
RESEARCH ARTICLE

Implementing artificial neural networks

through bionic construction

Hu He1☯, Xu YangID
2☯*, Zhiheng Xu1, Ning Deng1, Yingjie Shang1, Guo Liu2, Mengyao Ji2,

Wenhao Zheng2, Jinfeng Zhao2, Liya Dong1

1 Institute of Microelectronics, Tsinghua University, Beijing, China, 2 School of Computer Science and

Technology, Beijing Institute of Technology, Beijing, China

☯ These authors contributed equally to this work.

* yangxu@tsinghua.edu.cn

Abstract

It is evident through biology research that, biological neural network could be implemented

through two means: by congenital heredity, or by posteriority learning. However, tradition-

ally, artificial neural network, especially the Deep learning Neural Networks (DNNs) are

implemented only through exhaustive training and learning. Fixed structure is built, and then

parameters are trained through huge amount of data. In this way, there are a lot of redun-

dancies in the implemented artificial neural network. This redundancy not only requires

more effort to train the network, but also costs more computing resources when used. In this

paper, we proposed a bionic way to implement artificial neural network through construction

rather than training and learning. The hierarchy of the neural network is designed according

to analysis of the required functionality, and then module design is carried out to form each

hierarchy. We choose the Drosophila’s visual neural network as a test case to verify our

method’s validation. The results show that the bionic artificial neural network built through

our method could work as a bionic compound eye, which can achieve the detection of the

object and their movement, and the results are better on some properties, compared with

the Drosophila’s biological compound eyes.

Introduction

Researches about artificial intelligence have become very popular in current days, due to the

ever growing demands from application domains such as pattern recognition, image segmen-

tation, intelligent video analytics, and autonomous robotics [1–4]. The problems in artificial

intelligence domain are mostly unstructured problems. Unlike structured problems, which

could break down into a series of well-defined steps, and represent precisely by mathematical

formulas, solving of unstructured problems requires the use of intuition, reasoning, and mem-

ory. Artificial neural network is more suitable for solving unstructured problems than tradi-

tional von Neumann architecture, thus becomes the core part of artificial intelligence research.

Nowadays, Deep Neural Network (DNN) has become the research hot-spot of artificial

neural networks [5], because it has won plentiful contests against people, including the most
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famous one recently, Google’s AlphaGo DLNN beating Lee Sedol, a famous I-go master. How-

ever, DNN has some disadvantages:

1. apt to be cheated when trained with small scale of data [6]. Since DNN typically exploits

rather fixed network structure, and could not change the structure to reflex the changing in

the environment, there would be a lot of redundant parameters, making the training result

less optimized when a merely small scale of data been feed, and apt to be deceived [6].

2. demanding a huge amount of computing power when trained with a large scale of data.

When trained with large scale of data, DNN becomes more accurate. However, huge

amount of computing power is needed to accomplish the training process. This will become

a bottleneck when the scale of data becomes even larger.

3. could deal with classification or regression, but not good at doing intuition or reasoning.

Since there are no feedback loops in DNN, it can only process data stream in an unidirec-

tional way, meaning the comparison of data for the past and now is not possible. So, it is

unfeasible to accomplish intuition or reasoning using DNN.

This is mainly due to the fact that the traditional ANN, including DNN, uses essentially the

same and fixed structure even for different problems. This can lead to a large number of

redundancy in the network:

1. Redundant structure and parameter training consumes extra energy and effort, and length-

ens the training time;

2. Redundant structures can lead to additional energy and computational power to be con-

sumed during the use of the network.

It is evident through biology research that, biological neural network could be implemented

through two means: by congenital heredity, or by posteriority learning. Training and learning

process could implement powerful artificial neural network. However, in biological neural sys-

tems, some neural network structures are just inherited directly from their parents, and imple-

mented through construction only. Those kinds of structure usually are used to perform

specific functionality, and have a more compact and concise topology.

