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Gonadotropin-releasing hormone (GnRH) neuron activity and GnRH secretion are

essential for fertility in mammals. Here, I review findings from mouse studies on

the direct modulation of GnRH neuron activity and GnRH secretion by non-peptide

neurotransmitters (GABA, glutamate, dopamine, serotonin, norepinephrine, epinephrine,

histamine, ATP, adenosine, and acetylcholine), gasotransmitters (nitric oxide and carbon

monoxide), and gliotransmitters (prostaglandin E2 and possibly GABA, glutamate, and

ATP). These neurotransmitters, gasotransmitters, and gliotransmitters have been shown

to directly modulate activity and/or GnRH secretion in GnRH neurons in vivo or ex vivo

(brain slices), from postnatal through adult mice, or in embryonic or immortalized mouse

GnRH neurons. However, except for GABA, nitric oxide, and prostaglandin E2, which

appear to be essential for normal GnRH neuron activity, GnRH secretion, and fertility

in males and/or females, the biological significance of their direct modulation of GnRH

neuron activity and/or GnRH secretion in the central regulation of reproduction remains

largely unknown and requires further exploration.

Keywords: GnRH neurons, neurotransmitters, gasotransmitters, gliotransmitters, signaling pathways,

electrophysiology, calcium, GnRH secretion

INTRODUCTION

Gonadotropin-releasing hormone (GnRH) neurons, whose cell bodies (in rodents) reside mainly
in the preoptic area (POA) of the hypothalamus as well as in the medial septum (MS) and diagonal
band of Broca (DBB), provide the final output in the central regulation of mammalian fertility:
pulsatile and, in females, surge GnRH secretion from axon terminals in themedian eminence (ME).
This is despite the fact that subpopulations of kisspeptin (KP) neurons in the arcuate nucleus (ARC)
and rostral periventricular area of the third ventricle (RP3V), which innervate GnRH neurons,
appear to be the “GnRH pulse generator” and “GnRH surge generator,” respectively, and together
with KP neurons in the posterodorsal medial amygdala (MePD) integrate endocrine, metabolic,
and environmental (including circadian, stress, pheromonal, and sexual behavior-related) signals
in the hypothalamic-pituitary-gonadal axis (1–11). These signals are conveyed to GnRH neurons
by KP neurons, other neurons, and glial cells that release one or more peptide neurotransmitters
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(including KP), non-peptide neurotransmitters (also called
conventional, classical, or small-molecule neurotransmitters),
gasotransmitters, and/or gliotransmitters onto GnRH neuron
cell bodies, dendrites, or “dendrons” to modulate GnRH
neuron activity (considered here to be changes in membrane
potential, action potential firing, and/or cytoplasmic, free Ca2+

concentration ([Ca2+]i)) and GnRH secretion (12–28). The
dendrons are processes (blended dendrites and axons), found
so far only in GnRH neurons, that receive synaptic input like
dendrites but also conduct action potentials like axons, and that
project from GnRH cell bodies to the ME where they split into
short axon terminals to enable GnRH secretion into the portal
vasculature (21, 29). GnRH neurons receive their highest density
of synaptic innervation along their proximal dendrons (up to
∼500µm from the cell body), which contain the action potential
initiation site (30, 31). At their distal dendrons (∼500µm from
the cell body), GnRH neurons appear to be interconnected
through dendro-dendritic bundling and associated shared inputs
from ARC KP neurons and possibly other neurons and glial
cells, which may provide a mechanism for the synchronization
of GnRH neuron activity necessary for pulsatile GnRH secretion,
as well as an additional mechanism for its direct modulation
(4, 32–36).

