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Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common type of
dementia. With no disease-curing drugs available and an ever-growing AD-related healthcare burden,
novel approaches for identifying therapies are needed. In this work, we propose stage-specific candidate
repurposed drugs against AD by using a novel network-based method for drug repurposing against dif-
ferent stages of AD severity. For each AD stage, this approach a) ranks the candidate repurposed drugs
based on a novel network-based score emerging from the weighted sum of connections in a network
resembling the structural similarity with failed, approved or currently ongoing drugs b) re-ranks the can-
didate drugs based on functional, structural and a priori information according to a recently developed
method by our group and c) checks and re-ranks for permeability through the Blood Brain Barrier
(BBB). Overall, we propose for further experimental validation 10 candidate repurposed drugs for each
AD stage comprising a set of 26 elite candidate repurposed drugs due to overlaps between the three
AD stages. We applied our methodology in a retrospective way on the known clinical trial drugs till
2016 and we show that we were able to highly rank a drug that did enter clinical trials in the following
year. We expect that our proposed network-based drug-repurposing methodology will serve as a para-
digm for application for ranking candidate repurposed drugs in other brain diseases beyond AD.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction erative diseases, as well as to discover novel treatments for these
Alzheimer’s disease (AD) is a progressive neurodegenerative dis-
ease and is the most common type of dementia. Neurodegenerative
diseases are characterized by progressive loss of neurons and func-
tion in the central nervous system (CNS). This group of diseases is
prevalent to a large proportion of the total population and this
prevalence is mainly caused by aging [1]. Due to the increase in life
expectancy, the appearance of neurodegenerative diseases, includ-
ing AD, is predicted to increase worldwide [2]. In 2016, it was
reported that AD is affecting �47 million people, with predictions
suggesting to reach�75million in 2030 [3]. Moreover, neurodegen-
erative diseases such as AD carry a great economic burden for public
health. For instance, according to Alzheimer’s Association in 2017,
the money spent for these patients reached $259 billion. Therefore,
there is an urgent need to discover and propose novel drugs [4].

Over the past decade, a great effort has been given to under-
stand the pathogenesis and mechanisms involved in neurodegen-
diseases. Although a considerably large amount of money has been
invested in drug development for AD, only five symptomatic treat-
ments have been approved so far i.e. donepezil (Aricept), galan-
tamine (Razadyne), memantine (Nameda), rivastigmine (Exelon),
memantine and donepezil (Namzaric) [5]. The currently approved
drugs for AD provide only temporary and incomplete symptomatic
relief together with several side effects. Very recently, FDA has con-
ditionally approved the drug Aduhelm (aducanumab), a mono-
clonal antibody aiming to target the underlying pathophysiology
of AD, the presence of b-amyloid peptide (Αb) plaques in the brain.
This therapy aims to slow the progression of the disease, rather
than addressing symptoms, and is the first approved therapy of
this type. However, aducanumab targeting the plaques, means
other aspects of the disease such as neuroinflammation, or the loss
of neurons, are still unaffected. Re-examination of clinical trials
using high doses of aducanumab showed that the drug might
reduce cognitive decline. This re-examination ultimately led to
an FDA approval, with the condition that further studies will be
conducted to confirm these findings [6,7]. Moreover, in June, the
FDA granted lecanemab (BAN2401) a ‘‘breakthrough therapy
status”, a designation that helps accelerate the development of
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medications for serious and life-threatening conditions. This agree-
ment regarding lecanemab was based on clinical evidence from a
Phase 2 (NCT01767311) trial that enrolled 856 patients who had
mild cognitive impairment or dementia [8]. The use of the highest
dose of lecanemab (for a period of 18 months) showed that brain
amyloid was reduced.

Although a high number of AD-related drugs have entered the
preclinical phase, the failure rate has been very high due to the
complexity of the disease [9]. Various AD-related drugs have failed
in clinical trials yet, currently, there are still 486 drugs or combina-
tions of drugs in clinical trials under the recruiting phase
(clinicaltrials.gov).

Thorough reviews have been recently carried out by Cummings
et al, regarding the record of drugs in clinical trials for the years
2016 to 2020 [10-14]. In this series of work, they used clinicaltri-
als.gov to determine the number and characteristics of trials in
phase I, phase II, and phase III for treatment of AD during the
examined period. Although several drugs have gone through clini-
cal trials over the years, only aducanumab was proven to be a
promising candidate for reducing the rate of progression of AD,
which was recently approved conditionally by FDA.

In order to detect novel and effective treatments for such a com-
plex disease, new methods and approaches are urgently needed
that reduce both cost and time. A modern approach in this direc-
tion is known as drug repurposing or drug repositioning [15] i.e.
the detection of novel indications for existing drugs in order to
treat new diseases [16]. Network-based approaches are very useful
to drug repurposing since they provide the means of connecting
huge amount of data and dealing with its complexity. With respect
to drug repurposing, network-based approaches can be used to
uncover pairwise relations between drugs, diseases or target pro-
teins. These relations can be depicted by the edges, whereas the
various objects are shown schematically as nodes.

In general, there are many studies that have used network-
based analysis for drug repurposing. However, for AD, there are
limited studies that used this approach so far. Peng et al collected
the genes associated with the disease and screened potential drugs
by a network analysis on the AD-related genes and drug targets in
order to search novel candidate drugs for AD [17]. In another study
by Zeng et al, the authors developed a network-based deep-
learning approach, known as deepDR, for in silico drug repurposing.
Their approach was based on the integration of 10 networks: one
drug–disease, one drug-side-effect, one drug–target and seven
drug–drug networks. This tool can learn drug features extracted
from the aforementioned networks by a multi-modal deep autoen-
coder. Using this approach, the tool can infer candidate repurposed
drugs [18]. Nowadays, accumulation of large volumes of omics
data makes drug repurposing an appealing approach for highlight-
ing promising candidate elite drugs for each AD stage. There are
several studies available on drug repurposing using transcriptomic
data [19-21]. Such an example is a recent study by [21], in which a
short list of potential anti-AD drugs was proposed based on com-
putational drug repurposing using gene signatures.

