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Abstract: Experimental data indicate that several pharmacological agents that have long been 

used for the management of various diseases unrelated to cancer exhibit profound in vitro and 

in vivo anticancer activity. This is of major clinical importance, since it would possibly aid 

in reassessing the therapeutic use of currently used agents for which clinicians already have 

experience. Further, this would obviate the time-consuming process required for the develop-

ment and the approval of novel antineoplastic drugs. Herein, both pre-clinical and clinical data 

concerning the antineoplastic function of distinct commercially available pharmacological agents 

that are not currently used in the field of oncology, ie, nonsteroidal anti-inflammatory drugs, 

antihypertensive agents, and anti-human immunodeficiency virus agents inhibiting viral protease, 

are reviewed. The aim is to provide integrated information regarding not only the molecular 

basis of the antitumor function of these agents but also the applicability of the reevaluation of 

their therapeutic range in the clinical setting.
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Introduction
Research advances have largely “molecularized” medicine and other life sciences, not 

only at the theoretical but also at the practical level.1 Inevitably, pharmacology has 

been transformed into molecular pharmacology, a basic medical science that continu-

ously surprises researchers with data being accrued daily opening novel perspectives. 

Consistent with this, numerous pharmacological agents that are already available 

in the market and have gained approval for the management of diseases other than 

neoplasia are being characterized as potent anticancer compounds.2,3 Therefore, the 

possible expansion of the therapeutic uses of already prescribed pharmaceuticals could 

be harnessed in the field of cancer therapeutics, in order to save time and money from 

bench to bedside. Moreover, this would be advantageous over launching newly char-

acterized agents, due to the preexisting clinical experience. From a theoretical point 

of view, however, this also highlights functional pleiotropy as a prominent feature in 

intracellular signaling routes and their components.4–6

This review aims to present the current knowledge regarding the anticancer 

function of certain non-antineoplastic agents gathered from pre-clinical and clinical 

experimentation. These include nonsteroidal anti-inflammatory drugs (NSAIDs), 

human immunodeficiency virus (HIV) agents falling into the category of protease 

inhibitors (PIs), and finally different types of antihypertensive drugs. Although many 
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other non-antineoplastic agents available in the market are  

also known to exhibit anticancer properties,7–9 the afore-

mentioned pharmaceuticals were chosen for many purposes: 

first, NSAIDs have attracted appreciable scientific interest 

as potent anticancer agents.10,11 Second, antihypertensive and 

anti-HIV medication is primarily prescribed to elderly people 

and to HIV patients, respectively, with both of these popula-

tion categories being at high risk of developing neoplasia. 

In fact, cancer is considered an age-related pathology,12,13 

while HIV patients commonly develop such tumors as 

Kaposi’s sarcoma and non-Hodgkin’s lymphoma.14,15 

Considerations for using and repositioning them are also 

presented here in an attempt to compel the reassessment of 

the clinical utility of the aforementioned agents. This could 

possibly enable the better management of tumorigenesis by 

virtue of novel therapeutic schemes that are less toxic and 

more efficacious than conventional chemotherapy.

NSAIDs
Current clinical use
NSAIDs are commonly prescribed pharmacological agents 

that principally serve as selective or non-selective inhibitors 

of cyclooxygenase (COX)-mediated pathway(s).16,17 Prosta-

glandins are the main COX-derived pro-inflammatory, tumor-

promoting eicosanoids that act via binding to their cognate G 

protein-coupled receptors, most importantly EP
1
–EP

4
.

The most widely known and the oldest NSAID in use is 

aspirin. Depending on its concentration, low (#100 mg/day) 

or high, aspirin inhibits COX-1 and both COX-1/2, respec-

tively, thereby blocking the formation of prostanoids. COX-2, 

however, can be selectively targeted by a specific class of 

NSAIDs including celecoxib and etoricoxib, the so-called 

coxibs. Etodolac and meloxicam also display selectivity 

toward COX-2, whereas NSAIDs, such as sulindac and 

ibuprofen, mediate non-selective COX-1/2 blockage.17,18 

Currently, the main therapeutic indication of NSAIDs is 

for the management of different types of acute or chronic 

pain  and inflammation.16,19,20 In addition, such NSAIDs 

as aspirin and sulindac find application in the prevention 

of thrombosis and preeclampsia21,22 or as antipyretic and 

tocolytic agents.23,24 This further emphasizes the versatility 

of NSAIDs as therapeutics aside their potency as antitumor 

drugs, as presented in the following section.

The possible therapeutic repositioning 
of NSAIDs: mechanistic basis, pre-clinical, 
clinical, and epidemiological data
Although NSAIDs have been approved for the treatment of 

the aforementioned pathological conditions (ie, inflammation 

and pain), the existence of a mechanistic link among inflam-

mation/COX signaling and tumorigenesis and pre-clinical 

data points to the future harnessing of NSAIDs in oncology.16 

More importantly, the ample clinical as well as epidemiologi-

cal evidence that is presented in the next paragraphs encour-

ages the use of COX inhibitors in tumor therapeutics or even 

in the prevention of tumorigenesis.

