogenous peroxidase. Afterwards, they were placed in

PBS (pH=7.4), shaken and washed for 15min. Further, 3% BSA

was added dropwise to cover the slices evenly, and the serum was

blocked at room temperature for 30 min. Then the blocking

solution was removed, the diluted primary antibody (1:50) drops

were added (Servicebio® Co., Ltd., Wuhan, China) to the slices,

and the slice flat was placed in the wet box for incubation at 4°C

overnight. The next day, the slice was placed in PBS (pH=7.4),

shaken and washed for 15 min. After the sections were dried, the

tissues were covered with secondary antibodies (1:500, HRP

labelled) corresponding to the primary antibody and incubated

at room temperature for 50 min. Next, after washing and drying

the slices, the freshly prepared diaminobenzidine (DAB) color

developing solution was added, the control of color development

time was done under the microscope (the positive is brown-

yellow), and slices were washed with distilled water to stop the

color development.

Then the hematoxylin was counterstained for 3 min, washed

with distilled water, and treated with hematoxylin differentiation

solution for 10 s. Washing with distilled water, the hematoxylin

returned to blue. Finally, to dehydrate the slice and make it

transparent, the slices were put into 75% alcohol for 5 min, 85%

alcohol for 5 min, 100% ethanol I for 5 min, 100% ethanol II for

5 min, n-butanol for 5 min, xylene I for 5 min. The slices were
Frontiers in Immunology 06
taken out from xylene, dried slightly, and sealed. After

completing the above steps, the microscopic examination,

image acquisition and analysis were operated. In the visual

field, hematoxylin-stained nuclei are blue, and the positive

expression of DAB is brownish-yellow.

Finally, the apoptotic cells and some tight junction protein

aggregates were quantitatively analyzed with the aid of a light

microscope (Olympus, Tokyo, Japan), which was equipped with

a digital camera and an image analysis program (Image-Pro ®

Plus version 6 software, Media Cybernetics, MD, USA). The data

were showed as the number of stained cells per 1,000 mm2 in the

villus and crypt regions.
Serum parameters measurement

The endotoxin activity (ET) was measured according to the

instruction of the kit (Xiamen Tachypleus amebocyte lysate

Reagent Co., Ltd., Fujian, China), and the activity was

expressed in EU/mL. The cytokine D-lactic acid in serum

was determined according to the procedure of the

commercial ELISA kit (Jiancheng Bioengineering Institute,

Nanjing, China). The competition method was used to detect

the content of D-lactic acid in the sample. The serum was

added into the enzyme-labelled hole pre-coated with antibody,

and the recognition antigen labelled by horseradish peroxidase

(HRP) was added. When incubated at 37°C for 1 hour, they

compete with solid-phase antibodies to form immune

complexes. After washing with PBS, the bound HRP

catalyzes TMB (tetramethylbenzidine) to turn blue, then

terminates the reaction under the action of sulfuric acid to

turn yellow. There is an absorption peak at the wavelength of

450 nm. The absorbance value is inversely related to the

antigen concentration in the sample.

The contents of immune-related factors IL-1b and IL-18 in

serum were determined according to the operation manual of

the commercial ELISA Kit (Solarbio® Sci & Tech Co., Ltd.,

Beijing, China). In short, they use the enzyme-linked

immunosorbent assay based on the double antibody sandwich

method to coat the monoclonal antibodies against chicken IL-1b
and IL-18 on the enzyme label plate and add the standard and

sample, respectively. The IL-1band IL-18 in the sample will fully

bind to the coated antibody. After washing with PBS, add a

biotinylated secondary antibody, and the secondary antibody

will specifically bind to IL-1b and IL-18. After washing with PBS,
TMB is added, and the combined HRP catalyzes TMB to turn

blue. After adding sulfuric acid termination solution, it turns

yellow. The absorbance of the reaction pore sample was

measured at 450 nm. The contents of IL-1b and IL-18 in the

sample were positively correlated with the OD value. The

contents of IL-1b and IL-18 in serum can be obtained by

drawing a standard curve and four-parameter fitting calculation.
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RNA isolation and quantitative
real-time PCR