Motivated by the lack of available treatment for AD through tra-
ditional drug development approaches, we focused on applying the
promising avenue of computational drug repurposing to highlight
promising drug candidates. Since each AD stage (defined as incip-
ient: Braak stages I-II, moderate: Braak stages III-IV, severe: Braak
stages V-VI) is characterized by different symptoms and molecular
mechanisms, we stratified the patient samples based on severity in
order to pinpoint stage-specific candidate repurposed drugs.

Here, we present a novel network-based approach, which filters
and re-ranks drugs based on different scores, and we propose can-
didate repurposed drugs for AD. Initially, we performed drug
repurposing ananysis for different AD stages (incipient, moderate
and severe) using publicly available transcriptomic data. We show
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that our approach ranks the candidate repurposed drugs based on
the sum of their connections of structural similarity with failed,
approved or currently ongoing drugs. Moreover, we show the
mechanisms of action of our elite candidate repurposed drugs
and further comparison with existing knowledge on AD took place.
We tested our methodology in a retrospective way on the known
drugs till 2016 and we show that we were able to highly rank a
drug that did entered clinical trials in the following year.
2. Materials and methods

2.1. Step 1: signature generation

2.1.1. Data
Three AD-related microarray studies from post-mortem brain

tissue of human subjects were retrieved from Gene Expression
Omnibus (GEO) [22]- a transcriptional data repository. The selec-
tion of the datasets was based on the staging of the disease using
the Braak indexing, which is used to classify the degree of pathol-
ogy in Parkinson’s disease and AD (Table 1). To our concern, these
were the only datasets that clearly used Braak staging of the dis-
ease (Braak stage I-II, III-IV, V-VI).

2.1.2. Pre-processing of data
Each dataset selected was quantile normalised and log2 trans-

formed. Subsequent analysis was done in R statistical environment
(http://www.R-project.org/) [26]. Each of the three datasets was
processed using the Limma R package [27], a linear model that cal-
culates a moderated t-statistic from gene expression experiments.

2.1.3. Detection of differentially expressed genes
After the dataset pre-processing, probe-set IDs were matched to

gene symbols according to each platforms’ annotation files. We
maintained the most differentially expressed ones in cases of gene
symbol correspondence to multiple probe-sets. From the Limma
analysis result, we kept the top 150 over-expressed and 150
under-expressed genes based on log2FC from the gene list with
an adjusted p-value of <0.05. This number of genes (300) corre-
sponds to the input number limit of the drug-repurposing tools
we used in the sequel.

2.2. Step 2: Drug re-ranking and short listing

2.2.1. Transcriptomics-based drug repurposing
The transcriptomic-based drug repurposing was performed

using four different drug repurposing tools: Connectivity Map
(CMap) [28], L1000CDS2 [29], L1000FWD [30] and CRowd
Extracted Expression of Differential Signatures (CREEDS) [31].
The 150 over and under expressed genes (based on their FC value)
from the three different datasets were used as transcriptomic sig-
natures. Next, each set was used as an input to the aforementioned
repurposing tools. The first three tools (CMap, L1000CDS2 and
L1000FWD) use transcriptional expression data from multiple
human cell lines, to probe relationships between diseases and ther-
apeutic agents. Drugs are sorted according to a score (inhibition
score), which characterizes if a drug can reverse (drugs with a
strong negative score value) or mimic (drugs with a strong positive
score value) the expression levels of a disease based on a given set
of genes. For each stage and each dataset, we obtained a candidate
list of repurposed drugs predicted by each of the three tools,
ranked based on their inhibition score. The fourth of the tools used,
CREEDS, contains a list of 4295 single drug perturbations and 8620
single gene perturbations obtained from gene expression data of
rat tissues. The same input of genes was used again, yet this time
drugs are ranked by the tool based on Fisher’s exact test derived
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p-value. Finally, from each of the four tools, the top 50 drugs were
selected and their union of drugs was used for further analysis.

2.2.2. Collection of the running clinical trials, FDA approved and
‘‘failed” drugs of AD

All listed clinical studies related to AD were collected from
Cummings et al (2020). Specifically, only small-molecule drugs
were obtained from the studies since their 2D -structures were
then used for the chemical similarity analysis. Moreover, all listed
drugs related to AD that were either withdrawn, suspended,
unknown, terminated or completed with no evidence that a certain
drug is effective, were collected from the ClinicalTrials.gov. These
drugs are referred to as ‘‘failed”. The Food and Drug Administration
(FDA)-approved drugs for AD were also obtained. The SMILES for-
mats of the aforementioned groups of drugs were collected

through the PubChem Identifier Exchange Service (https://pub-

chem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi). We then used
the OpenBabel software to convert the SMILES structure format
to the 2D-structures of the drugs (sdf files).

2.2.3. CoDRes reranking and scoring
The top 50 drugs generated from each tool and each dataset,

were used as input to the CoDReS tool [32]. CoDReS combines an
initial inhibition score like the one obtained from the repurposing
tools together with a functional score of each drug using the dis-
ease of interest and a structural score derived from drugability vio-
lations based on the Lipinski [33] and Veber’s rules [34]. A
composite score (CoDReS score) was calculated for each drug as
the weighted normalized sum of the initial inhibition score (aS)
with a functional (FS) and a structural score (StS). The weights that
determine the desired influence of each part to the final score were
defined as waS = 0.45, wFS = 0.45 and wStS = 0.1. The top 50 drugs
were then reranked based on the CoDReS score.