In fact, it is well established that chronic inflamma-

tion and aberrant COX-2 expression is causally linked to 

cancer,25  while NSAID-mediated inhibition of COX-1/2 is 

known to exert protective effects against the development of 

several malignancies, especially the gastrointestinal ones.26,27 

Additionally, the pro-tumorigenic function of prostaglandin 

E2 (PGE
2
) and its receptors EP

1
–EP

4
 has been firmly dem-

onstrated in animal models of colon carcinogenesis.28–30 

Intriguingly, in colon cancer cell lines, experimental data 

suggest crosstalk between PGE
2
- and β-catenin-dependent 

pathways, strongly arguing for a mechanistic interconnection 

among the APC- and the PGE
2
-driven carcinogenesis. Apart 

from colon cancer, the COX-2/PGE
2
/EP

1
–EP

4
 signaling axis, 

fostering angiogenesis, tumor growth and metastasis, involv-

ing both tumor and stromal cells, has been incriminated in 

multiple types of solid tumors, such as non-small cell lung 

cancer (NSCLC), head and neck squamous cell carcinoma, 

and breast cancer.31–34

The COX-2 inhibitor etodolac has shown remarkable 

anti-metastatic function in animal models by virtue of its 

ability to downregulate the expression of matrix metallopro-

teinase (MMP)-9 as well as to interfere with the formation 

and the tone of lymphatic vessels.35–37 The COX-2 selective 

inhibitor meloxicam has been shown to trigger apoptosis in 

both COX-2-dependent and COX-2-independent routes in 

hepatocellular carcinoma cells.38 Similarly, meloxicam can 

act either in a COX-2-dependent or COX-2-independent 

fashion in osteosarcoma at multiple levels.39

The chemopreventive role of the coxibs against the 

emergence, malignant progression, or recurrence of col-

orectal polyps has been clinically confirmed, and clinical 

data regarding combinational schemes of COX-2 inhibi-

tors with conventional chemotherapy for the treatment of 

various solid tumors are quite encouraging. In fact, APC 

mutation-positive familial adenomatous polyposis (FAP) 

patients receiving COX-2 inhibitors experience a marked 

numerical reduction and shrinkage of adenomas, thereby 

being less likely to develop colorectal cancer.25,40 Similar data 

for marketed NSAIDs that non-selectively inhibit COX-1/2, 

such as aspirin and ibuprofen, point to the chemopreventive 

role of these agents in smoking-induced lung cancer and 

skin cancer.41,42
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Interestingly, the chemopreventive and/or antitumor 

therapeutic potency of non-selective COX inhibitors, such 

as aspirin, sulindac, and ibuprofen, may go beyond the 

realm of COX regulation. This notion is supported by in 

vitro experimentation, epidemiological data, or data from 

clinical studies.43–48 Aspirin or other NSAIDs results in the 

reduction of the risk of developing prostate cancer, as well as 

the risk of high-grade prostate cancer in men, irrespectively 

of the concurrent use of the antiandrogen agent dutasteride. 

This was evidenced by a study in which there were enrolled 

subjects with cancer-negative biopsies prior to initiation 

of the experimentation.49 Moreover, aspirin may not only 

serve as an adjuvant agent in FAP patients who have been 

subjected to prophylactic colectomy but also in patients suf-

fering from Lynch syndrome. The latter are highly prone to 

develop malignancies in the gastrointestinal tract, as well 

as in other organs. In fact, Lynch syndrome patients who 

are chronic users of aspirin (.10 years) are significantly 

protected from developing cancers related to their genetic 

disorder.50 Hopefully, there is evidence that long-term usage 

of sulindac ($5 months) can also act in a prophylactic man-

ner, even in FAP patients who have not been colectomized 

for prophylactic purposes.51 Several ongoing clinical trials 

(eg, NCT01187901 and NCT00468910) will shed more 

light on this issue. Of note, there have been designed phos-

phoderivatives of various NSAIDs that display marked 

anticancer function.52–54 However, the antitumor potency of 

these agents is not discussed here, because these agents are 

not commercially available, at least so far.

Considerations for using and 
repositioning NSAIDs
Although coxibs seem promising anticancer agents, gastroin-

testinal side effects (ranging from irritation of the gastrointes-

tinal mucosa to gastrointestinal bleeding), renal toxicity, and 

cardiovascular complications (thrombotic events, myocardial 

infraction, and ischemic episodes) raised serious concerns 

about the safety of this class of drugs, which is still a point 

of controversy, culminating in the withdrawal of distinct 

coxibs from the market.43,55–61 Consequently, there is much 

skepticism regarding the applicability of coxibs in the field 

of oncology.