GnRH secreted from GnRH neuron axon terminals in the
ME into the hypothalamo-hypophyseal portal circulation binds
to GnRH receptors on pituitary gonadotrophs and stimulates
the synthesis and secretion into the systemic circulation of
luteinizing hormone (LH) and follicle-stimulating hormone
(FSH). LH and FSH are required for gametogenesis and gonadal
biosynthesis in both sexes, for secretion of estradiol (E, a.k.a. E2)
and progesterone (P), as well as for ovulation, in females, and
for secretion of testosterone (T) in males (37). E, P, and T feed
back onto the brain to inhibit GnRH secretion (via inhibition of
ARC KP or other neurons), and onto the anterior pituitary to
inhibit LH/FSH secretion, except in the afternoon on the day of
proestrus in females, when E and P stimulate a surge of GnRH
secretion [via activation of RP3V KP neurons (6)]. The switch
from E negative feedback to E positive feedback at proestrus is
triggered by circadian input from vasopressin neurons in the
suprachiasmatic nucleus (SCN) to RP3V KP neurons and GnRH
neurons, and by increased levels of E. This switch, combined
with E-mediated de novo synthesis of P within the hypothalamus,
initiates the GnRH surge, which in turn triggers the LH surge
that results in ovulation (6). The GnRH/LH surge is associated
with increased activation of RP3V KP neurons, which (unlike
ARC KP neurons) project to the soma and proximal dendrites
of a subpopulation of GnRH neurons, along with increased
GnRH neuron somatic and dendritic spine density, and critically
depends on KP receptor signaling in GnRH neurons (1, 3, 33, 38).
This suggests that an increase in excitatory synaptic input from
RP3V KP neurons to a subpopulation of GnRH neurons is
required for the GnRH/LH surge; however, as discussed below,
the GnRH/LH surge may also depend on excitatory input from
other cells (28, 39).

Owing to the relative ease with which mouse GnRH
neurons can be genetically manipulated, electrophysiologically
assayed, and imaged, mice represent the most tractable system

for studying mammalian GnRH neurons. I recently reviewed
the direct modulation of GnRH neuron activity and GnRH
secretion in mice by neuropeptides, with direct modulation
considered to be modulation that persists in the presence of
the Na+ channel blocker tetrodotoxin (TTX) and amino acid
transmitter receptor antagonists (40). Here, I review the direct
modulation by non-peptide neurotransmitters, gasotransmitters,
and gliotransmitters, including their cognate receptors and
signaling mechanisms, of GnRH neuron activity and GnRH
secretion in mice. The review is based on data obtained from
green fluorescent protein (GFP)- or genetically encoded Ca2+

indicator (GECI)-expressing GnRH neurons in vivo or ex vivo
(brain slices), from postnatal through adult mice, when data are
available, or from alternatives such as embryonic mouse GnRH
neurons or immortalized cell lines of mouse GnRH neurons
(19, 25, 41–49).

MODULATION OF GnRH NEURON
ACTIVITY AND SECRETION BY
NON-PEPTIDE NEUROTRANSMITTERS

Non-peptide neurotransmitters are defined here as endogenous
chemicals (other than neuropeptides) that transmit signals
across a synapse from presynaptic neurons, where they are
released from secretory vesicles via Ca2+-dependent exocytosis,
to postsynaptic neurons (e.g., GnRH neurons), where they
bind to and activate ionotropic and/or metabotropic receptors.
Activation of ionotropic receptors results in the opening of ion
channels through which one or more types of ions such as Na+,
K+, Cl−, and Ca2+ flow, whereas activation of metabotropic
receptors results in second messenger activation or inhibition
of ion channels via signal transduction mechanisms that often
involve G proteins. This, in turn, results in a change, or
modulation, of the activity (membrane potential and/or [Ca2+]i)
and output (neurotransmitter or neuropeptide release) of the
postsynaptic neurons.

Amino Acids
γ-aminobutyric Acid (GABA)
GABA released from non-GnRH neurons, and potentially from
a subpopulation of GnRH neurons (50), binds to GABAA

receptors (GABAARs), which are GABA-gated Cl− channels,
and to GABAB receptors (GABABRs), which are G protein-
coupled receptors (GPCRs) linked to K+ channels, in GnRH
neurons. This results inmodulation of GnRHneuron activity and
GnRH/LH secretion, with net GABA effects determined by the
ratio of GABAAR and GABABR-mediated effects (19, 26, 50–55).

Activation of GABAARs in GnRH neurons of pubertal
and adult mice has complex effects on GnRH neurons but
mainly depolarizes and excites them (i.e., increases their action
potential firing frequency). Exogenous GABA, the GABAAR
agonist muscimol, and the GABAAR antagonist bicuculline
increase, decrease, or have mixed effects on action potential
firing frequency that may depend on GnRH neuron resting
membrane potential and/or intracellular Cl− concentration,
which may in turn depend on ongoing GABAAR signaling
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by endogenous GABA (19, 56–58). However, the GABAAR
antagonist picrotoxin, which prevents activation of GABAARs by
endogenous GABA, consistently suppresses GnRH neuron firing
(19, 59), and GABA increases [Ca2+]i in GnRH neurons (60, 61),
suggesting that GABA predominantly depolarizes, or depolarizes
and excites, GnRH neurons. GABA increases [Ca2+]i by first
opening GABAAR channels, which results in depolarization
followed by Ca2+ entry through voltage-gated Ca2+ channels
(61, 62). Additional evidence for GABAergic excitation of adult
GnRH neurons via GABAAR activation is that most adult
GnRH neurons express the Cl− accumulator transporter NKCC1
and anion exchanger AE2, which contribute to depolarization
after GABAAR activation, but not the primary Cl− extruder
transporter KCC2, which contributes to hyperpolarization after
GABAAR activation (63, 64).