Total RNA of cecum samples was extracted using RNA Easy

Fast animal tissue total RNA Extraction Kit (TIANGEN®

Biotech, Beijing, China) according to the manufacturer’s

protocol. The concentration and purity of total RNA were

quant ified with a NANODrop® ND-1000 UV-VIS

spectrophotometer (Thermo Scientific, Wilmington, DE, USA)

and agarose gel electrophoresis. The quantitative real-time PCR

assay was performed with the Stratagene Mx3005P (with Mxpro

4.10 software) detection system (Agilent Technologies, Santa

Clara, CA, USA) according to optimized PCR protocols using

the SYBR qPCR Master Mix kit (Vazyme Biotechnology Co.,

Ltd., Nanjing, China). The primer pairs for amplifying genes

encoding tight junction protein-related genes Claudin-1 and

ZO-1, apoptosis-related gene Bax, and inflammasome-related

gene IL-1b, and IL-18 are presented in Table 2. GAPDH was

used as an internal reference. The qPCR conditions were an

initial denaturation step at 95°C for 30 s, 40 cycles at 95°C for 5 s,

and annealing and extension temperature at 55-60°C (Table 2)

for 35 s. Each biological sample was run in triplicate. The

method of 2−DDCt (46) was used to calculate relative gene

expression levels between different samples.
Intestinal flora diversity

DNA extraction
Five samples of cecum contents per group were randomly

selected to proceed to full-length 16S rRNA sequencing.

Bacterial DNA from the ileal and cecal digest was extracted

using an E.Z.N.A.® Bacterial DNA Kit (Omega Bio-tek, Inc.

Norcross, GA, USA). The concentration and purity of DNA

were measured us ing the NANODrop® ND-1000
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spectrophotometer (Thermo Scientific, Wilmington, DE,

USA), and the DNA quality was determined by agarose

gel electrophoresis.

Full-length 16S sequencing analysis
The sequencing library was obtained according to the 16S

Amplification SMRTbell® Library Preparation workflow. The

library was sequenced on the PacBio Sequel II platform

(Magigene Biotechnology Co., Ltd. Guangzhou, China). PacBio

data was processed by SMRT link (version 6.0) software,

including data splitting, sequence error correction, and

sequence format conversion. Finally, clean data was obtained.

The sequences were clustered into operational taxonomic units

(OTUs) based on a 97% similarity threshold with the UPARSE-

ver10 (http://www.drive5.com/usearch/). During the clustering,

UPARSE could remove the chimera sequence and singleton

OTU at the same time. The taxonomic information for each

representative sequence was annotated by mapping the silva-

ver132 (https://www.arb-silva.de/) database. In order to study

the phylogenetic relationship of different OTUs, the KRONA

software (http://sourceforge.net/projects/krona/) was used to

visualize the results of individual sample annotations.

GraPhlAn (http://huttenhower.sph.harvard.edu/graphlan) was

used to get a single sample OTU annotation circle graph to

know the species composition and abundance information in

the sample.

Alpha diversity was used to analyze the complexity of species

diversity for each sample through 3 indices, including ace and

Chao1. All these indices were calculated by QIIME V1.9.1. Three

non-parametric analyses (analysis of similarity, ANOSIM); non-

parametric multivariate analysis of variance, Adonis; a

multiresponse permutation procedure, MRPP, were performed

by R software based on the OTU table to display the extent of

differences between groups. LDA Effect Size (LEfSe) analysis was

used to find the biomarker of each group.
TABLE 2 Primers used to analyze gene expression by quantitative RT-PCR.

Gene Primer sequence (5′–3′) Size (bp) Annealing temperature(°C) Reference GenBank No.