Theoretically, cancer patients would suffer more than 

non-cancer subjects from the unwanted effects of these 

NSAIDs, given the hypercoagulable state associated with 

malignancy, as well as the cardiotoxicity of some anticancer 

drugs that they might receive.62,63 Hypersensitivity reactions 

to NSAIDs and NSAID-induced central nervous system 

toxicity are additional issues of concern,64,65 given that 

commonly used chemotherapeutic drugs may also be “pro-

vocative” to the immune system and induce hypersensitivity 

reactions or they may exhibit neurotoxicity.66,67

On the other hand, a severe limitation of the potential 

usage of NSAIDs in the field of oncology is that their anti-

platelet function might increase the risk of hemorrhage.68 

Notably, there are tumors such as gastrointestinal stromal 

tumors, which are commonly associated with gastrointestinal 

bleeding.69 In addition, one should also consider the prob-

ability of intratumoral hemorrhage. Certain types of tumors, 

eg, intracranial tumors, are not associated with a high risk for 

intratumoral bleeding, at least spontaneously.70,71 In any case, 

given that bleeding is a severe, life-threatening complication, 

ongoing and future clinical trials evaluating the antitumor 

function of NSAIDs in histologically different types of 

malignancies are necessary to address this issue.

Another issue is that non-selective COX inhibitors 

exemplified by aspirin can cause gastrointestinal irritation. 

Therefore, these drugs should cautiously be administered in 

subjects suffering from peptic ulcers. However, in the latter 

case, these unwanted effects can be satisfactorily managed 

by drugs protecting the digestive tract mucosa, such as the 

proton pump inhibitor omeprazole.72 Another promising 

option to avoid toxicity is nanoparticle formulation, 

something that allows successful usage of much lower con-

centrations, at least in the case of some NSAIDs.73 Using 

NSAIDs in the field of oncology without causing major 

health problems is a big future challenge.

Drugs blocking the renin–
angiotensin system
Current clinical use
Agents targeting the renin–angiotensin system (RAS) are 

common active ingredients of combination drugs used for the 

management of hypertension and other health issues that may 

arise for hypertensive individuals, such as proteinuria.74,75 

They are typically combined with a thiazide diuretic or even 

both with a thiazide and a calcium channel blocker into a 

single formulation. The vasoconstrictory effects of angio-

tensin II are mediated by the angiotensin II type 1 receptor 

(AT
1
R).76 Consequently, pharmacological agents targeting 

RAS interfere either with AT
1
R-dependent signaling or 

with the cleavage of angiotensin I into angiotensin II. Anti-

hypertensives acting as AT
1
R blockers are termed sartans, 

whereas ACE inhibitors (ACEIs) prevent the formation of 

angiotensin II.

But why is the pharmacological control of RAS so impor-

tant? The answer lies in the physiological significance of this 

system. RAS is a signaling circuit that critically modulates the 
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volume of extracellular fluids and arterial blood pressure. It is 

a hormonal route that principally relies on the sensory func-

tion of the juxtaglomerular cells in kidneys, which secrete 

the aspartyl protease renin into the bloodstream in response 

to various stimuli, including decreased blood pressure or 

signals deriving from the sympathetic nervous system. Con-

sequently, renin converts angiotensinogen into angiotensin I. 

The latter is eventually cleaved into the vasoactive peptide 

angiotensin II via the ACE.76,77 More importantly, the RAS is 

molecularly linked to the pathogenesis of cancer, as referred 

to in the following section.

Possible therapeutic repositioning  
of drugs blocking the renin–angiotensin 
system
Overview
The theoretical cornerstone of redirecting agents that 

block the RAS into tumor therapeutics is the fact that the 

RAS has been incriminated in carcinogenesis. In addition, 

angiotensin II exerts pleiotropic cellular effects. It acts not 

only as a vasoactive peptide but also as a powerful mito-

genic and as an angiogenic agent.78,79 In fact, angiotensin II 

receptors are commonly expressed in human cancers,80–82 

while AT
1
R blockage gains ground as a novel antitumor 

approach.83,84 Moreover, it is well-documented that ACEI-

receiving hypertensive patients are somehow protected 

from developing cancer, and clinical data also support the 

beneficial effects of sartans in the performance status of 

hormone-refractory prostate cancer patients.85,86

Taking into account that some sartans exhibit antian-

giogenic activity, as is discussed in the following sections, 

such a future application would possibly help in obviating 

the necessity of administering antiangiogenic drugs, such as 

anti-VEGF agents, which may exacerbate hypertension.87 

Since hypertension and cancer commonly coexist in aged 

subjects, the therapeutic reevaluation of sartans and ACEIs 

would be feasible. The expansion of the clinical use of these 

antihypertensive drugs in the field of oncology is further 

corroborated by numerous pre-clinical and clinical data, as 

presented in the following sections.