2.2.4. Network-based drug repurposing approach
We calculated the structural similarity of the top 50 drugs from

each tool per stage against the FDA approved drugs, the failed
drugs and the drugs that are currently in clinical trials. The thresh-
old used for the similarity score was > 0.5. Next, we formulated an
edge-list based on the similarity score of the drugs. Depending on
the type of drug a repurposed drug was connected to, a positive or
negative score was multiplied to the weight of their connection,
i.e., for connections with (1) failed drugs, the weight was multi-
plied by �1, (2) with the FDA approved drugs the weight was mul-
tiplied by 1 whereas for (3) the drugs that are currently in clinical
trials, depending on the phase that the drug is (phase I, II and III),
the weight was multiplied by 0.2, 0.4 and 0.6 respectively. Since
the pool of failed drugs is bigger than the others (FDA approved
and clinical trials), the use of all connections to repurposed drugs
would have been biased. Hence, as a final step, only a single con-
nection from each group of drugs (FDA, clinical trials and failed
drug) was kept, which was the most highly scored connection
(maximum) to each repurposed drug. Once each repurposed drug
ended up with a total of five connections (maximum), the strength
(i.e., the weighted degree) of each drug node of this network was
calculated (Fig. 1).

Moreover, two more parameters are taken into consideration to
our overall novel drug repurposing score: the reranking of the
repurposed drugs using the CoDReS score and the permeability
of the repurposed drugs using the lightBBB tool. LightBBB is a
BBB permeability prediction model based on Light Gradient Boost-
ing Machine (LightGBM) algorithm [35]. Permeability score given
is either permeable or non-permeable. The overall scoring is repre-
sented from the equation:

DRs ¼ wCT � vCT þwBBB � vBBBþwCoDReS � vCoDReS ð1Þ
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where vCT is the normalized score of the repurposed drugs based
on their similarity with failed, FDA and clinical trials, vBBB is the
prediction whether a drug is permeable or not and vCoDReS as
obtained from the CoDReS tool, and wCT, wBBB and wCoDReS are
the weights given to each score, 0.6, 0.1 and 0.3 respectively.

2.3. Step 3: validation analysis

2.3.1. Pathway analysis
Drug targets of the elite repurposed drugs per stage were col-

lected through Drug Central (https://drugcentral.org) and NCATS

Inxight: Drugs (https://drugs.ncats.io/). For drug targets, a cut-off
rule using the empirical value of KD > 6 (-logM);1lΜ was used.
Moreover, the curated genes associated with AD were collected
through DisGeNET, a platform containing one of the largest pub-
licly available collections of genes associated to human diseases
[36]. A threshold of gda score>=0.5 was used in order to keep the
most important genes associated to AD. All genes (drug targets
and genes associated to AD) were used as an input to our in-
house tool PathIN (https://bioinformatics.cing.ac.cy/PathIN/).
PathIN holds a large database repository of reference pathway net-
works, across a large set of species, which have been developed
through the freely available information included in the KEGG,
Reactome, and Wiki Pathways database repositories. It is used for
finding subnetworks of pathways that are related to a given set
of genes.

2.3.2. Structural similarity among the 26 elite repurposed drugs
ChemBioServer 2.0 (https://chembioserver.vi-seem.eu/) is a

publicly available web application that provides filtering, cluster-
ing, comparing drug structures and networking of chemical com-
pounds facilitating both drug discovery and repurposing [37,38].
Hierarchical clustering using Tanimoto similarity (Soergel dis-
tance � 0.4) with a clustering threshold set to 0.4 was applied to
the final list of all drugs gathered.

3. Results

We developed a novel network-based drug repurposing
approach, as illustrated in Fig. 1. The overall process entails the
analysis of stage-specific AD related microarray datasets to identify
significant genes, with the subsequent identification and shortlist-
ing of candidate repurposed drugs and the pathways they target
(see Fig. 1). This approach computes a novel clinical testing (CT)
score (clinical testing) that is calculated through the structural
similarity of the candidate repurposed drugs to either previously
failed drugs, or currently FDA approved or currently tested drugs
in clinical trials (see Methods for more details).

3.1. Drug repurposing

The first part of this study included the collection and analysis
of publicly available microarray datasets of AD patients and con-
trols. Following the preprocessing of these datasets we performed
differential analysis to identify differentially expressed genes
(DEG) between the two conditions. We used a cut-off of p
adj. < 0.05 and then sorted the differentially expressed genes based
on their log2 fold-change (log2FC) value. We selected the top 150
over- and 150 under-expressed genes as it is a requirement for
most of the repurposing tools.

Using the DEG sets, we performed a series of in silico drug
repurposing analyses with existing computational tools (see Meth-
ods): Connectivity Map (CMap) [28], L1000CDS2 [29], L1000FWD
[30] and CRowd Extracted Expression of Differential Signatures
(CREEDS) [31], leading to four lists of candidate repurposed drugs
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Fig. 1. A. Network-based drug repurposing approach. A positive weight 1 was assigned between candidate repurposed and approved drugs, a negative weight �1 between
candidate repurposed and failed drugs, a 0.2 score between candidate repurposed to phase I clinical trials, a 0.4 score between candidate repurposed to phase II clinical trials
and a 0.6 score between candidate repurposed to phase III clinical trials. B. Disease cookie showing in the center the components used for the creation of the network-based
approach (failed, approved drugs, drugs in clinical trials and drug targets/pathways), and around it the CT score, permeability through the BBB and the use of CoDReS giving
an overall score, and their connection to the candidate repurposed drugs.
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(we kept the top 50 from each list), for each stage of AD severity
(defined as incipient: Braak stages I-II, moderate: Braak stages
III-IV, severe: Braak stages V-VI). This process was performed for
three different AD microarray datasets.

Following the pipeline illustrated in Fig. 2, we selected the top
10 drugs per stage (incipient, moderate and severe) ending up with
a group of 26 candidate repurposed drugs for all stages. Interest-
ingly, some drugs were found to be fitting for two stages, such as
emetine and omacetaxine mepesuccinate both for incipient and
moderate stages, and piperidolate and paroxetine for moderate
and severe stages (see Table 1 for the full list of top 10 drugs per
AD stage).