Adult GnRH neurons appear to express α1, α2, α3, α5, β1,
β2, β3, γ1, γ2, δ, ε, and ρ1 GABAAR subunits, with some
differences between males and females (65–70). Spontaneous
release of endogenous GABA onto GnRH neurons evokes
phasic postsynaptic currents mediated by γ2 subunit-containing
GABAARs as well as tonic extrasynaptic currents mediated by
γ2 subunit- and δ subunit-containing GABAARs (52, 71). The
amplitude and frequency of GABAergic postsynaptic currents
(PSCs) are reduced by 70 and 77%, respectively, and the response
to exogenous GABA is reduced by 90%, in GnRH neurons of
mice in which the γ2 subunit is knocked out specifically in GnRH
neurons (71). Taken together with the finding that the δ subunit
appears to be expressed in only 44% of GnRH neurons (52),
this indicates that the γ2 subunit is critical for normal GABAAR
function in GnRH neurons. Although male and female GnRH
neuron γ2 knockout mice exhibit normal fecundity, estrous
cycles, and puberty onset, suggesting that GABAAR-mediated
neurotransmission at the GnRHneuron is not essential for GnRH
secretion or fertility, it is also possible that other GABAAR
subunits, other transmitters, or an intrinsic conductance may
have compensated for the loss of the γ2 subunit in those mice
(71). A 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP)-
sensitive tonic GABAergic current modulates GnRH neuron
activity, suggesting a role for δ subunit-containing GABAARs in
GnRH neurons, which confer neurosteroid sensitivity, as well
as a potential role for stress-derived neurosteroid modulation in
the regulation of fertility [(52), reviewed by (72)]. GABAARs are
expressed in the cell bodies, dendrites, and dendrons of GnRH
neurons (21, 44, 62).

GABA modulates GnRH neuron activity through GABABRs
in addition to GABAARs. Exogenous GABA (in the presence of
the GABAAR antagonist picrotoxin) and the GABABR agonist
baclofen directly hyperpolarize GnRH neurons, by inducing a
Ba2+-sensitive outward K+ current, and decrease GnRH neuron
firing (51, 53, 54). Endogenous GABA inhibits GnRH neurons
via GABABRs following excitation mediated by GABAARs or
KP receptors (73). GABABRs in GnRH neurons are composed
of GABAB1 and GABAB2 subunits as in other neurons and are
expressed in 22% of GnRH neurons in male mice and 70%
of GnRH neurons in female mice, with expression remaining
relatively constant across the estrous cycle (51, 53, 69). Female

GABAB1 knockout mice exhibit disrupted estrous cyclicity
and reduced fertility, as well as increased expression levels of
genes including Gad1 (which codes for glutamate decarboxylase,
the enzyme that catalyzes the production of GABA from
glutamate), Kiss1 (which codes for KP), and Gnrh1 (which
codes for GnRH) that may affect the sexual differentiation
of the brain and the proper wiring of the GnRH and KP
systems (74, 75). However, the effects on GnRH neuron activity,
GnRH secretion, or fertility of knocking out GABAB1 and/or
GABAB2 subunits specifically in GnRH neurons have yet to
be reported.

GABAergic wiring and transmission onto GnRH neurons
appear to be important for fertility. GnRH neuron cell bodies and
dendrites receive inputs from GABAergic neurons in the ARC
and RP3V (26, 35, 76). GnRH neurons in the POA of prenatally
androgenized (PNA) female mice receive an increased number
of appositions and increased GABAergic transmission from
GABAergic neurons in the ARC (35, 77). This results in increased
GABAergic PSC amplitude and frequency, increased firing,
persistently elevated GnRH/LH release frequency, and reduced
progesterone (P) negative feedback prior to androgen (T) excess
and reproductive impairments (including disrupted reproductive
cycles) that mimic those of polycystic ovary syndrome (PCOS),
the most common endocrinopathy in women of reproductive
age and the leading cause of female infertility (35, 59, 77–80).
This suggests that normal GABAergic wiring and transmission
onto GnRH neurons is essential for normal GnRH neuron firing,
GnRH/LH secretion, and reproductive function in females, and
that increased GABAergic wiring and transmission onto GnRH
neurons may play an important role in PCOS. However, it
should be emphasized that, while PCOS is associated with
increased cerebrospinal fluid concentrations of GABA, PCOS has
a complex etiology which includes genetic, environmental, and
metabolic factors along with neuroendocrine factors (78, 81).