In this paper, we propose a way to implement artificial neural network through bionic con-

struction rather than training and learning. Hierarchy of the neural network will be designed

according to analysis of the required functionality, and then the module design is carried out

to form the hierarchy. We choose Drosophila’s visual neural network as a test case to testify

our method’s validation.

The following is organized as: Section 2 discusses related work; Section 3 presents our

method; Section 4 discusses the structure of Drosophila’s visual system briefly; Section 5 gives

details of our test case research and the experiment result; finally we give the conclusion.

Related work

In recent years, many researchers have shown their interests on constructing the bionic artifi-

cial neural network. Zhang et al. have constructed a bionic neural network based on the study

of the olfactory neural system, which exhibits chaotic characteristics and has potential on pat-

tern recognition [7]. Li has designed a novel hierarchical modular echo state network

(HMESN) based on brain networks, in which each level of neurons using small world network

construction algorithm to generate the modular structure. Based on the topological character-

istics of hierarchical modular in brain network, it weakens the coupling intensity among neu-

rons and enriches the dynamics of internal neurons [8].
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As a prime model for biological study, Drosophila has received many research interests.

Chang et. al. [9] have examined the robustness of a simplified neural circuitry built from about

ten thousand single neurons of the Drosophila brain. They found the network is resilient

under both errors and attacks, and they have observed how such a resiliency is associated with

the accumulation of neurons along their birth stages. Lin et. al. [10] have analyzed the neurons

in the Drosophila brain, found the possible connecting path, and furthermore, performed clus-

ter analysis from the connectivity information of thousands of tangled neurons. Arena et. al.

[11] have proposed a new model of the olfactory system of the fruit fly Drosophila melanoga-

ster. The architecture is a multi-layer spiking neural network, inspired by the structures of the

insect brain mainly involved in the olfactory conditioning, namely the Mushroom Bodies, the

Lateral Horns and the Antennal Lobes. Later they have also proposed a neural-based model

for the formation of a spatial working memory mirroring some peculiarities of the Drosophila

central brain and in particular the ellipsoid body [12].

Akhmedova et al. have presented an artificial neural network with Co-Operation of Biology

Related Algorithms (COBRA) to solve multi-objective unconstrained problems. Their experi-

ment results showed that both variants of COBRA demonstrate high performance and reliabil-

ity in spite of the complexity of the optimization problems solved [13]. Chen et al. have

presented a bio-inspired neural network for improvement of information processing capability

of the existing artificial neural networks. They introduced a property often found in biological

neural system—hysteresis—as the neuron activation function and a bionic algorithm [14]. Hu

et al. have presented their effort on constructing auto-grow and auto-evolve bionic artificial

neural network. They have developed a paralleled simulation platform, and have explored

ways to promote the neural network to auto-generate as a response to external pulses [15, 16].

Bionic construction method to implement artificial neural network

According to biology discoveries, there are mainly two kinds of neural network structures:

1. Learning-type neural network: Usually can simultaneously perform multiple diverse func-

tionalities, with a more generalized topology, and could be optimized by training and

learning;

2. Constructing-type neural network: Usually developed for one or several specific functional-

ity, with a more compact, concise, and distinctive topology, and could be optimized

through evolution between generations.

Traditionally, no matter what kind of functionalities needs to achieve, the researchers tend

to use learning-type neural network, that is to say, implement artificial neural networks

through training or learning. However, by comparison of learning-type neural network and

constructing-type neural network in biology systems, we could conclude that they are obvi-

ously different in topology. If we use learning-type neural network to perform some function-

alities that are more suitable for constructing-type neural network, there will be a lot of

redundancies in the neural network. That will harm the neural network in many ways, like the

training effort or the running efficiency.

In this section, we propose a method to implement neural network through bionic con-

struction. The flow of this method is shown in Fig 1.