Claudin-1 F: CTGATTGCTTCCAACCAG 140 59 (41) NM_001013611

R: CAGGTCAAACAGAGGTACAAG

ZO-1 F: CTTCAGGTGTTTCTCTTCCTCCTC 131 59 (41) XM_413773

R: CTGTGGTTTCATGGCTGGATC

Bax F: GTGATGGCATGGGACATAGCTC 90 59 (42) XM_015290060

R: TGGCGTAGACCTTGCGGATAA

IL-1b F: CTGGGCATCAAGGGCTACAA 131 60 (43) NM_204524

R: CGGTAGAAGATGAAGCGGGT

IL-18 F: TAACAGATCAGGAGGTGAAATCT 299 60 (44) /

R: AAGGCCAAGAACATTCCTTGTT

GAPDH F: TGGAGAAACCAGCCAAGTAT 145 55 (45) NM_204305.1

R: GCATCAAAGGTGGAGGAAT
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Data analysis

The data from the experiment were subjected to ANOVA

after determining variance homogeneity by using the SPSS 16.0

software (IBM, New York, USA). The figures for data

visualization were performed using GraphPad Prism 9.3

(GraphPad Software Inc., San Diego, CA). The analysis of

other data was performed using Student’s t-test. The difference

was considered to be statistically significant as P < 0.05, and the

data were expressed as the means ± SEM.
Results

Survival rate and growth status of chicks

To explore the effect of L. rhamnosus P118 on reducing

Salmonella infection in chicks, according to our experimental

plan, we used 160 female chicks, of which 80 were used to

observe survival and growth, with 20 in each group. Another

80 were used for clinical trials (Figure 1A). They were equally

divided into four groups and received the same environment

and care as noted. It can be seen that on the 15th day, the

mortality of chicks in group S was close to 50.00%, higher

than that observed in group P+S pretreated with probiotic

P118 (15.00%) (P <0.05), while no death was observed in

groups C and P (Figure 1B). As shown in Figure 1C, there was

no statistical difference in daily gain between groups C and P

(P >0.05). On the other hand, chicks infected with Salmonella

grow slowly, especially after six days. There was no significant

difference in body weight between the treatment groups at or

before the age of 6 days. However, from the age of 7 days to

the end of the experiment, the difference between the groups

was significant (P <0.05) and gradually increased. Due to the

early intervention of L. rhamnosus P118, even after the

challenge, the adverse situation of Salmonella infection in

the P+S group was reversed.
Colonization of tissues and feces by
S. Typhimurium

To determine the effect of the oral Salmonella challenge, the

loads of S. Typhimurium in the liver, spleen, duodenum, cecum

and feces were determined. S. Typhimurium was not detected in

the tissue samples from the C and P groups. In comparison with

the S group, the number of S. Typhimurium colonized in the

tissues and feces was significantly lower in the P+S group

(P < 0.05) (Figures 1D, E). Moreover, we found that when

compared with five dpi, the clinical symptoms and organ

bacterial loads of chicks on day seven dpi were significantly
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(P <0.05) different between the groups (Figures 1D, E). Therefore,

the pathological sections, serum biochemical indexes,

determination of immune factors, immunohistochemical

analysis, full-length 16S rRNA sequencing and other tests

mentioned later are all based on the chicks’ samples on day

seven dpi.
Histopathology and
intestinal microstructure

In order to determine if liver and intestinal integrity were

affected by S. Typhimurium infection, the morphology of

samples was monitored. Only the S group showed large

number of heterophils, indicating a mild inflammatory

response at seven dpi. Hematoxylin-eosin-stained pathological

sections showed that chicks in group S presented a disordered

structure of hepatic cord, unclear structure of hepatic lobules,

narrowing or even disappearance of hepatic sinuses, loose

spacing of hepatocytes and a large number of pink

eosinophilic particles (Figure 2A). S. Typhimurium caused

severe damage to the villi morphological structure of the

duodenum and cecum (Figure 2B, C). The integrity of the

intestinal inner wall of the duodenum in group S was

damaged, eosinophils were found in the inner wall cells,

duodenal mucous gland cells disappeared, the morphology

of intestinal villi was seriously degraded, some crypt

structures were unclear, and the relative depth of the surviving

crypts increased (Figure 2B). In group S, the cecal villi were also

significantly shorter, some epithelium on the mucosal surface

was missing, inflammatory cells in lamina propria were

increased, and neutrophil infiltration was prominent.