GABA also appears to be important for activating the GnRH
neurons that trigger ovulation. Low-frequency (2Hz) in vitro
optogenetic stimulation of GABAergic neurons in the RP3V,
which co-express KP (82), generates an immediate and transient
GABAAR-mediated increase in GnRH neuron firing, whereas
higher frequencies (10Hz) recruit the long-lasting activation
observed following RP3V KP neuron stimulation (26). However,
2-Hz activation of RP3V GABAergic neurons in vivo does
not alter LH secretion, whereas 10-Hz stimulation evokes a
sustained large increase in LH secretion identical to RP3V KP
neuron activation, suggesting that KP, rather than GABA, is the
functionally dominant co-transmitter at the time of ovulation
(26). Yet, KP may exert some of its effects on GnRH neurons via
GABA. GABAergic PSC (and miniature PSC; mPSC) frequency
in GnRH neurons increases (along with GnRH neuron firing
rate and burst frequency) during the afternoon of proestrus in
normally cycling female mice (83, 84), and KP increases the
amplitude and frequency of GABAergic PSCs in GnRH neurons
from ovariectomized mice treated with E (85), whose serum level
rises during the afternoon of proestrus. E-dependent GABAergic
transmission may be important for reproduction in females, as
female mice lacking estrogen receptor α (ERα, also called ESR1)
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in their GABAergic neurons are infertile and have abnormal
estrous cycles and abolished E positive feedback responsible for
the proestrus GnRH/LH surge required for ovulation (39). In
addition to acting indirectly onGnRHneurons via ERα expressed
in GABAergic neurons (60), E acts directly on GnRH neurons
via the estrogen receptor β (ERβ, also called ESR2)/Akt/neuronal
nitric oxide synthase (nNOS) pathway to generate nitric
oxide synthase (NOS) that retrogradely accelerates GABA and
glutamate release from presynaptic terminals contacting GnRH
neurons, which increases mPSC frequency and firing rate
and thus may also contribute to the proestrus GnRH/LH
surge (86).

GABA may also mediate the effects of leptin, an important
regulator of food intake and energy expenditure, on GnRH
neurons, which do not express leptin receptors. Mice lacking
leptin receptors in their GABAergic neurons exhibit delayed
puberty onset and decreased fertility in both sexes, as well as
a suppressed proestrus GnRH/LH surge (87). Leptin-responsive
GABAergic neurons in the ARC project to the POA (88), but it
has not yet been reported whether they project to GnRH neurons
in the POA and affect GnRH neuron activity or secretion.

Glutamate (Glu)
Glu increases GnRH neuron activity via α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA)/kainate (KA), N-
methyl-D-aspartate (NMDA), and metabotropic glutamate
(mGlu) receptors (AMPARs, NMDARs, and mGluRs) expressed
in the cell bodies, dendrites, and dendrons of GnRH neurons
(21, 44, 62, 89, 90). Glumay be released ontoGnRHneurons from
KP neurons in the ARC as well as from other neurons, possibly
including GnRH neurons, since they express vesicular glutamate
transporter 2 [vGluT2, (55, 70, 76, 82, 90, 91)].

AMPA increases GnRH neuron firing (19, 54), as well as Ca2+

entry through AMPARs, which are non-selective cation channels
(61). GnRH neurons appear to express GluA1, GluA2, GluA3,
and GluA4 AMPAR subunits (67, 69, 70).

NMDA increases [Ca2+]i in only about 20% of GnRHneurons
(61), probably via Ca2+ entry through NMDAR channels, which
are non-selective cation channels with higher Ca2+ permeability
than AMPARs, as well as via membrane depolarization followed
by Ca2+ entry through L-type Ca2+ channels, and subsequently
via Ca2+-induced Ca2+ release involving internal Ca2+ stores
and IP3 receptors. GnRH neurons appear to express GluN1,
GluN2B, GluN2D, and GluN3A NMDAR subunits (44, 67, 69,
70, 92).