The method proposed is used to guide the implementing of constructing-type neural net-

work, so the functionality is usually distinctive. The purpose of functionality analysis is to

define the form of the input stimulus and output of the neural network, and find a possible

solution of hierarchy design for the target neural network. During hierarchy design phase,

for each hierarchy, its distinct function is defined, and input stimulus and output form
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decided. Then, through module design, the module (the smallest part of a hierarchy, repeat it

a lot of time to construct a hierarchy) is designed, sometimes needs evolution process. After

that, an optimization phase is carried out, to remove redundancy from the neural network,

and check for any part that could be improved. A verification phase is needed to find out if

Fig 1. Flow of our method.

https://doi.org/10.1371/journal.pone.0212368.g001
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the current neural network satisfies the required functionality. If not, this process needs

repeated again.

We will use Drosophila’s visual neural system as a test case, to show how our method

works, and to testify its validation.

Drosophila’s visual system

A compact genome and a tiny brain make Drosophila the prime model to understand the neu-

ral substrate of behavior [17]. Its visual neural network has distinguished and regular charac-

teristics, making it suitable for bionic research. Currently, the research of Drosophila’s visual

neural network focuses on motion analysis, color recognition, and pattern recognition.

Drosophila’s visual neural network is consisted of four levels: retina, stroma, medulla, and

lobule & lobular plate. The retina, an optically compound eye, is composed of regularly

arranged ommatidia, each of which contains eight photo-receptors (R1-R8) in addition to sup-

porting cells, to detect light ranging from UV to green [18]. The retina is in charge of receiving

external signals and propagating signals through the network. The stroma handles the detec-

tion of motion, and the medulla deals with delay. Based on the pulse that previous levels gener-

ated, the lobule & lobular plate gives the decision and promotes decisions to the brain.

Although many of the details of how this system works are unknown to us, we know that

Drosophila’s visual system has following features:

1. more sensitive to transverse motion, less sensitive to vertical motion

2. less effective to detect static object

3. unable to see far away object

Case study

Functionality analysis

Our target is to form an artificial neural network that could detect a moving object’s velocity.

In order to achieve this, we need to:

1. Able to sense that moving object;

2. Know the moving object’s position;

3. Know the moving object’s current position at any time;

4. Build its moving track, and identify its moving direction;

5. Calculate its velocity.

So, we could design the hierarchy of the neural network according to this analysis.

Hierarchy design

The reason to design the hierarchy is to make the separate constructing for each layer possible.

So, each layer should have a specific and unique function, which means we can decide the hier-

archy according to the function division.

The goal for this bionic artificial neural network is to decide a moving object’s velocity, so

we can build the hierarchy like this:

1. a layer to give the final result, as the velocity of that moving object

Implementing artificial neural networks through bionic construction
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2. a layer to identify the moving track of that object, and exact time when that object is at a

certain location. With that information, we are able to calculate the velocity.

3. a layer to identify the current location of that object. With this layer, we can know the infor-

mation of the location and time pair for that moving object, then propagate that informa-

tion for the upper layer to form the moving track.

4. a layer to identify the current perception area of that object. In Drosophila’s compound eye,

there are regularly arranged ommatidia, each of which contains eight photo-receptors. So,

when a moving object is before a Drosophila, more than one ommatidia would perceive it.

We need information of which ommatidia have currently perceived the moving object to

decide the location of that object.

5. a layer to perceive the moving object.

So, we decide our neural network should consist of five layers: perception layer, range esti-

mation layer, location identification layer, track recognition layer and final layer.

Module design

We will discuss the design of modules in each layer in detail in this part.

Perception layer. This layer is designed to perceive any object. According to research,

Drosophila has a fixed angle of view. In this work, we set this angle of view as 120 degree,

which means each of the perceive neurons can perceive the area of a cone with a 120-degree

angle. We arrange all the perceive neurons on a plane.