Still, the overall structure was visible (Figure 2C). It

significantly reduced the height of the duodenal villi and

increased the depth of recess (Figures 2D, E, Table S2).

Moreover, S. Typhimurium strongly increased (P < 0.05) the

appearance score, inflammation score, diarrhea score and crypt

damage score. L. rhamnosus P118 pretreatment (P + S)

significantly (P < 0.05) reversed the trend and decreased all

the group’s scores compared with the S group. (Figure 2F,

Table S1).

Based on this result, we attempted to visualize microvilli

ultrastructure in high-resolution transmission electron

microscopy (TEM) to examine the effects of L. rhamnosus

P118 stimulation on intestinal microvillus development

(Figure 3A). The results showed that the microvilli of the

chicks treated with L. rhamnosus P118 had a significantly 1.3

times longer length (1208.4 ± 28.02 nm) (Table S2) and more

perpendicular to the top surface of intestinal cells compared with

the C group (Figures 3A, B). The density of microvilli was higher

than P+S (P< 0.05) (Figure 3C, Table S2).
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Detection of proteins and genes related
to intestinal barrier function

To determine that the morphological changes in the chicken

intestinal tract are indeed affected by barrier function-related

proteins, claudin-1 and ZO-1 were used for immunohistochemical

staining of the duodenum. Figures 4A, B shown that these two

proteinswill be dyedbrownyellow.The arrow in thefigure refers to a

part of the stained tight junction protein.

To investigate why S. Typhimurium and L. rhamnosus P118

changed the intestinal permeability, and the expression of TJ

genes claudin-1 and ZO-1 were measured by qPCR. As shown in

Figure 4C, there was a significant difference in claudin-1 and

ZO-1 at the mRNA level among all four groups (P < 0.05). In

comparison with the C group, Salmonella infection (group S)

significantly (P <0.05) decreased the mRNA levels of ZO-1 and

claudin-1(Figures 4C, D). The down-regulation of ZO-1 and

claudin-1 due to Salmonella infection was eliminated in the P+S

group. Moreover, in the group P, the ZO-1 expression was

significantly (P <0.05) higher than that in group C (Figure 4D).
Detection of blood biochemical indexes
of chicks

To assess the intestinal permeability among different treated

groups, levels of mediators D-lactic acid and endotoxin (ET) in

serum samples were determined. As shown in Figures 5A, B

S. Typhimurium infection significantly (P <0.05) increased

intestinal permeability compared with the C group. However,

the D-lactic acid and ET in the serum of the chicks in the P+S

group were significantly lower than those in the S group
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(P < 0.05). There was no significant difference between the P

group and the P+S group in endotoxin (P > 0.05) (Table S3).
Detection of immunological factors from
chick blood

To elucidate changes in the inflammatory responses induced

by Salmonella infection, ELISA was used to measure the levels of

cytokines IL-1b and IL-18 in serum samples (Figures 5C, D).

Compared with the C group, Salmonella infection significantly

increased the levels of cytokines in serum (P < 0.05). However,

after probiotic pretreatment, the levels of IL-1b and IL-18 were

significantly decreased in the P+S group compared with the S

group (P < 0.05) (Figures 5C, D, Table S4).
Expression of apoptosis-related proteins

Apoptosis also affects intestinal barrier function. Apoptotic

cells were found in the S group, and P+S group, as shown in

Figure 6A, the cytoplasm of cells dyed brown-yellow is apoptotic

cells containing Bax gene expression products. The more cells

stained per unit area, the higher the frequency of apoptotic

events. After Salmonella infection, the number of apoptotic cells

in group S was significantly (P < 0.05) higher than that in the

control group (Figure 6B).