Pre-clinical data regarding sartans
The AT

1
R blocker olmesartan was found to mitigate the 

growth of tumors developed in nude mice upon the concur-

rent injection of a pancreatic cancer cell line and pancreatic 

stellate cells.88 The latter cells constitute a specific pan-

creatic cell subpopulation that exhibits profibrotic effects 

and fuels pancreatic cancer, due to interactions both with 

malignant cells and the cancer-promoting stromal elements 

in pancreas.89

Candesartan has been demonstrated to exert remarkable 

in vivo antiangiogenic activity. In fact, it reduces the occur-

rence of renal cancer lung metastases and inhibits VEGF 

production in androgen-independent human prostate cancer 

mouse xenografts, along with suppression of tumor growth 

and reduction of serum prostate-specific antigen (PSA).90 In 

urogenital cancers, inhibition of angiogenesis is considered 

the predominant antitumor mechanism of AT
1
R blockage.82 

Accordingly, a clinically relevant dosing scheme of cande-

sartan exhibits antitumor activity in human bladder cancer 

murine xenografts via suppressing angiogenesis without a 

direct pro-apoptotic effect.91

Candesartan also suppresses the production of VEGF 

and the invasiveness of AT
1
R-positive SKOV-3 human 

ovarian carcinoma cells. Additionally, candesartan reduces 

tumor angiogenesis in vivo and the ability of SKOV-3 cells 

to disseminate into the peritoneum in mice. Therefore, given 

that in clinical samples from patients with invasive ovarian 

cancer, AT
1
R immunoreactivity is associated with increased 

VEGF expression and microvascular density, candesartan is 

a candidate pharmacological tool not only for male-specific 

neoplasias (prostate cancer) but also for gynecological 

cancers (ovarian lesions).81 In xenografted prostate tumors, 

candesartan also acts as an antiangiogenic agent.92 Further, 

candesartan displays antifibrotic and antiproliferative activity 

in gastric cancer.93

Losartan has been shown to cause tumor shrinkage and 

apoptosis in rats with C6 glioma.80,94 Moreover, losartan 

exerts synergistic cancer cell-killing or antiproliferative 

effects when it is coadministered with other potent antican-

cer agents, specifically the angiotensin II type 2 receptor 

agonist CGP42112A in ovarian carcinoma95 and anti-miR-

155 in endometrial cancer cells, respectively.96 Therefore, 

losartan may find use in the treatment of neurological as 

well as gynecological tumors. Of note, another possible 

application of this AT
1
R blocker is its ability to potentiate 

the therapeutic value of tumor-targeting nanoparticles; either 

these are oncolytic herpes viruses or liposomal doxorubicin 

conjugated with polyethylene glycol. This is achieved owing 

to the ability of losartan to impair the deposition of collagen 

in various different models of desmoplasia.97 Conceivably, 

losartan may not only be a valuable antitumor agent per se 

but may also open the road for increasing the efficacy of 

other antitumor factors.

The high-affinity AT
1
R antagonist telmisartan, which 

is known to exhibit the longest plasma half-life among 
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all the sartans, triggers apoptosis in prostate cancer cells 

in a concentration-dependent fashion without affecting 

normal prostate stromal cells. Still, it is postulated that the 

cytotoxic activity of telmisartan is attributed to its PPARγ 

agonism rather than its AT
1
R-blocking activity.98 In addition, 

telmisartan restrains the EGFR-dependent proliferation of 

colon cancer cells in response to the tumor promoter 12-O-

tetradecanoylphorbol-13-acetate by preventing the nuclear 

translocation of the C-terminal fragment of the EGF family 

member HB-EGF.99

Pre-clinical data regarding ACEIs
On the basis of the structural similarity of ACE with MMPs, 

the ACEI captopril inhibits MMP-mediated gelatinolysis 

like MMP inhibitors do. In this way, captopril suppresses 

the invasiveness of HT1080 fibrosarcoma cells and T98G 

glioma cells in vitro and impedes the growth of human 

gastric adenocarcinoma cells in a mouse xenograft model, 

either when it is administered alone or in synergy with 

cisplatin.100,101 A short-term clinically relevant dosing scheme 

(2.8 mg) of captopril displays remarkable antitumor activity 

against lung cancer growth and lymph node metastasis in 

mouse xenografts though evoking an apoptotic response 

without impinging on tumor neoangiogenesis,102 although 

there is evidence that this ACEI negatively regulates the 

chemotactic behavior of capillary endothelial cells and 

neovascularization.103 Moreover, captopril has been shown 

to serve as a free sulfhydryl-group donor for the plasmin-

mediated generation of angiostatin and to display synergistic 

anticancer properties in human melanoma xenografts with 

tissue-type plasminogen activator (a protease participating in 

the conversion of plasminogen to plasmin).104 Captopril also 

attenuates renal cancer cell growth, possibly via sensitiz-

ing renal cancer cells to the cytostatic activities of TGFβ105  

and inhibits renal carcinogenesis in a mouse model.106 The 

in vitro antiproliferative properties of captopril in human 

mammary ductal carcinoma are possibly attributed to its 

ability to interfere with the expression of sex-steroid recep-

tors and key biosynthetic routes (ribonucleic acid/protein 

synthesis),107 further perplexing its biological activity.