Let’s explain how this perception layer works first using a one-dimensional example as

shown in Fig 2. There are two objects in this figure, shown as one black rectangle and one

black circle, respectively. The black circle could be perceived by perceiving neuron 4, and 5,

while the black rectangle could be observed by perceiving neuron 3, 4, 5, and 6. If a neuron PLi
in perception layer observes an object, it would output a spiking signal to the next layer. So the

model of neurons PLi in perception layer can be described as:

OPLi
¼

1; if neuron i observes an object;

0; if neuron i observes nothing;
ð1Þ

(

Fig 3 shows how it works in the two-dimensional network. If an object is in the location of

the black circle shown in the figure, then it would be perceived by perceiving neuron 1, 2, 3, 4,

and 5.

When the object is moving in a transverse direction, then with its moving, different per-

ceive neurons would perceive it in a different time, thus could help us to determine its moving

track.

When the object is moving in a vertical way, if it gets nearer to the plane, then, less and less

perceive neurons would perceive it, while if the object is moving away from the plane, then

more and more perceive neurons will be able to perceive it. This information could be used to

estimate the distance of that object from the plane.

However, if the object is far enough from the plane, then all the perceive neurons would

perceive it, and the distance from that object to different perceive neurons would be almost the

same, making the perception layer less sensitive to its moving, just like the third feature of Dro-

sophila’s visual neural network: unable to see far away object.

Range estimation layer. The information collected by the perception layer would be

propagated to this layer to find out the perceived range for the object. Each neuron in range

Implementing artificial neural networks through bionic construction
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estimation layer connects to an area of neurons in the perception layer. The shape and size of

the area can be set according to the requirements for the recognition ability of neurons in this

layer.

When an object appears within the range of the perception layer connected by a neuron in

the range estimation layer, the neuron receives spiking signals from one or more neurons in

the perception layer. In order to gain more specific information about that object, such as the

Fig 2. 1-dimensional perception layer.

https://doi.org/10.1371/journal.pone.0212368.g002

Fig 3. 2-dimensional perception layer.

https://doi.org/10.1371/journal.pone.0212368.g003

Implementing artificial neural networks through bionic construction

PLOS ONE | https://doi.org/10.1371/journal.pone.0212368 February 22, 2019 7 / 19

https://doi.org/10.1371/journal.pone.0212368.g002
https://doi.org/10.1371/journal.pone.0212368.g003
https://doi.org/10.1371/journal.pone.0212368


exact location, the connections between neurons from perception layer and the neuron in the

range estimation layer are assigned different weight.

As shown in Fig 4, the plane is the perception layer, and the single neuron (call it neuron A)

is one neuron in range estimation layer. If the distance between the perceive neuron that

directly below neuron A (call it neuron B) and the out most perceive neuron (call it neuron C)

that has a connection with neuron A is n, then, the weight of the connection between neuron

A and neuron B is 2n − 1, while the weight of the connection between neuron A and neuron C

is 1. The weight for the connection of those between them can be calculated accordingly.

Fig 5 gives an example when n is 3.

This paper presents an available method to set the weight, does not necessarily mean that

this is the optimal weight distribution, but because of the weight distribution, which is easy

to expand the network. We choose this weight assignment mechanism for mainly two

reasons:

1. Convenient when extending the network. When the network scale is enlarged, a simple

method of weight calculation can be used, so it can be easily applied to any network of any

size.

Fig 4. Different weight for different connections.

https://doi.org/10.1371/journal.pone.0212368.g004
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2. Under this weight assignment mechanism, only one maximum value can be obtained by

the second layer neurons’ calculation, which is convenient for the posterior layer neuron to

make decision.

The neurons in range estimation layer would calculate the weighted spiking signals it

receives from perception layer to find out useful information about the distance and location

of the moving object. So the model of neurons in the range estimation layer can be described

by Eq (2):

ORELj
¼
X

wijOPLi
ð2Þ

Where ORELj
is the output of neuron j in the range estimation layer; OPLi

is output of neuron

i in the perception layer; wij is the weight of that connection between those two neurons. The

sum counts for all the connections from perception layer to neuron A.