To investigate whether Salmonella infection caused

apoptosis in chicks, immunohistochemical staining and qPCR

were also used to detect the levels of apoptosis-related proteins

and mRNA. Compared with group S, the process of apoptosis

was significantly (P <0.05) reduced after probiotic pretreatment.
A B

C

FIGURE 3

The structural damage in intestinal microvilli and microvilli length and density changes. (A) The effects of different treatments on microvilli (MV) structure
and tight junction (TJ) protein in the chicken intestinal tract were observed under a transmission electron microscope (TEM). (B, C) The length and
density of microvilli were measured. a, b, c, d: indicated the same item with different letters differ significantly (P < 0.05).
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The change in the trend of the mRNA expression level of Bax is

mutually confirmed with the above results, it was highly

expressed in group S and significantly (P < 0.05) higher than

in other treatment groups. Similarly, L. rhamnosus P118

pretreatment improved this trend (Figure 6C).
Changes in chicken intestinal flora

In terms of the genus of full-length 16s rRNA sequencing

(Figure 7A), we highlight the marked increase in Lactobacillus

spp. in the feces of chicks pretreated with L. rhamnosus P118

(32.15%) in group P compared with S (1.10%), P+S (10.10%),

and C (6.79%) groups. Variations in the abundance of

Salmonella across the groups were also observed: group P+S

showed significantly decreased abundance (9.88%) compared

with group S (19.85%), while the Salmonella spp. was not

detected in group C and group P. Interestingly, in the

Salmonella infection group, the proportion of Salmonella is

only the second, and the dominant genus is still Enterococcus,

and the sum of the two genera reaches 70.27% in top ten genera,
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which dramatically reduces the living space of other genera.

Relatively, the proportion of various genera in the P+S group

is balanced.

The corresponding alpha diversity analysis is shown in

Figures 7B, C. Using the Chao 1 and ace indexes analysis, the

abundance of microbes in the guts of chicks was further

validated. The species diversity in chicks after Salmonella

challenge (S group) was significantly (P < 0.05) decreased,

while in the P+S group, it was increased obviously (P < 0.05)

compared with the group C (ace indexes). Investigation of

species and ace indexes showed that pretreatment with L.

rhamnosus P118 significantly increased species richness and

stabilized the proportion of balanced gut microbiota compared

with controls (Figure 7A, C).

LEfSe analysis is shown in Figure 7D, which presents OTU at

different taxonomic levels that are significantly different between

group S and the other groups (Figure S1) (P < 0.05). On day

seven dpi, when compared with the P+S, the S group showed an

increase in the relative abundance of Erysipelatoclostridium and

the cecum contents (Figure 7E, P<0.05) and a decrease in

Lactobacillus spp. abundance in the cecum. At the same time,
A

B

DC

FIGURE 4

Immunohistochemical staining sections of tight junction and the relative genes expression. Immunohistochemical staining was used to identify
the presence of tight junction proteins (A) claudin-1 and (B) ZO-1 in intestinal tissues, and RT-qPCR was used to detect (C, D) the relative mRNA
expression of tight junction protein genes. The arrow in the figure refers to a part of the stained tight junction protein. a, b, c, d: indicated the
same item with different letters differ significantly (P < 0.05).
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A B

DC

FIGURE 5

Determination of intestinal barrier function factors and immune function factors in chicken serum. The contents of (A) D-lactic acid and (B)
endotoxin in chicken blood were determined by ELISA, which can reflect the state of intestinal injury. The contents of (C) IL-1b and (D) IL-18 in
chicken blood were measured by ELISA to evaluate the degree of inflammatory response. a, b, c, d: indicated the same item with different
letters differ significantly (P < 0.05).
A B