The process of liver regeneration and tumor recurrence 

after partial hepatectomy performed in colorectal cancer 

patients with liver metastases is associated with an increase 

in the intrahepatic levels of ACE in mouse models. On the 

contrary, administration of captopril hinders tumor angio-

genesis and triggers tumor apoptotic death.108 Aside from 

metastatic colorectal cancer, this ACEI has been suggested to 

be effective for the pharmacological management of recurrent 

glioblastoma in a mixture with other medicines, collectively 

termed CUSP9*.109

Of note, captopril is able to exert remarkable antimitotic 

activity in cancer cells that are devoid of functional RAS110 

and to counteract endothelial cell migration irrespectively of 

ACE inhibition.103 Therefore, there is evidence that this ACEI 

can impede carcinogenesis irrespective of the link among 

RAS and cancer and its mechanistic basis. This warrants 

further investigation.

The ACEI perindopril has been shown to inhibit hepa-

tocellular carcinogenesis in mice and to suppress tumor 

neovascularization at the clinically achievable dose of 

2 mg/kg/day. The profound antiangiogenic activity of  

perindopril in vivo and its biologically active metabolite 

perindoprilat in vitro, as evidenced by the impediment of the 

formation of endothelial cell-derived tubular structures and 

the reduction of CD31 immunoreactivity within tumors, are 

possibly attributed to its ability to shut off VEGF gene tran-

scription. The antitumor activity of perindopril does not seem 

to be dependent on the blockage of AT
1
R signaling, since 

neither losartan nor candesartan, even at higher doses, could 

suppress hepatocellular carcinoma development.111,112 Given 

the fact that perindopril displays virtually no cytotoxicity112 

and is generally well tolerated,113 it is a promising drug 

against liver cancer. Of note, in rodent models of hepatocel-

lular carcinoma, perindopril exhibits a remarkable synergism 

in the suppression of tumorigenesis and chemoprevention 

with IFN-β and vitamin K
2
, respectively.114–116 This further 

consolidates the notion of its anticancer exploitation alone 

or in combination with other agents already clinically used. 

In addition, perindopril is a potent antiangiogenic agent in 

head and neck squamous cell carcinoma, as evidenced by 

in vitro and in vivo experimentation.117

Clinical/epidemiological data regarding drugs 
blocking the renin–angiotensin system
A pilot clinical study assessing the benefits of 8 mg candesar-

tan (total daily clinically relevant dose to treat hypertension 

ranges from 8 mg to 32 mg) in combination with antiandro-

gens in PSA expression and performance status in hormone-

refractory prostate cancer patients118 yielded encouraging 

results. In addition, there is clinical evidence supporting 

that the antihypertensive treatment with ACEIs or sartans 

prolongs life expectancy of advanced lung cancer patients 

receiving conventional platinum drugs.119 A Phase II clini-

cal trial indicated remarkable benefits of receiving low-dose  

(4 mg) candesartan or perindopril in combination with IFN-α, 

the COX-2 inhibitor meloxicam, and cimetidine, namely the 
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“I-CCA therapy”, as first-line treatment in advanced renal 

cell carcinoma patients, with trifling toxicity.120 Though oral 

administration of candesartan (16 mg) in combination with 

intravenously infused gemcitabine was reported to be well 

tolerated in advanced pancreatic cancer patients, it does not 

seem to be an effective combinational therapeutic scheme 

for this type of malignancy.121,122

Noteworthy, according to epidemiological data the ACE 

genotype DD, which is associated with high ACE enzymatic 

activity, both predisposes carriers to breast cancer develop-

ment and increases their responsiveness to the antitumor 

function of ACEIs or sartans.123 Ongoing clinical trials 

assessing the antitumor activity of antihypertensive agents 

that target RAS components (eg, NCT00077064) will aid in 

the repositioning of these drugs beyond the field of cardiovas-

cular therapeutics. Taking into account the polymorphisms 

in the enrolled patients at loci which are critical for RAS and 

its targeting, would be of great predictive importance.