3.2. Short-listing of candidate repurposed drugs using a novel
network-based approach

Following the identification of the candidate repurposed drugs
per stage we performed a ranking, based on the combination of
three complementary methods. Initially, in our drug repurposing
pipeline we exploited the network connectivity of the drugs in a
structural similarity network using the Tanimoto similarity. To
detect potential AD drugs through this approach, we used an in-
house script using the Rcpi package in R to calculate the structural
similarity between the initial list of candidate repurposed drugs
with the structures of the currently FDA approved, previously
failed (withdrawn, suspended, terminated, unknown or com-
pleted) and drugs currently in clinical trials for the year 2020 for
AD and we initially kept all connections with structural similarity
above 50%. We devised a novel network-basedmethod which iden-
tifies drugs that are more similar to approved drugs or drugs that
are currently in clinical trials, and less similar to previously failed
drugs. To do so, we assigned a positive weight of score 1 between
Fig. 2. Analysis Pipeline. Step1: Signature Generation: Initially, each GSE dataset is pro
done for each stage of AD separately; Braak stage I-II (incipient), Braak stage III-IV (moder
(top 150) and under-expressed genes (top 150) are used as input in the four drug repurpo
Re-ranking: A three-branch approach is then followed: the network-based approach,
(Composite Drug Reranking Scoring) re-ranking of candidate repurposed drugs and the
(incipient, moderate and severe) were selected, comprising a group of 26 drugs. Step
candidate repurposed drugs was performed. Moreover, the current status of candidate
candidate repurposed drugs were detected. Step 5: Functional analysis: Pathway analysis
of top-curated genes of AD from DisGeNET was performed to detect pathways that are
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candidate repurposed and approved drugs, a negative weight of
score �1 between candidate repurposed and previously failed
drugs and a positive score of a lower impact between candidate
repurposed and drugs in clinical trials (phase I score of 0.2, phase
II score of 0.4 and phase III score of 0.6). These scores were then
multiplied with the existing weight of the connections of the drugs
(more details see Methods section).

The second approach in our drug repurposing pipeline involved
the re-ranking of the candidate drugs using CoDReS tool [32] based
on (a) a functional score combining the drug targets’ relevance to
the disease and the binding affinity to its target genes, (b) an a pri-
ori score defined as the normalized initial drug ranking from each
list, and (c) a structural score representing drugability violations.
We performed the CoDReS reranking on the top 50 drugs of each
list from each dataset. For each stage (stage I-II, III-IV, V-VI), the
average score for drugs appearing in two or more lists was
calculated.

The third approach in our drug repurposing pipeline focuses on
the calculation of the permeability of the candidate repurposed
drugs through the BBB using a prediction tool, named ‘‘lightBBB”.
This was done separately for the candidate repurposed drugs of
each of the AD stages. By combining all three parts of the repurpos-
ing approach, we ended up with a final scoring scheme that takes
into consideration 1) the novel network-based score, 2) the re-
ranking of drugs using the tool CoDReS and 3) the permeability
of drugs using the lightBBB tool. The re-ranked lists based on the
three aforementioned scores are given in Supplementary tables
1-3.

Based on the composite score combining all approaches, the 10
top-scoring drugs were chosen for each AD stage (Table 2, 3 and 4)
whereas full lists of drugs are shown in Supplementary (Table 2-4).
Hence, we shortlisted the 26 top-scored drugs from the union of
cessed with Limma R package to find differentially expressed genes (DEGs). This is
ate), Braak stage V-VI (severe). Step 2: Drug repurposing: The generated lists of over-
sing tools. Top 50 drugs were selected from each tool from each dataset. Step 3: Drug
which ranks drugs based on a normalized CT score (see Methods), the CoDRes
drug permeability through the BBB using the tool LightBBB. Top 10 drugs per stage
4: Structural clustering and target identification: hierarchical clustering of the 26
repurposed drugs in clinical trials was recorder. Finally, drug targets of our elite
of drug targets of our elite candidate repurposed drugs as well as pathway analysis
strongly connected to the disease.



Table 2
Top 10 candidate repurposed drugs of stage I and II for AD. The Combined score corresponds to our calculated score combining the CT score, the CoDReS score and the BBB
permeability score. Drug targets were extracted from DrugCentral (https://drugcentral.org/) and NCATS Inxight: Drugs (https://drugs.ncats.io/).

Candidate repurposed drug Combined score Drug targets

Clomifene 0.873 ESR1, ADRA2A, SLC6A4, SLC6A2, HTR2A, HTR2B, HTR2C, ADRA2B, DRD3, CHRM1, CHRM2,
CHRM3, CHRM4, CHRM5, ADRA2C, SLC6A3, EGFR, TACR2, SIGMAR1, HTR6, EBP

Camptothecin 0.823 TOP1
Omacetaxine mepesuccinate 0.790 RPL3, RPL2
Emetine 0.778 ADRA2A, ADRA2C, ADRA1D, ADRA1B
Pik-90 0.759 PI3K
Oxibendazole 0.747 TUBB, TUBA1A
Cephaeline (brd-k80348542) 0.741 HTR4
Vinpocetine 0.739 PDE1A, PDE1C
Emetine hydrochloride hydrate 0.719 ADRA2A, ADRA2C, ADRA1D, ADRA1B
Vapiprost 0.718 TBXA2R

Table 3
Top 10 candidate repurposed drugs of stage III and IV for AD. The Combined score corresponds to our calculated score combining the CT score, the CoDReS score and the BBB
permeability score. Drug targets were extracted from DrugCentral (https://drugcentral.org/) and NCATS Inxight: Drugs (https://drugs.ncats.io/).

Candidate repurposed drug Combined score Drug targets

Paroxetine 0.790 SLC6A4, SLC6A2, SLC6A3, CHRM1, CHRM2, CHRM3, CHRM4, CHRM5, TACR1, SIGMAR1, CYP2D6
Gatifloxacin 0.787 GYRA-STRPN, GYRB-STRPN, PARC-STRPN, PARE-STRPN
Piperidolate 0.783
Omacetaxine mepesuccinate 0.769 RPL3, RPL2
Ro 04–5595 0.764 GRIN1
Naloxone hydrochloride 0.762 OPRM1, ADORA3, OPRD1, OPRK1, TLR4, SIGMAR1, CCR5
Ethosuximide 0.761 CACNA1G
Perindopril 0.760 ACE
Brd-k80346834 0.743
Emetine 0.739 ADRA2A, ADRA2C, ADRA1D, ADRA1B

Table 1
The experimental design of the microarray data sets that were used in this study.