C

FIGURE 6

Immunohistochemical staining sections of apoptosis-related proteins and the relative gene expression. (A) Immunohistochemical staining was used to
identify the existence of apoptosis in intestinal tissue, the arrow points to a brown-stained apoptotic protein aggregation region. (B) The average
number of apoptotic cells was counted in each field. (C) RT-qPCR was used to detect the relative mRNA expression of gene Bax. a, b, c: indicated the
significant differences among groups (P <0.05).
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A B

D

E

F

C

FIGURE 7

Full-length 16S rRNA sequence analysis of cecal contents in chicks and the microflora data alpha- and beta-diversity analysis. (A) Comparison of the top
ten distribution of bacterial communities in different treatment groups at the genus level. (B, C) Analysis of alpha diversity index of chicken intestinal flora
under different treatment conditions. (D) Five-level cladogram of microbial communities in different treatment groups (threshold score > 2). The circle
radiating from inside to outside represents the taxonomic level from phylum to genus (or species). Each small circle at different classification levels
represents a classification at that level, and the diameter of the small circle is directly proportional to the relative abundance. The species with no
significant difference are marked as yellow. The biomarker of the different species is the same as that of legend. (E) The top 16 differentially abundant
bacteria at genus level in S vs P+S groups. If the former was not obtained, the classification at the genus level or the family/order level. Log scale was
used in the abscissa. (F) The top 13 differentially abundant bacteria in S vs C groups at the genus level. If the former was not obtained, the classification
at the genus level or the family/order level. Log scale was used in the abscissa. s_= species; g_ = genus; f_ = family; o_ = order; c_ = class; p_ =
phylum. a, b, c, d: Means in a same item with different letters differ significantly (P < 0.05).
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compared with the C group, at the genus level, it is the same as S

vs P+S, but the relative abundance of Erysipelatoclostridium is

still significant different (Figure 7F).
Discussion

The intestinal mucosal barrier is considered the

frontline of defense against pathogen infection, regardless

of its essential role in nutrient absorption. The beneficial

properties of intestinal microbiota enhance the functions of

the intestinal barrier. In fact, some previous studies have

approved the role of gut microbiota, especially probiotics, in

maintaining the stability and vital function of the intestinal

barrier (47). However, newly hatched chicks have immature

immune systems (48) and under-developed gut microbiota

indicated by low diversities and densities (49, 50). These

weaknesses make the newly hatched chicks more susceptible

to infections, especially those caused by Salmonella, where

this bacterium damages the intestinal mucosal barrier and

then induces severe intestinal inflammations and diarrhea

(26, 28, 51). In this regard, different studies have reported

the implication of Salmonella in the high mortality rate of

chicks (2, 3). Prophylactic and therapeutic strategies based

on antibiotic treatment are limited due to their adverse effect

on the increased spread of antimicrobial resistance. Hence,

the recourse to sustainable and friendly alternatives is a

major priority. In this case, probiotics have proved efficacy,

safety, and sustainability in different fields (52, 53).

The administration of L. rhamnosus reduced the

mortality rate of chicks from 50.00% to 15.00% and

ameliorated the body weight of Salmonella-infected chicks.

These findings are consistent with previously reported

studies, in which different probiotics have demonstrated

the ability to reduce the mortality rate and to improve

body weight gain of chicks infected with Salmonella (54–

56). Additionally, our findings showed the effectiveness of L.

rhamnosus in reducing the number of Salmonella colonized

Liver, spleen, duodenum, cecum, and feces. As known,

during the infectious pathway, Salmonella damages the

intestinal barrier, penetrates epithelial cells, and then

translocated into vital organs via bloodstream circulation,

leading to systemic infection with diarrhea and the

continuous shedding of bacteria in feces. In fact, reducing

damage to the intestinal barrier could be a key solution in

stopping the Salmonella-infectious pathway and then

reducing the number of bacteria in organs.