The mGluR1/mGluR5 agonist (S)-3,5-
dihydroxyphenylglycine (DHPG) increases firing in a
subpopulation of GnRH neurons (45% in whole-cell recordings
and 23% in cell-attached recordings) in the MS/DBB (90) but not
in the POA (93). The DHPG-induced increase in GnRH neuron
firing in the MS/DBB may occur via Gq protein stimulation of
phospholipase C (PLC) resulting in the generation of inositol
1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), followed
by DAG activation of transient receptor potential-canonical
(TRPC) channels, which are non-selective cation channels.
GnRH neurons appear to express mGluR1, mGluR5, and
mGluR8 mGluRs (67, 70).

Glu may play an important role in the modulation of GnRH
neuron activity and secretion required for fertility. Both the
decrease in GnRH neuron firing during E negative feedback
and the increase in GnRH neuron firing during E positive
feedback depend on Glu neurotransmission (15). Moreover,
female mice lacking ERα in their glutamatergic neurons, which
include most ARC KP neurons but only a small percentage
of RP3V KP neurons, exhibit advanced puberty onset and
abnormal negative feedback, are infertile, and have abolished
E positive feedback responsible for the proestrus GnRH/LH
surge (39). Glu neurotransmission onto GnRH neurons, at
least through GluA2-containing AMPARs or all NMDARs, does
not appear to be essential for normal GnRH or fertility, as
shown using mice lacking GluA2-containing AMPARs or all
NMDARs in GnRH neurons and other mainly limbic system
neurons in hypothalamic and septal areas (94). However,
other neurotransmitter receptors may have compensated during
development for the lack of GluA2-containing AMPARs or all
NMDARs in GnRH neurons and other mainly limbic system
neurons in those mice.

Monoamines
Dopamine (DA)
DA exerts complex pre- and postsynaptic actions on GnRH
neurons. Exogenous DA decreases firing via direct postsynaptic
actions, as well as indirectly via RP3V-evoked GABAergic and
glutamatergic PSCs (presynaptic actions), in ∼50% of GnRH
neurons through D1-like and/or D2-like receptors (95). On
the other hand, endogenous DA (from neurons in the RP3V
and possibly elsewhere) increases firing in ∼30% of GnRH
neurons, whereas DA from RP3V neurons alone decreases firing
in ∼20% of GnRH neurons, also through D1-like and/or D2-
like receptors (95). D1-like receptors are Gs-coupled receptors
that stimulate adenylyl cyclase (AC) to produce cyclic adenosine
monophosphate (cAMP), which activates protein kinase A (PKA)
and may in turn inhibit K+ channels, while D2-like receptors,
including D2, D3, and D4 receptors that appear to be expressed
in GnRH neurons (67, 70), are Gi-coupled receptors that inhibit
AC, which results in reduced cAMP levels, inhibition of PKA,
and activation of K+ channels. Yet, it is unclear how activation
of D1-like receptors decreases GnRH neuron firing, since they
are coupled to Gs, and since forskolin, which also stimulates AC
and increases cAMP, increases GnRH neuron firing (96). DA,
or tyrosine hydroxylase (TH), the rate-limiting enzyme in DA
synthesis, is co-expressed in ∼90% of RP3V KP neurons, and
axon terminals of TH neurons appose GnRH neurons (97, 98),
but mice in which TH has been knocked out exhibit normal
puberty, LH levels, and fertility, suggesting that DA from RP3V
KP neurons is not required for puberty or reproduction (99).
However, other neurotransmitters may have compensated for the
loss of TH (and likely absence of DA) in RP3V KP neurons in
those mice.

Serotonin (5-HT)
GnRH neurons in the POA receive direct projections from 5-HT
neurons in the raphe nuclei [RN (100)]. Exogenous 5-HT, or the
selective serotonin reuptake inhibitor (SSRI) fluoxetine, which
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increases endogenous 5-HT levels, directly inhibits (via 5-HT1A
receptors, which are coupled to Gi) and then excites (via 5-HT2A
receptors, which are coupled to Gq) GnRH neurons (96). The
inhibition depends on K+ channel activation and AC inhibition,
whereas the excitation depends on protein kinase C (PKC),
and the balance of 5-HT-evoked inhibition vs. excitation varies
according to age, sex, and estrous cycle stage (96). However, it
should be noted that preventing or blocking AC activity has also
been shown to have no effect onGnRHneuron activity (101, 102).
GnRH neurons appear to express 5-HT1A, 5-HT2A, 5-HT1A,
5-HT3A, and 5-HT4 5-HT receptor subunits (67, 69, 70).