No Author GEO accession number Control Number Patient Number Pathologic disease stage

1 [23] GSE36980 47 32 Braak V-VI
2 [24] GSE110226 6 7 Braak V-VI
3 [25] GSE483650 173 80 Braak I-II

Braak III-IV
Braak V-VI

Table 4
Top 10 candidate repurposed drugs of stage V and VI for AD. The Combined score corresponds to our calculated score combining the CT score, the CoDReS score and the BBB
permeability score. Drug targets were extracted from DrugCentral (https://drugcentral.org/) and NCATS Inxight: Drugs (https://drugs.ncats.io/).

Candidate repurposed drug Combined score Drug targets

Tetrabenazine 0.895 SLC18A2, ADRA2A, ADRA2C
Iloperidone 0.892 HTR2A, DRD2, DRD3, HRH1, HTR1D, DRD4, HTR6, HTR7, ADRA1A, HTR2C, SIGMAR1, HTR1A, HTR1B,

ADRA2A, ADRA2B, ADRA2C, SLC6A2
Hydrocotarnine 0.828 CYP2D6, CYP1A2
Bi-2536 0.821 PLK1
Scoulerine 0.814 ADRA1D, ADRA2A, GABRA1
Piperidolate 0.810 CHRM1
Mepacrine 0.794 CHRM3, CHRM4, CHRM2, CHRM1, DRD3, ADA2C, HTR2A, ADRA2B, ADRA2A, ADRA1D, PRNP
Noscapine 0.781
Paroxetine 0.779 SLC6A4, SLC6A2, SLC6A3, CHRM1, CHRM2, CHRM3, CHRM4, CHRM5, TACR1, SIGMAR1, CYP2D6

Lomerizine 0.773 CACNA1B
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the three main lists. Using a score of 0.6 for the normalized CT
score, 0.3 for the CoDReS score and a 0.1 for the permeability
through the BBB score, we identified clomifene, camptothecin,
omacetaxine mepesuccinate as the top scoring drugs for incipient
AD (stage I-II), paroxetine, gatifloxacin and piperidolate as the top
scoring drugs for moderate AD (stage III-IV) and tetrabenazine,
iloperidone and hydrocotarnine as the top scoring drugs for severe
1432
AD (stage V-VI) from the network-based approach. However, hy-
drocotarnine, a crystalline alkaloid is not a medicinal drug since
its actions on CYP enzymes are not being used therapeutically in
the clinic. Moreover, emetine hydrochloride hydrate, a drug detected
in Braak stage I-II involves the same active drug as emetine, only in
a different solubility form, hence it should not make a difference in
terms of targeting. We performed a one-sided Fisher’s exact test by

https://drugcentral.org/
https://drugs.ncats.io/
https://drugcentral.org/
https://drugs.ncats.io/
https://drugcentral.org/
https://drugs.ncats.io/
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Fig. 3. ChemBioserver hierarchical clustering of the final candidate elite repurposed drugs (26) based on structural similarity. The clustering threshold was set to 0.4. The
total of 26 drugs are placed into 20 different drug groups.

Table 5
Current clinical trial status of top 5 candidate repurposed drugs of each Braak stage.

Candidate repurposed
Drug

Clinical trial registration
number

AD
Stage

Clomifene NCT04306692
NCT04887402
NCT02436226
NCT04157725
NCT03245827
NCT02890238
NCT02330757

I-II

Camptothecin N/A I-II
Omacetaxine mepesuccinate NCT04505995

NCT04248595
NCT04083911
NCT04126681

I-IV

Emetine N/A I-II
Pik-90 N/A I-II
Paroxetine NCT04757571

NCT03894085
NCT03277339
NCT04188028
NCT04310579
NCT04404439
NCT04218981

III-IV

Gatifloxacin NCT03696342 III-IV
Piperidolate N/A III-IV
Ro 04-5595 N/A III-IV
Tetrabenazine NCT02509793 V-VI
Iloperidone NCT04819776

NCT04712734
V-VI

Hydrocotarnine N/A V-VI
Bi-2536 N/A V-VI
Scoulerine N/A V-VI
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comparing the whole library of drugs and the 26 candidate repur-
posed drugs and these results showed a p < 0.05, suggesting that
the detection of these 26 candidate repurposed drugs was signifi-
cant and not randomly selected. Hence, we are proposing that
the drugs detected from the combination of the three approaches
described should be investigated further for their potential thera-
peutic efficacy in AD.

3.3. Hierarchical clustering among the candidate elite 26 repurposed
drugs for AD

Structural similarity among the candidate elite repurposed
drugs of the final lists was calculated using the ChemBioServer
[38]. A hierarchical clustering based on Soergel distance and Ward
linkage was carried out (see Methods), from which 20 different
drug groups were produced (Fig. 3). Here we can see that drugs
such as tetrabenazine, emetine hydrochloride hydrate, brd-
k80346834, emetine, brd-k80348542 appear in the same drug group,
as well as hydrocotarnine, ro 04–5595 and scoulerine, which also
appear in a same drug group. The rest of the 18 drugs are present
in different drug groups. These results suggest that the majority of
our proposed repurposed drugs are quite distant, i.e. not very
similar between them, indicating lack of redundancy in our pro-
posed drug set.

3.4. Current status of top repurposed drugs

We selected the top-5 candidate repurposed drugs from each
stage to assess their current status in clinical trials. Of the top-15
candidate repurposed drugs in total, none of them have been
1433
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tested in clinical trials for AD yet. However, drugs such as camp-
tothecin, vinpocetine, paroxetine, naloxone and mepacrine have been
tested in pre-clinical AD models [39-42]. Table 5 shows a summary
of all the clinical trials that each candidate repurposed drug is
involved. Seven out of the 14 drugs were not involved in clinical
trials at all (as reported by clinicaltrials.gov).