Location identification layer. Range estimation layer propagates the sum it generates to

the location identification layer. Each neuron in the location identification layer connects to

five neurons in the previous layer and compares the output values of those neurons. If it finds

out that the neuron that directly before it outputs the maximum value, then a spiking is gener-

ated by this neuron and sent to the next layer to identify that the object is currently in its loca-

tion. The model of neurons in location identification layer can be expressed as Eq (3)

OLILi
¼

1 if ORELi
¼ MAXfOREL1

; :::;ORELm
g

0 if ORELi
< MAXfOREL1

; :::;ORELm
g

ð3Þ

(

Where OLILi
is the output of neuron i of the location identification layer; ORELi

is output of

neuron i of the range estimation layer (Here it has the same label i as the previous neuron,

meaning it is directly before that neuron).

Track recognition layer. Location identification layer identifies the location of the object.

If that object is moving, then different neurons in location identification layer would give out

spiking signals on different time. Track recognition layer uses this information to track the

object and gives the direction through spiking signal to next layer.

Fig 5. Connection between layer 1 to layer 2.

https://doi.org/10.1371/journal.pone.0212368.g005
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The connection between the neurons in the fourth layer and the neurons in the third layer

is shown in Fig 6. This layer requires two cycles of detection to complete its task. When a neu-

ron in the fourth layer receives a spiking signal from the neuron that directly before it in the

third layer(in Fig 6, it’s the neuron that directly below it), this neuron will be activated, thus

the detection mechanism turns on.

If at the next moment spiking signal appears in the upper left corner, then the output

value of the fourth layer for the direction of motion is 1. The output is shown in Fig 7. A total

of eight directions to determine the output value, respectively, the output value from 1 to 8.

Further, if the output direction determination is not zero (i.e., a number between 1-8), the

neuron of the fourth layer sends a single spiking signal to the next layer. When the first spik-

ing signal passes through the eight neurons, a preliminary information of the direction is

obtained, and when the second spiking signal arrives, the information can be further

inferred. Combining the two results, the final refinement direction information can be

determined.

Final layer. The final layer can estimate the velocity of the object by calculating the spik-

ing signals it receives from track recognition layer in a fix time interval. If in that interval, it

receives many spiking signals from the previous layer, then it could conclude that the object is

moving very slow, otherwise, it could conclude it’s moving fast. In addition, for the sake of pre-

venting the object in the field of view within the ring movement, which may lead to the speed

misjudgment, in this paper, the different small field of visions are divided according to the size

of the sensor field of view. When the object moves out of the current small field area, the cur-

rent decision is ended by the area judgment function, and then into the next small field of view

of the judge.

Optimization

After module design, we have run an optimization phase to remove any unnecessary connec-

tions or structures by a pruning method. Fig 8 shows the final structure of our bionic artificial

neural network built to imitate the functionality of Drosophila’s visual neural network. The

neurons in the previous four layers are grouped in an 8�8 array. Every neuron in the second

Fig 6. Connection between layer 3 to layer 4.

https://doi.org/10.1371/journal.pone.0212368.g006
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layer connects to 9 neurons from layer 1. Every neuron in layer 3 connects to 5 neurons in

layer 2. Every neuron in layer 4 connects to 9 neurons in layer 3. There is only one neuron in

layer 5, which connects to all the neurons in layer 4. The total scale of this neural network

could be adjusted according to the requirements.

Verification

In order to simulate and verify this bionic artificial neural network, we have built a simulation

environment following CPU+GPU style. CPU is in charge of control, while GPU is used for

computation for each neuron. The GPU we used is Nvidia Quadro K2200. In our simulation

environment, a lot of parameters could be configured, such as the neuron model, connection

between neurons, network scale, and so on.

We build the test environment as an imitation track of a moving object. And Fig 9 shows the

output of layer 1 (perception layer) for 9 continuous time stamps. This data is feed to layer 2

(range estimation layer) and generates the output shown in Fig 10, which is the weighted sum

of the output of neurons in layer 1. Then, location identification layer identifies the location of

that object by comparing the sum results from layer 2, as shown in Fig 11. The neuron in layer

3 will send a spiking signal to tell neuron in layer 4 about the current location to form the track

for that object and help to decide the moving direction. Also, according to the output of layer 2

Fig 7. The orientation information of the output.

https://doi.org/10.1371/journal.pone.0212368.g007
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and layer 3, the distance of that moving object is also generated, as shown in Fig 12. Here the

number is the distance judged by the neural network (3 means faraway, while 1 means near).