Intestinal morphology, especially the length of villi and

the crypt depth, is a vital index affecting the chicken intestinal

tract’s health and growth performance. Histopathological and

intestinal microstructure observation showed that the

administration of L. rhamnosus P118 mitigated the severe
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damage caused by S. Typhimurium infection in the villi

morphological structure of the duodenum and cecum, in

addition to the adverse effects such as height reduction of

duodenal villi and the increase in the depth of the recess.

Chicks treated with L. rhamnosus P118 had higher microvilli

length and density than non-treated chicks (S group). Hence,

maintaining the necessary form of villi and the crypt depth

may promote the chick’s growth and body health. Similarly, a

study performed by Ye et al. showed that the administration

of probiotic supplements had significantly increased the villus

heights and the ratio of villus height to crypt depth of chicks

and then increased performances in body weight and

average daily gain (57). Another study by Nii et al. showed

that oral administration of Limosilactobacillus (formerly

Lactobacillus) reuteri increased ileal villus height and crypt

depth of broiler chicks (58). Moreover, Wang et al. showed

that prophylactic feeding of Lacticaseibacillus casei DBN023

to S. pullorum infected chicks significantly increased their

jejunum villar height, villar height-to-crypt-depth ratio, and

reduced intestinal-crypt depth (59).

However, microvilli cannot maintain the morphology

without tight junction proteins. Tight junction proteins can

form continuous intercellular contact between the intestinal

epithelium and are essential to intestinal barrier function. In

this study, we showed that the expression of tight junction

genes, including claudin-1 and ZO-1, was significantly higher

in the treated group (P+S) than in the Salmonella-infected

group (S). A study by Qin et al. found that Lactiplantibacillus

p lantarum a l l ev ia ted Sa lmone l la - induced dext ran

permeability and decreased ZO-1 proteins in Caco-2 cells

(60). Bhat et al., and Mohd et al., found that L. rhamnosus

and L. fermentum significantly improved the E. coli-disturbed

tight junction proteins (Occludin, ZO-1, claudin-1) in Caco-2

cells (47, 61). Additionally, Deng et al. showed that L. casei

expanded tight junction protein levels, including ZO-1 and

Claudin-1 (62). Moreover, Nii et al. found that oral

administration of L. reuteri increased the expression of

Claudin-1, Claudin-5, ZO-2, and JAM2 in broiler chicks

infected with S. Typhimurium (63). Hence, our findings

evidenced that the administration of L. rhamnosus P118

protected the intestinal epithelial barrier from Salmonella

Typhimurium infection by regulating the expression of tight

junction relation genes. However, the mechanisms behind this

regulation by L. rhamnosus are still not well understood.

Furthermore, pretreatment of Salmonella-infected chicks

with L. rhamnosus P118 reduced the proportion of

Salmonella in the gut, which could be another potential

mechanism by which probiotics protect the intestinal

barrier integrity.

The infection of chicks by Salmonella induces inflammatory

responses. Cytokines play an irreplaceable role in immune response

and inflammation in chicks to Salmonella infection (64). In this
frontiersin.org

https://doi.org/10.3389/fimmu.2022.973224
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2022.973224
study, we showed a high producing level of pro-inflammatory IL-1b
and T helper (Th1) cytokine IL-18 in chicks infected with

Salmonella, while this level was significantly reduced after the

administration of L. rhamnosus P118. The reduction of IL-1b and

IL-18 levels may be explained by the mitigation of intestinal

damages caused by Salmonella after the administration of L.

rhamnosus P118 and the reduction of inflammatory response.

The results suggest a cytokine-mediated immune response

mechanism against Salmonella infection in the intestinal

epithelium of chicks. Similarly, a study conducted by Chen et al.

showed that the administration of a mixture of lactic acid bacteria

reduced the level of IL-1b, IL-6, and IFN-g in Salmonella infected-

chicks (65). These data agree with previous findings where the IL-

1b and IL-18 genes were up-regulated in the spleen and cecum of

new hatch chicks after oral inoculation with Salmonella (66).