Considerations for using and 
repositioning drugs blocking the renin–
angiotensin system
In general, sartans are devoid of major side effects, and they 

are well tolerated by the majority of hypertensive patients.124 

However, considerable caution should be taken regarding the 

putative application of captopril or other ACEIs in oncology, 

given the pulmonary toxicity of this class of drugs: ACEIs 

may lead to bronchospasm, dyspnea, or the provocation of 

persistent dry cough, due to the drug-induced increase in 

bradykinin levels. This happens because ACE is also respon-

sible for the catabolism of bronchoconstrictive kinins.125–127 

This is a significant limiting factor, especially in cancer 

patients concomitantly suffering from respiratory diseases, 

lung cancer patients with compromised respiratory function, 

or even cancer patients with irradiation-induced pulmonary 

fibrosis and lung malfunction.

Patients suffering from advanced cancer may experience 

hypotension. This could be ascribed to cancer-associated 

deregulated function of the autonomous nervous system.128 

Alternatively, drop in blood pressure may be iatrogenic.129 

This can be the case when patients are treated with IFN, 

given that a decrease in blood pressure is a well-known 

adverse effect of IFN.130 Hopefully, however, most of the 

available clinical data stem from studies assessing the 

antitumor potency of drugs targeting the RAS in cancer in 

which there were enrolled patients with advanced-stage solid 

tumors.118–120 In these studies, agents blocking the RAS were 

well tolerated by the recruited patients, even when a sartan 

or ACEI was combined with IFN-α.120 However, in the case 

that agents targeting the RAS would induce hypotension 

upon the concomitant administration of cytokines, this could 

be managed either with melatonin129 or with conventional 

medication that is indicated for the treatment of hypotension, 

such as etilefrine. Importantly, the administration of this sym-

pathomimetic agent would possibly yield multiple beneficial 

effects in cancer patients with concomitant hypotension and 

chylothorax.131,132

HIV protease inhibitors
Current clinical use
HIV aspartyl PIs gained US Food and Drug Administra-

tion (FDA) approval and entered the anti-HIV cocktail 

market in the early 1990s.133 Actually, saquinavir was 

the first drug of this class to be approved by the FDA in 

1995 through a relatively rapid process of only 3 months. 

Saquinavir and other PIs gained approval for the control of 

HIV infection as well as to offer HIV-infected individuals 

a better quality of life and increased survival rates. PIs 

target viral protease, an enzyme that is crucial for HIV 

replication.134 This class of antiviral drugs comprises both 

peptidomimetic agents, like the prototype drug saquina-

vir, and non-peptidic drugs, such as nelfinavir. The latter 

was launched in the late 1990s and was the first PI to be 

approved for pediatric use.135

The possible therapeutic repositioning  
of HIV PIs: pre-clinical and clinical data
PIs are currently employed only in the management of HIV 

infection. Surprisingly, however, there is ample evidence 

highlighting their antitumor function. As a matter of fact, 

PI-receiving HIV patients are less likely to develop infec-

tion-associated tumors, such as non-Hodgkin’s lymphomas 

and Kaposi’s sarcoma (KS),136 or may even experience KS 

regression.137 Further, there are numerous in vitro and in 

vivo experiments clearly demonstrating that PIs inhibit the 

growth of many non-HIV-related human cancer models. Let 

us note that aside from PIs, the anti-HIV nucleoside analog 

reverse-transcriptase inhibitor azidothymidine has also been 

reported to exert antitumor activity. Still, only the antitumor 

properties of PIs are presented in the following paragraphs, 

since the in vitro anticancer potency of azidothymidine does 

not correlate with in vivo evidence,138 thereby attracting no 

more research interest.

The antiretroviral agent nelfinavir was found to exhibit 

a wide range of antitumor activities in several cancer cell 

lines, including chemoresistant ones, as well as in NSCLC 
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mouse xenografts, at clinically attainable doses. Mechanisti-