Norepinephrine (NE)
Brainstem A2 (solitary tract nucleus; NTS) and A6 (locus
coeruleus; LC) NE-containing neurons project to GnRH neurons
in the POA (100), and dopamine-β-hydroxylase (the rate-
limiting enzyme for NE synthesis)-immunoreactive terminals
form synapses on GnRH neuron dendrites (103). NE suppresses
GnRH neuron firing directly, and the suppression is mimicked
by the α1-adrenergic agonist phenylephrine and β-adrenergic
agonist isoproterenol, but not by the α2-adrenergic receptor
agonist guanabenz, suggesting that NE activates α1- and β-
adrenergic, but not α2-adrenergic receptors, in GnRH neurons
(104). Additional evidence for the participation of both α1-
and β-adrenergic receptors is that the α1-adrenergic antagonist
prazosin reduces the hyperpolarizing action of NE significantly
but not completely (104). However, it is unclear how α1- and
β-adrenergic receptors mediate the suppression since α1- and β-
adrenergic receptors are coupled to the stimulatory G proteins
Gq and Gs, respectively. GnRH neurons appear to express α1A-,
α1B-, α2A-, α2B-, α2C-, and β1-adrenergic subunits (67, 69, 70).

Epinephrine (Epi)
Inhibition of central Epi synthesis blocks the GnRH/LH surge in
E and P-treated ovariectomized rats (105); however, the effects of
Epi, which like NE may bind to α1- and β-adrenergic receptors,
on GnRH neuron activity or GnRH/LH secretion in mice have
yet to be reported.

Histamine (H)
H increases [Ca2+]i and GnRH secretion in immortalized mouse
GnRH neurons via H1 receptors coupled to phosphoinositide
hydrolysis (106, 107). Also, axons of ERα-expressing
histaminergic neurons in the tuberomammillary nucleus (TMN)
in rats and humans exhibit axo-dendritic and axo-somatic
appositions onto GnRH neurons, and intracerebroventricular
administration of the H1 receptor antagonist, mepyramine,
blocks the GnRH/LH surge in ovariectomized E-treated rats,
suggesting that E-receptive histaminergic neurons in the TMN
contribute to the positive feedback effect of E in the induction
of the GnRH/LH surge (108). Although mouse GnRH neurons
appear to express H1 and H2 receptors (67, 70), which are
coupled to Gq and Gs, respectively, the effects of H on GnRH
neuron activity and secretion in mice have yet to be reported.

Purines
Adenosine triphosphate (ATP)
Extracellular ATP increases [Ca2+]i and GnRH secretion via
activation of P2X receptor channels, which are non-selective
cation channels, followed by membrane depolarization and
subsequent Ca2+ influx through L-type Ca2+ channels, in GnRH
neurons cultured from the olfactory placode of monkey embryos
(109). Mice express P2X2, P2X4, P2X5, P2X6, and P2X7 ATP
receptor subunits in GnRH neurons (70, 110). While blockade of
P2X receptor channels by the P2X receptor antagonist pyridoxal-
phosphate-6-azophenyl-2′,4′-disulfonate (PPADS) has no effect
on spontaneous [Ca2+]i oscillations in GnRH neurons cultured
from nasal pit explants of mouse embryos (27), there are no
reports yet on the effects of extracellular ATP, or of P2X receptor
antagonists, on GnRH neuron electrical activity, [Ca2+]i, or
secretion in GnRH neurons of postnatal mice.

Adenosine (Ado)
GnRH neurons appear to express Ado receptors 2A and
2B (67, 70), which are coupled to Gs. However, as with
extracellular ATP, there are no reports yet on the effects of
extracellular Ado on GnRH neuron electrical activity, [Ca2+]i, or
secretion in mice.