According to our design, the spiking output from layer 3 will indicate the current location to

layer 4, thus layer 4 could output the moving direction of that object, as shown in Fig 13. In

Fig 8. The bionic artificial neural network.

https://doi.org/10.1371/journal.pone.0212368.g008
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Fig 13, current location of the moving object is denoted as a “0“, while the moving direction is

denoted as a number at previous location of that object. The meaning of the number for the

moving direction is shown in Fig 7. The single neuron in layer 5 will decide the approximate

velocity of that moving object by counting how many signals it received during a fix time inter-

val. Through the comparison of Figs 9 to 13, it could be concluded that our neuron network

can find the correct location, distance, and moving direction of that moving object.

Contrastive analysis with actual compound eyes

The bionic artificial neural network designed in this paper has the function of detecting the

velocity, direction, and distance of the object, viewed as a bionic compound eye, as is the

Fig 9. Output of layer 1.

https://doi.org/10.1371/journal.pone.0212368.g009
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actual Drosophila compound eye. The comparison of biological and this bionic compound

eye [19–23] is shown in Table 1. Due to the lack of Drosophila compound eye data, the first

three cited data are from bees, except the last one. It can be found that, in terms of observation

distance, the perceived perspective of a single small eye in this subject increases by 30 degrees,

resulting in an approximately two-fold increase in observable distance. From the reaction

time, the biological compound eye needs 10ms for minimum processing of information, and

ours is 100 times faster. From the fastest resolution, when the object in the field of vision stays

less than 1ms, the biological compound eye can’t feel the presence of objects, while the effi-

ciency of the bionic compound eye is close to 100 times. Moreover, judging from the accuracy

of direction, there are only four kinds of direction determining cells in Drosophila, which can

Fig 10. Output of layer 2.

https://doi.org/10.1371/journal.pone.0212368.g010
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only be judged in four directions: upper, lower, left and right, while our work will be refined to

eight directions.

Yet, The biological compound eye also has a detection function on the edge of the

object, our bionic eye does not currently have this function, which is the next stage of

optimization.

Conclusion

In this work, we presented a method to implement artificial neural network through bionic

construction rather through huge scale’s training and learning. This idea is inspired by the bio-

logical discoveries that, biological neural network could be implemented through two means:

Fig 11. Output of layer 3.

https://doi.org/10.1371/journal.pone.0212368.g011
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by congenital heredity, or by posteriority learning. The artificial neural network implemented

through construing-type neural network could be used to perform some specific tasks, would

have a more compact and concise structure. The case study verifies the validation of our

method, and shows that our neural network can imitate the function of Drosophila’s visual

neural network with similar features.

This is the first step toward an automatic process to generate the bionic artificial neural net-

work. The construction of this neural network is conducted manually in this work. Later, we

aim to use our simulation platform to find out sequences of environment inputs to promote

the bionic neural network to auto-generate into the target neural network we presented in this

work. And we are already adopting this method to build neural network to accomplish moving

object detection and tracking. It’s a very demanding application nowadays.

Fig 12. Output of distance.

https://doi.org/10.1371/journal.pone.0212368.g012
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Fig 13. Output of layer 4.

https://doi.org/10.1371/journal.pone.0212368.g013

Table 1. Comparison of biological and bionic compound eye.

Parameter(compound eye) Biological Bionic

Sight Distance About 1 meter About 2.2 meter

Reaction Time 10ms 0.1ms

Fastest Resolution 1ms 0.013ms

Directional Accuracy 4 groups 8 groups

https://doi.org/10.1371/journal.pone.0212368.t001
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