cally, the cytotoxic effects of nelfinavir are associated with 

both caspase-dependent apoptotic and non-apoptotic cell 

death that are overall mitigated by a prosurvival autophagic 

response that coincides with Akt inhibition.139 Similar anti-

growth and pro-apoptotic function of nelfinavir along with 

Akt-pathway inhibition by this drug has been reported by 

other researchers as well. In fact, there has been observed 

a chemosensitizing effect of nelfinavir in NSCLC cells and 

IL-6/STAT3 and androgen receptor (AR) signaling in pros-

tate cancer cells, which hinders their proliferation. Suppres-

sion of the IL-6/STAT3 pathway occurs either at the level of 

STAT3 phosphorylation stimulated by IL-6 or at the level of 

STAT3 binding to deoxyribonucleic acid (DNA).140,141 AR 

blockage results from the fact that Akt and STAT3 function 

as coactivators for AR. Yang et al combined the in vitro 

evidence of nelfinavir’s activity against prostate cancer 

with in vivo data in LNCaP-xenografted mice that received 

small short-term doses of nelfinavir (60 mg/kg five times a 

week) with excellent tolerability.140 The therapeutic potency 

of nelfinavir in prostate cancer is also supported by a more 

recent publication, wherein this PI triggered ER stress and 

apoptosis in castration-resistant prostate cancer cells. In this 

case, apoptosis was actually triggered due to blockage of 

site-2 protease, which mediates the transcriptional activation 

of SREBP-1 and ATF6 through regulated intramembrane 

proteolysis.142 A similar anticancer mechanism has been 

reported in liposarcoma cells also.143

Another study underscores the possible utility of nel-

finavir in multiple myeloma, where this anti-HIV agent 

displayed anti-proteasomal and pro-apoptotic activity.144 

Further, nelfinavir may also exert anti-glioblastoma activ-

ity by virtue of its property to block catalysis mediated by 

MMP-2 and -9.145 In melanoma cells, nelfinavir triggers 

apoptosis and ceases the cell cycle via decreasing CDK2 

activity through stimulating the proteasomal degradation of 

CDC25A.146 Another study demonstrating the pro-apoptotic 

and cytostatic activity of nelfinavir in ovarian cancer cells 

offers further impetus toward the rapid clinical testing of this 

PI for oncological purposes.147

Interestingly, nelfinavir also blunts the transcriptional 

upregulation of VEGF by Sp1 and HIF-1α under normoxic 

and hypoxic conditions, respectively, presumably via inhib-

iting Akt (Figure 1). VEGF downregulation is functionally 

α

Figure 1 Nelfinavir-regulated signaling pathways which affect tumor cell biology or determine the effectiveness of antitumor therapy.
Notes: (A) The human immunodeficiency virus protease inhibitor nelfinavir triggers both apoptotic and non-apoptotic cell-death in cancer cells. Still, nelfinavir also acts 
as an Akt inhibitor and induces an autophagic response that counteracts either mode of cell death. (B) Under normoxic and hypoxic conditions nelfinavir suppresses Sp1- 
and HIF-1α-mediated upregulation of VEGF, respectively. Both of these pathways are possibly blunted due to a nelfinavir-induced inhibition of Akt, which in turn positively 
controls Sp1 and HIF-1α. Nelfinavir also increases tumor oxygenation. The latter possibly accounts for the radiosensitizing effects of this drug. (C) In prostate cancer cells, 
the antiproliferative effects of nelfinavir are mechanistically associated with inhibition of the IL-6/STAT3 axis (either at the level of STAT3 phosphorylation triggered by IL-6 
or at the level of STAT3 binding at deoxyribonucleic acid [DNA] in the form of a dimer) and inhibition of the Akt pathway. Both of these molecular events eventually result in 
perturbed AR-mediated signaling, due to the fact that STAT3 and Akt serve as transcriptional coactivators for AR (shown as a blue dimer bound to DNA). Upward-pointing 
arrows symbolize upregulation, whereas downward-pointing arrows symbolize downregulation. The red “X” denotes perturbed pathway or process.
Abbreviations: IL, interleukin; STAT, Signal transducer and activator of transcription; AR, androgen receptor; SP, specificity protein; ARE, androgen response element;  
HIF, hypoxia-inducible factor; VEGF, vascular endothelial growth factor.
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associated with in vitro and in vivo perturbation of angio-

genesis. In addition, nelfinavir exhibits in vivo radiosensi-

tizing effects, through inducing tumor reoxygenation via 

an as-yet-unidentified mechanism.148 Since pO
2
 critically 

determines radiosensitivity, this would be of major clinical 

importance, particularly in hypoxic solid tumors that are 

resistant to radiotherapy.

Apart from nelfinavir, other PIs also exhibit antitumor 

activity, including ritonavir in breast cancer cells, ritonavir 

and saquinavir in ovarian cancer cells,149–151 lopinavir in 

cervical cancer cells,152 and amprenavir in hepatocarcinoma 

xenografts.153 In breast cancer cells, ritonavir-mediated 

growth inhibition partially depends on disrupting the 

assembly of the Akt/Hsp90 complex,149 which had been 

previously shown to dampen ASK1-dependent apoptosis.154 

Noticeably, although ER stress response has been reported 

to induce autophagy that eventually counteracts nelfinavir-

induced cell death, the ability of atazanavir and nelfinavir 

to kill malignant glioma cells seems to rely on an active ER 

stress response/caspase 4 pathway.155 This is not surprising, 

given that ER stress is known to result in apoptosis via 

multiple pathways.156 Saquinavir and indinavir display 

in vitro antiangiogenic properties comparable to those of 

taxol and promote the regression of KS-like lesions in murine 

disease models.137 Saquinavir, like nelfinavir, inhibits the 

proteasome.157 The latter molecular event is functionally 

associated with the induction of apoptosis and potentiation 

of the cytotoxic effects of ionizing radiation.