Furthermore, it has been previously reported that the mRNA

expression of IL-1b, IFN-g and IL-18 were significantly up-

regulated in the cecal tonsil of Salmonella challenged hens (67).

The data from the current study suggest that the

intestinal epithelium was capable of initiating a cellular

immune response and a Th1-cytokines reaction to

Salmonella Typhimurium through activation of specific

cytokine genes.

The diversity and balance of gut microbiota are essential for

maintaining the beneficial functions of the intestinal mucosal

barrier and the host’s health, which may improve the host’s

immune system and then the host’s resistance to infection (68).

At the same time, the microbial community’s disruptions

translate into host susceptibility alterations, especially in

enteric infections (69). It has been pointed out that the normal

gut microbial of chicks are rich in probiotic bacteria, including

Lacticaseibacillus and Bifidobacterium, which may be contribute

to intestinal homeostasis, preventing the invasion of pathogenic

bacteria in a proactive way (70). However, the high abundance of

Bacteroides disrupted the gut microbiota balance, which further

stimulates the inflammatory response and causes secondary

infection with other pathogens (71). In this study, we showed

that the administration of L. rhamnosus P118 decreased the

proportion of Salmonella and balanced the diversity of gut

microbiota disrupted by the S. Typhimurium infection.

Indeed, maintaining the microbiota balance may improve the

host immune system and then reduce the Salmonella infection.

Similarly, a recent study by Khan and Chousalkar (72) showed

that probiotic-based Bacillus improved the diversity and

abundance of gut microbiota displayed by the Salmonella

challenge in chickens. Notably, the mechanisms by which

probiotics maintain the gut microbiota balance and reduce the

load of pathogens are diverse, heterogeneous and may be strain-

specific (73), which may be linked to the production of organic

acids, activation of the host immune system, and the production

of antimicrobial agents (74). Moreover, the competition for vital

nutrients can be one of these mechanisms. Deriu et al. (75)
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demonstrated that the competition on the iron acquisition by the

probiotic E. coli strain Nissle 1917 had reduced S. Typhimurium

colonization in mouse models.

Nevertheless, some remaining points could be further

studied. Since we have only quantified certain inflammation-

related factors and investigated a reduction in intestinal cell

apoptosis, the exact mechanisms by which L. rhamnosus P118

exerts its anti-inflammatory effects is an ongoing question. Our

findings provide evidence that L. rhamnosus P118 significantly

reduce intestinal cell apoptosis, but the potential mechanism also

remains to be further study. Together, our data showed that the

introduction of L. rhamnosus P118 could aid in the maintenance

of the intestinal mucosal barrier and modulate the microbiota,

the likely metabolites from L. rhamnosus P118 could be an

exciting point in future studies.
Conclusions

In this study, the effects of S. Typhimurium infection on

the epithelial integrity of new hatch chicks were evaluated

by macroscopic pathological section analysis, determination of

intestinal structure under the electron microscope, determination

of immune-related factors, D-lactic acid and endotoxin in serum.

In addition, this study also used full-length 16S rRNA sequencing

to evaluate the intestinal microbial diversity and stability of chicks

infected with S. Typhimurium. In summary, Salmonella disrupted

the intestinal epithelial barrier in newly hatched chicks by

bacterial translocation, stimulating the inflammatory response

and reducing intestinal cell apoptosis and the richness of

intestinal flora. After pretreatment with Lacticaseibacillus

rhamnosus P118, newly hatched chicks can be protected from

the destruction of intestinal epithelial barrier induced by

Salmonella by enhancing the immune wall, stabilizing the

expression of tight junction, reducing intestinal cell apoptosis,

reducing Salmonella colonization and maintaining the diversity

and stability of intestinal flora.
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SUPPLEMENTARY FIGURE 1

Linear discriminant analysis (LDA) was used to classify chicken intestinal
flora under different treatment conditions and evaluate the influence of

species with significant differences.
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