Cholinergics
Acetylcholine (ACh)
ACh exerts stimulatory and inhibitory effects on GnRH secretion
in immortalized GnRH neurons, which express α7 nicotinic
ACh receptors (AChRs) and M1, M2, and M4 muscarinic
AChRs (111–113). Activation of α7 nicotinic ACh AChRs,
which are non-selective cation channels, transiently increases
basal GnRH secretion from immortalized GnRH neurons
via depolarization followed by Ca2+ influx through voltage-
gated Ca2+ channels (111, 112). It also inhibits prostaglandin
E2 (PGE2)- and high K+-induced GnRH secretion (113),
possibly due to Ca2+-dependent Ca2+ channel inactivation.
Activation of M1 muscarinic AChRs, which couple to Gq,
with micromolar concentrations of ACh, increases basal GnRH
secretion from immortalized GnRH neurons via IP3-mediated
Ca2+ mobilization (111, 114), whereas activation of M2 and
M4 muscarinic AChRs, which couple to Gi, with nanomolar
concentrations of ACh, inhibits basal GnRH secretion from
immortalized GnRH neurons (111, 112). Most likely, ACh
first increases [Ca2+]i and GnRH secretion in immortalized
GnRH neurons by activating α7 nicotinic AChRs, then decreases
[Ca2+]i and GnRH secretion by activating M2/M4 AChRs, and
subsequently induces a return of [Ca2+]i and GnRH secretion
to basal levels by activating M1 muscarinic AChRs. Cholinergic
axons appose, but do not make classical synapses onto, GnRH
neurons in rats, suggesting a non-synaptic route of cholinergic
communication to GnRH neurons (115). Mouse GnRH neurons
appear to express β1, β2, β4, γ, and ε nicotinic AChRs as well
as M1 and M4 muscarinic AChRs (67, 69, 70). However, the
effects of ACh on GnRH neuron activity or secretion in mice, and
whether cholinergic axons appose GnRH neurons in mice, have
yet to be reported.
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MODULATION OF GnRH NEURON
ACTIVITY AND SECRETION
BY GASOTRANSMITTERS

Gasotransmitters are defined here as small molecules of gas
that are produced in the cytoplasm of neurons and immediately
diffuse through the cell membrane into the extracellular fluid
and into nearby neurons (e.g., GnRH neurons) to stimulate
production of second messengers (such as cGMP) that can affect
neuronal activity and neurotransmitter/neuropeptide release.

Nitric Oxide (NO)
NO released from neuronal nitric oxide synthase (nNOS)-
expressing neurons in the POA directly inhibits the firing of
GnRH neurons in the POA by activating soluble guanylyl cyclase
(sGC, the NO receptor) and a K+ conductance (16). The nNOS in
the POA nNOS neurons (and thus, presumably, NO release from
those neurons) is required for E-mediated feedback inhibition of
pulsatile GnRH/LH release, as well as for the proestrus GnRH/LH
surge, gonadal development, and fertility (28, 116). POA nNOS
neurons are apposed by KP-immunoreactive fibers, express the
kisspeptin receptor, G protein-coupled receptor 54 (GPR54), and
exhibit increased nNOS phosphorylation/activation in response
to both E and KP (28). However, the POA nNOS neurons, unlike
GnRH neurons, appear not to be the key site of KP-GPR54
signaling for fertility, since GnRH neuron-specific deletion of
GPR54 prevents gonadal/pubertal development and results in
infertility while GnRH neuron-specific rescue of GPR54 in global
GPR54 knockout mice results in normal pubertal development
and fertility (3). In addition to nNOS expression in POA neurons,
GnRH neurons themselves express nNOS and are capable of
generating NO: the retrograde messenger acts on presynaptic
GABA and Glu boutons that contain sGC and, as mentioned
above, increases GABAergic and glutamatergic transmission to
GnRH neurons in response to E and may contribute to the
proestrous GnRH/LH surge (86, 117).

Carbon Monoxide (CO)
Although the heme oxygenase 1 (HO-1) activator/CO donor
hematin was reported to have no effect on in vivo release of
GnRH from rat hypothalamus (118), the HO-1 donor hemin was
reported to increase GnRH release from immortalized GnRH
neurons (119). However, there are no reports yet on the effect
of CO on GnRH neuron activity or secretion in mice.

MODULATION OF GnRH NEURON
ACTIVITY AND SECRETION
BY GLIOTRANSMITTERS

Gliotransmitters are defined here as endogenous chemicals
released from glial cells (primarily astrocytes), through plasma
membrane channels, plasma membrane transporters, or Ca2+-
dependent exocytosis onto neurons (e.g., GnRH neurons), where
they bind to and activate specific receptors linked to ion channels
or second messenger pathways. Similar to neurotransmission,
gliotransmission results in a change or modulation of the activity

(electrical activity and/or [Ca2+]i) and output (neurotransmitter
or hormone secretion) of the neurons.