In a small, Phase I clinical trial, the clinically relevant 

dose of 1,250 mg twice daily of nelfinavir combined with 

conventional chemotherapy (gemcitabine and cisplatin) 

and radiotherapy yielded satisfying antitumor response, as 

evidenced with positron emission tomography in pancreatic 

cancer patients. In detail, there was a complete response and 

stabilization of disease progression in five and two of nine 

patients, respectively, with minor toxicity.158 Interestingly, 

in glioblastoma multiforme patients, a recent Phase I study 

reported that 1,250 mg twice daily was the maximally tol-

erated dose of nelfinavir when combined with radiotherapy 

and temozolomide.159 Hopefully, nelfinavir is well tolerated 

even at a dosing scheme that exceeds the dose that has gained 

FDA approval for the management of HIV infection by 2.5 

times, as a Phase I trial reported.160 Another Phase I study 

showed that 750 mg of nelfinavir twice daily yields encour-

aging preoperative results in locally advanced rectal cancer 

patients when combined with chemotherapy and radiation 

therapy.161 A Phase I trial demonstrated that up to 1,250 mg 

of nelfinavir twice a day combined with chemotherapy and 

radiotherapy was well tolerated in patients suffering from 

advanced, unresectable lung cancer.162 More importantly, the 

results regarding the clinical response of the patients enrolled 

in the latter study were satisfactory enough. However, nelfi-

navir at 1,250 mg twice daily does not significantly impact on 

progression-free survival of patients with recurrent adenoid 

cystic carcinoma, as a Phase II trial showed.163 Further clinical 

evaluation of HIV PIs in cancer therapeutics is needed.

Considerations for using and 
repositioning HIV PIs
Given the multi-year clinical experience of nelfinavir 

administration in HIV patients and its broad-spectrum 

anticancer activity, scientists have envisioned the introduc-

tion of this drug in the field of oncology as a promising 

cancer-fighting strategy. This is also the case for other PIs 

as well, such as ritonavir.150 Unfortunately, PIs commonly 

cause disturbances in the glycemic and lipidemic profile. 

However, these unwanted effects can be pharmacologi-

cally managed in acquired immunodeficiency syndrome 

(AIDS) patients. In fact, there are certain medications 

that are recommended for patients receiving antiviral 

therapy. It is also important for clinicians to take into 

account each patient’s individual physiology before pre-

scribing a glucose- and/or lipid-lowering agent to AIDS 

patients.164–166 Such a cautious, individualized management 

of the aforementioned clinical conditions would allow the 

safe use of PIs in oncology. In turn, this could hopefully 

pave the road for the design of more efficacious anticancer 

modalities, circumventing the laggard process of new drug 

approval.139,147,167

Conclusion and future prospects
The non-antitumor pharmaceuticals with anticancer proper-

ties presented here reflect the functional redundancy char-

acterizing the molecules and/or signaling pathways targeted 

by these drugs. Moreover, the potent multiple utility of a 

given pharmacological agent is not a novel phenomenon. 

For instance, the lysosomotropic agent hydroxychloroquine 

is currently used both as an antimalarial drug and in the treat-

ment of various inflammatory diseases, including rheumatoid 

arthritis and systemic lupus erythematosus.168 Additionally, 

experimental evidence indicates that hydroxychloroquine 

could also be therapeutically used in the field of oncology.169 

In general, repositioning of drugs is an emerging concept that 

gains ground in light of novel data.170,171

Herein, there was provided evidence for the antitumor 

activity of three different categories of non-antineoplastic 
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drugs that are already commercially available. The fact that 

only data stemming from pre-clinical experimentation and 

that Phase I or II clinical trials were reviewed should be 

considered as a limitation. To the best of our knowledge, no 

Phase III clinical trials have been conducted in order to assess 

the clinical value of the aforementioned marketed drugs in 

cancer therapeutics so far. However, the evidence presented 

herein could achieve its goal, ie, the conceptual corroboration 

of the repositioning of these marketed drugs, the compelling 

of the prioritization of basic or clinical research toward this 

direction, and the instigation of further experimentation.

Taking into account the highly interlocked intracel-

lular pathways, the therapeutic utility of many agents that 

are currently available in the market is rather underrated. 

Repositioning of the aforementioned non-antitumor drugs 

may offer clinicians the opportunity to fight cancer through 

therapeutic schemes with a safer toxicological profile. The 

latter is a major challenge, inasmuch as targeted therapeutic 

agents, such as monoclonal antibodies, were found to have 

serious adverse effects, such as drug-induced hypertension,172 

that raise concerns, especially in elderly people, who are 

most prone to tumorigenesis. Many clinical studies that are 

under way (eg, NCT01485731, NCT01729923) will hope-

fully aid in the exploitation of the antineoplastic function 

of non-antitumor agents, such as NSAIDs, antihypertensive 

drugs, and HIV PIs, thereby opening new avenues for the 

development of safer and perhaps more efficacious alterna-

tive anticancer medications.
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