For instance, clomiphene is an elective estrogen receptor modu-
lator and is used as a treatment for subfertility due to anovulation
while camptothecin is used in cancer therapy. Omacetaxine mepe-
succinate is a unique agent approved by the FDA for the treatment
of chronic myeloid leukemia. Paroxetine is an antidepressant
whereas gatifloxacin is a fourth-generation fluroquinolone antibi-
otic used as a topical application for ophthalmic conditions. More-
over, emetine, a natural alkaloid, has been used in phytomedicine
to induce vomiting and treats cough and severe amoebiasis. In
addition, iloperidone is an atypical antipsychotic used in
schizophrenia while scoulerine is an isoquinoline alkaloid, with
promising suppressive effects of cancer cell growth in vitro. Nota-
bly, tetrabenazine is the only FDA drug for the treatment of chorea
related to Huntington’s disease and other hyperkinetic disorders.
Huntington’s disease is another neurodegenerative disease, with
some common aspects and molecular mechanisms to AD.
3.5. Computational insights on the validity of the findings

Following the identification of the short-listed candidate repur-
posed drugs for each AD-stage we compared our findings with a
h

cell 

renin-angiotensin system

micrornas in cancer

bladder cancer

hypertrophic cardiom

cgmp-pkg signaling pathw

platelet act

thyroid ho
p

viral carc

phospholipase d signaling
pathway

nf-kapp

gastric acid
salivary secretion

erbb sig

glioma

egfr tyrosine kinase in
resistance

metabolism of xenobiotics by 
cytochrome p450 

chemical carcinogenesis

vascular smooth muscle 
contraction

renin secretion pi3k-akt signaling pathway

non-small cell lung cancer

prostate cancer

colorectal cancer

gastric cancer

pancreatic cancer

relaxin signaling pathway

olfactory transduction

caffeine metabolism

linoleic acid metabolism

adrenergic signaling in 
cardiomyocytes

calcium signaling pathway
metabolic pathways

cortisol synthesis and 
secretion

retinol metabolism

steroid hormone biosynthesis

aldosterone synthesis and 
secretion hepatocellular carcinoma

proteoglycans in cancer breast cancercushing syndrome
steroid biosynthesis

taste transduction

oxytocin signaling pathway

insulin secretion

neuroactive ligand-receptor 
interaction

synaptic vesic

retrograde endocannabi
signaling

hif-1 signaling pathway

gnrh signaling pathway

pa

g

ni

ga

pathways in cancer

gnrh secretio

parathyroid hormone 
synthesis, secretion and 

action

estrogen sign

sphingolipid
pathw

prolactin signaling pathw

camp signaling pathway

serotonergic synapse

tryptophan metabolismdrug metabolism - 
cytochrome p450 

endocrine resistance

pd-l1 expression and pd-1 
checkpoint pathway in 

cancer

purine metabolism

Fig. 4. Pathway-pathway network. Using the drug targets of the candidate repurposed
pathway-pathway network. The 135 pathways that are targeted by our elite candidate r
give a total of 159. Common pathways are shown in square nodes, whereas unique to
candidate repurposed drugs from Braak stage I-II, III-IV and V-VI. Pink colored nodes sho
from stage III-IV and purple pathways targeted by drugs from stage V-VI. The size of nod
corresponds to the number of shared genes between pathways.

1434
priori AD-related knowledge. This meta-analysis was performed
in order to validate the novel network-based method using the
mechanisms of action of our candidate repurposed drugs with
existing, known mechanisms of action involved in AD and AD drug
data from previous years.

Firstly, we detected the pathways related to the drug targets of
our elite candidate repurposed drugs, using the PathIN tool, an in-

house tool (https://bioinformatics.cing.ac.cy/PathIN/), for finding
subnetworks of pathways that are related to a given set of genes.
Drug targets were in a total of 62 unique genes, leading to possible
association of 135 pathways. From these 135 pathways we then
detected common pathways with the ones generated using curated
AD-related genes, acquired from DisGeNET. For the DisGeNET
genes, we used a threshold of gene disease association (gda)
score>=0.5, resulting in 38 genes and 159 pathways. This analysis
resulted in 95 common pathways between the two pathway lists,
64 unique to DisGeNET list and 40 unique to the drug targets of
elite candidate repurposed drugs list. Moreover, pathways that
share common genes are also shown in Table 4 of the Supplemen-
tary Material. Fig. 4 shows the resulting pathways using the drug
targets of our elite candidate repurposed drugs. Square nodes show
common pathways between drug targets and DisGeNET gene lists.
The rest of the nodes represent pathways that are unique to drug
targets. Interestingly, most of the pathways that are unique to drug
targets of our elite candidate repurposed drugs, are targeted by
drugs detected in stage Braak V-VI (severe) of AD (nodes with pur-
ple color) (Fig. 4). 37 pathways are targeted by drugs of Braak stage
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Table 6
List of candidate repurposed drugs that are targeting the detected pathways using PathIN. Information regarding their mechanism of action and pathways are included. MOAs
were collected through DrugEnrichr (https://maayanlab.cloud/DrugEnrichr/).

Drug name Mechanism of action Braak stages No. of pathways DisGeNET pathways

Ethosuximide Voltage-dependent T-type calcium channel subunit alpha-1G inhibitor III-IV 8 4
Mepacrine NFkB pathway inhibitor V-VI 20 13
Lomerizine Calcium channel blocker V-VI 11 6
Vinpocetine Phosphodiesterase inhibitor

sodium channel blocker

I-II 8 4

Paroxetine Selective serotonin reuptake inhibitor (SSRI) III-VI 20 12
Iloperidone Serotonin receptor antagonist

dopamine receptor antagonist

V-VI 19 14

Scoulerine Adrenergic receptor antagonist

GABA receptor antagonist
serotonin receptor antagonist

V-VI 11 4

Noscapine Tubulin polymerization inhibitor V-VI – –
Piperidolate Acetylcholine receptor antagonist III-VI 6 6
Naloxone hydrochloride Opioid receptor antagonist III-IV 39 38
Tetrabenazine Reversible human vesicular monoamine transporter type 2 inhibitor V-VI 9 7
Bi-2536 PLK inhibitor

apoptosis stimulant
cell cycle inhibitor
protein kinase inhibitor

V-VI 2 2

Hydrocotarnine V-VI 11 3
Clomifene Estrogenic agonist/antagonist I-II 64 50
Perindopril Angiotensin converting enzyme inhibitor III-IV 4 4
Oxibendazole Tubulin polymerization inhibitor I-II 5 3
Vapiprost Thromboxane receptor antagonist

prostanoid receptor antagonist

I-II 3 3
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I-II, 37 by drugs of Braak stage III-IV, whereas only 15 are targeted
by drugs of Braak stage V-VI. Notably, 25 pathways are targeted by
drugs of all three stages. Of the pathways that were targeted by
drugs of all three stages, calcium signaling pathway and pi3k-akt
signaling pathway were in the top 3 pathways showing the highest
degree (Supplementary table 5).