Prostaglandin E2 (PGE2)
PGE2 released from astrocytes in response to neuregulin-erbB
signaling acts directly on GnRH neuron cell bodies in the POA,
which morphologically interact with astrocytes, via the EP2

FIGURE 1 | Modulation by non-peptide neurotransmitters, gasotransmitters,

and gliotransmitters of GnRH neuron activity and GnRH secretion controlling

fertility in mice. Schematic diagram showing non-peptide neurotransmitters

(and their receptors), gasotransmitters, and gliotransmitters that act directly on

the cell bodies, dendrites, axons, and/or “dendrons” of GnRH neurons to

modulate their action potential firing, [Ca2+]i, and GnRH secretion.

Transmitters that excite, inhibit, or both excite and inhibit GnRH neurons are

indicated in green, red, or purple, respectively, and are listed along with the

brain areas in which they are produced. Transmitters that modulate GnRH

neuron activity and/or secretion in immortalized GnRH neurons, rat GnRH

neurons, or monkey GnRH neurons but have not yet been reported to

modulate GnRH neuron activity or secretion in mice are indicated in italics.

GnRH secreted from GnRH neuron axon terminals in the ME into the

hypothalamo-hypophyseal circulation binds to GnRH receptors on pituitary

gonadotrophs to stimulate the synthesis and secretion of LH and FSH into the

general circulation. LH and FSH, which are required for gametogenesis and

ovulation, bind to receptors in the gonads to stimulate the synthesis and

secretion of E, P, and T, which in turn exert negative or positive feedback

effects on GnRH neurons (via KP neurons) and gonadotrophs depending on

the sex and estrous cycle stage of the animal. Abbreviations are explained at

their first occurrence in the main text.
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class of PGE2 receptors and PKA signaling to increase GnRH
neuron firing and GnRH secretion (17, 120). It may mediate the
stimulatory effects of Glu, oxytocin and/or blood-borne factors
on GnRH neurons (17, 120) and is necessary for the normal
timing of puberty and for adult reproductive function (121, 122).

Other Gliotransmitters?
Some of the non-peptide neurotransmitters, such as GABA,
Glu, and ATP, may also function as gliotransmitters [reviewed
by (123–125)]. Whether they do so to modulate GnRH neuron
activity and secretion remains to be explored. In addition,
microglia-derived cytokines, including interleukin-1 (IL-1),
interleukin-10 (IL-10), and interleukin-18 (IL-18), which
are proteins, as well as microglia-derived prostaglandins,
may function as gliotransmitters and together with their
receptors expressed in GnRH neurons appear to be important
in modulating GnRH neuron activity, especially under
inflammatory conditions (126–132).

CONCLUDING REMARKS

As described above, and indicated in Figure 1, various
non-peptide neurotransmitters, gasotransmitters, and
gliotransmitters modulate GnRH neuron activity and GnRH
secretion controlling fertility in mice. Modulation by some
transmitters has been demonstrated in immortalized mouse
GnRH neurons, rats, or other mammalian species but not yet
in mice. Further research is needed to address whether those
transmitters modulate GnRH neuron activity or GnRH/LH
secretion in mice. Research is also needed to determine which

presynaptic neurons and glial cells release which transmitters
onto GnRH neurons, and under which physiological conditions,
as well as the roles of selected transmitter receptors of interest
in GnRH neurons on GnRH neuron activity, GnRH/LH
secretion, and fertility. Approaches such as rabies viral
monosynaptic tracing [to identify the cells that make direct
synaptic connections onto GnRH neurons (133)] and inducible
GnRH neuron-specific deletion of selected transmitter receptor
subunits [to avoid developmental compensation by other
subunits or transmitters (134)], should help in this regard.
In vivo or ex vivo recording, imaging, or photometry of GnRH
neuron electrical activity or Ca2+ dynamics (5, 19, 25, 135), in
combination with optogenetic or chemogenetic stimulation or
inhibition of presynaptic cells [to evoke or inhibit the release of
transmitters from presynaptic cells (4, 26, 135–138)], along with
new or improved methods for measuring GnRH/LH secretion,
and monitoring of fertility (22, 137, 139, 140), should also help.
Finally, to better understand how endocrine, metabolic, and
environmental signals integrate into the HPG axis to control
fertility, in addition to elucidating the direct modulation of
GnRH neuron activity and secretion by transmitters, it will
be important to further delineate the upstream networks that
connect to KP neurons, other neurons, and glial cells that
release the transmitters that affect GnRH neuron [see for
example (141)].
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