Key network metrics of the pathway-pathway network were
calculated using the Cytoscape plug-in Network Analyzer, to reveal
pathway nodes that are important based on the topology of the
generated network. These metrics were calculated in order to
detect important pathways based on their communication with
others, how strongly connected they are etc. All 135 pathways
detected, along with the different metrics calculated are listed in
supplementary table 5.

To further analyze and interpret the findings from the pathway
network, the candidate repurposed drugs that are targeting the
detected pathways were used as an input to DrugEnrichr and their
mechanisms of action were detected. The disease stage of the can-
didate repurposed drugs is also mentioned, as well as the number
of pathways that each drug is targeting and how many of those are
also detected through a-priori knowledge for AD (DisGeNET)
(Table 6). From the results in table 6, calcium signaling pathway
Table 7
Course of the drugs detected in 2016 over the years. The Braak stage, which the drug is t

Repurposed Drugs of 2016 Braak
stage

Clinical trials 2016 Clinical trials 2

Candesartan V-VI yes
Saracatinib V-VI yes
Nicotine III-IV yes
Pioglitazone all yes yes
Vorinostat V-VI
Curcumin V-VI
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appears as the pathway with highest degree for six out of the sev-
enteen candidate repurposed drugs, a pathway that appears to be
targeted in all three Braak stages of AD.

3.6. Retrospective analysis on the 2016 drugs

A retrospective computational experiment was performed to
testify the validity of our findings. We re-applied the network-
based approach developed herein, by simulating the drug repur-
posing status in the year of 2016. We used the information regard-
ing the failed drugs up to the year of 2016 and drugs in AD clinical
trials of the year 2016. This validation step was carried out in order
to show whether our approach could predict candidate repurposed
drugs that entered AD clinical trials in the year of 2016 and
upwards. From the top 30 candidate repurposed drugs detected,
6 drugs (candesartan, saracatinib, nicotine, pioglitazone, vorinostat
and curcumin) were detected to appear in clinical trials in the fol-
lowing years (Table 7). Specifically, candesartan appeared in AD
clinical trials in all four years. Moreover, pioglitazone, which was
already in phase III AD clinical trials in 2016, was also detected
in 2017. However, pioglitazone is currently a failed drug for AD.
Curcumin, a natural product, has been in clinical trials since 2019
argeting, is shown, as well as the presence of the drug in the next clinical trials.

017 Clinical trials 2018 Clinical trials 2019 Clinical trials 2020

yes yes yes
yes

yes yes

yes yes Yes
yes Yes

https://maayanlab.cloud/DrugEnrichr/
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and is still ongoing. A remarkable result was the detection of sara-
catinib, which was the highest scoring drug from the ones detected,
yet was discontinued in 2018 for AD. However, its prediction using
our novel network-based approach showed a very high score,
reaching the top 10 drugs of that year (Supplementary table 6–
8). Nicotine has been discontinued in 2018, however a clinical trial
with nicotine transdermal patch was still ongoing in 2020 clinical
trials, since 2019.
4. Discussion

Here, we propose a novel network-based drug repurposing
approach for AD stages aiming to further filter and prioritize candi-
date repurposed drugs to be short-listed for further experimental
validation in the future. Our analysis of AD gene signatures from
transcriptomic datasets included a scoring scheme of three differ-
ent approaches; the network-based approach resulting in the nor-
malized CT score, the CoDReS score and whether the drugs are
permeable or not through the BBB. This approach resulted in a total
of 26 elite candidate repurposed drugs against three different
severity stages. Computational and literature-based analysis
showed 95 common pathways hosting the drug targets of candidate
repurposed drugs and top curated AD-related genes from
DisGeNET. The highlighted drugs were shown to be generally struc-
turally different among them, meaning that most of the drugs pro-
posed do not belong in the same structural sub-group. Performing a
computational experiment as if we were back to 2016, we repeated
the same process with the known drug information of 2016 and
detected the drug saracatinib as a candidate, which then entered
clinical trials for AD in 2017. The novelty of this study lies on setting
the focus of drug repurposing on AD staging by applying a novel
network-based approach that filters and re-ranks repurposed drugs
based on structural properties and their similarities to drugs that
either failed or drugs that are currently in clinical trials.

In 2014–2019, saracatinib was tested in phase-II multi-center
trial (NCT02167256) in order to evaluate the safety, tolerability,
and its effectiveness in treating patients with a mild AD. The study
followed patients for 52 weeks and observed if there were changes
in the brain’s metabolism of glucose, cognitive and functional mea-
sures, and the size of brain areas through imaging techniques.
None of the measures showed a statistical difference between
the treatment and placebo groups but there was a trend towards
less shrinkage in the hippocampus and entorhinal regions of the
brain in the saracatinib group.

Moreover, pioglitazone, a drug that was already in clinical trials
in 2016, was detected as a candidate through our approach using
2016 data. However, pioglitazone was terminated for its use for
AD in 2018 since according to published trial results, it did not
delay the onset of Mild Cognitive Impairment. The failure of this
diabetic drug to be used in humans was mostly contributed to
the poor BBB permeability as well as to serious peripheral side
effects [43]. Although this drug was terminated, reassessment of
its use is considered. For instance, Jojo et al, performed a study in
which they formulated and optimized intranasal nano lipid carriers
of pioglitazone for its targeted delivery to the brain [43]. The detec-
tion of this drug through our approach by using both data from
2016 and 2020, as well as the presence of studies trying to opti-
mize its use for AD, might be a prove that the drug could still be
a possible candidate for the disease if several changes and opti-
mization processes take place.

For AD, the number of genetic factors that are key contributors
to the disease are several, yet even those cannot fully explain the
totality of AD cases. Rather than single genes, a better approach
would be investigating AD as a pathology related to alterations
affecting entire biological pathways. Detection of pathways such
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as calcium signaling pathway, cholinergic synapse, dopaminergic
synapse, GABAergic synapse, gap junction, are only some of the
pathways that were detected from the drug targets of our elite can-
didate repurposed drugs. These pathways are well-known to be
involved in the underlying mechanisms of actions of the disease
[44]. Moreover, dysregulation of the MAPK signaling pathway,
one of the top detected pathways in our analysis, has been associ-
ated with AD [45].

Regarding the drug targets of the candidate repurposed drugs,
ACE, ESR1 and CYP2D6 were found to be common with the top
curated genes for AD detected from DisGeNET. Specifically, ACE
scored second in the DisGeNET list, showing a strong association
with the disease. ACE encodes angiotensin I converting enzyme
(ACE1), which regulates blood pressure through the renin-
angiotensin system. However, ACE and its mechanistic relationship
to AD is complex. It has been shown that by inhibiting ACE1 in the
hippocampus of rodents, this enhances their memory [46],
decreases memory deficits in mouse models of AD, and also
reduces the incidence of AD in humans, as supported by the liter-
ature. Changes to ACE1 function by using ACE inhibitors could
potentially change AD risk by affecting blood pressure since it is
correlated to AD and hence several ACE inhibitors have been in
clinical trials for the disease [47]. Moreover, for the ESR1I gene,
which encodes the estrogen receptor alpha, several SNPs have been
described and some of these SNPs have been related to AD in pre-
vious studies [48,49] Lastly, CYP2D6 is one of the enzymes
involved in drug metabolism. Several studies have shown that
polymorphisms in this specific gene can induce alteration in drug
metabolism and hence can modify the drug’s efficiency and safety.
More specifically, this enzyme has been shown to be one of the
main CYP enzymes involved in the metabolism of donepezil. In par-
ticular, polymorphisms of the CYP2D6 seem to play a role in the
pharmacokinetics of donepezil, which may influence the efficacy
of treatment in patients with AD [50].

Regarding the detected candidate repurposed drugs, erindo-
prilerbumine (perindopril) is a prodrug ester of perindoprilat, which
is an ACE inhibitor [51]. Moreover, according to MesH, clomiphene
is a triphenyl ethylene stilbene derivative, an estrogen agonist or
antagonist. Hence, it targets the gene ESR1, a gene correlated with
AD as previously mentioned.

Iloperidone, an atypical antipsychotic, has a key mechanism of
action the antagonism of certain receptors, such as dopamine D2
and serotonin 5-hydroxytryptamine (5HT) receptor 2A and is being
approved to treat schizophrenia. As an antipsychotic, this drug
could be a potential candidate for symptom-relief for AD since
antipsychotics are often prescribed to patients. It shows promising
efficacy and safety profile compared to other drugs [52].

Depression is another symptom that patients with dementia or
AD might develop. Paroxetine, as detected from our repurposing
methodology, is a selective serotonin reuptake inhibitor and
according to the literature, it is one of the most common off-
label drugs used in daily clinical practice [53]. Hence, it could be
a good candidate for treating people with AD that have depression.

In this work, we present an approach that detects small mole-
cules as candidate treatment for AD. However, there is also a group
of drugs, monoclonal antibodies that are also candidates in clinical
trials for AD. As previously mentioned, FDA has approved as an
emergency treatment the antibody aducanumab, aiming to target
at the underlying pathophysiology of AD, the presence of Ab pla-
ques in the brain. Although antibodies represent a rather large
group of candidate drugs they were not part of the scope of this
current work, which focused on small molecules.

A limitation of the present study is that it is based on the gene-
signatures derived from post-mortem AD patient specimens.
Hence, some of the perturbations detected could be a result of
hypoxia and not related to AD. However, this is usually the case
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when analyzing brain samples related to neurodegenerative dis-
eases due to the limited number of available data from patients
antemortem.

Network-based approaches have been proven to be significant in
drug repurposing as it is observed by various studies [54,55]. One
such example was presented by [17] in which they propose a
network-based systematic computational process to discover new
drugs implicated in AD based on AD-related genes, drug targets,
and further filtering of the drug candidates regarding their gene
expression profiles. Our network methodology as developed here
has several strengths since it ranks the candidate repurposed drugs
based on their functional association with the disease, their struc-
tural diversity, their BBB permeability and their overall similarity
with previously failed, approved or currently in clinical trials AD
drugs. Thus, the presented methodology provides a comprehensive
short list of candidate repurposed drugs with a resolution regarding
AD stages that can be further validated experimentally in the future.
5. Conclusions

We performed drug repurposing analysis across different AD
stages and we proposed a novel network-based method for ranking
candidate repurposed drugs, together with combining the already
established method of CoDReS for drug re-ranking and the drug
permeability prediction using the tool lightBBB. Through this
approach, we derived an elite group of candidate repurposed drugs
per AD stage. Finally, using the drug targets of our elite candidate
repurposed drugs and detecting the pathways they are involved, as
well as by repeating the process using data from 2016, some can-
didate repurposed drugs show some relevance to AD, creating
potential interest for these compounds to be further tested with
in vivo and clinical experiments. Pathways detected through the
candidate repurposed drug targets showed relevance with already
known AD pathways using a priori knowledge from DisGeNET. We
expect that our proposed candidate repurposed drugs will serve as
prime candidates for future AD research and our network-based
drug repurposing method will be useful for future drug-
repurposing studies on many other diseases, beyond AD.
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