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Abstract

Microbial communities can self-assemble into highly diverse states with predictable sta-
tistical properties. However, these initial states can be disrupted by rapid evolution of the
resident strains. When a new mutation arises, it competes for resources with its parent
strain and with the other species in the community. This interplay between ecology and
evolution is difficult to capture with existing community assembly theory. Here, we in-
troduce a mathematical framework for predicting the first steps of evolution in randomly
assembled communities that compete for substitutable resources. We show how the fitness
effects of new mutations and the probability that they coexist with their parent depends on
the size of the community, the saturation of its niches, and the metabolic overlap between
its members. We find that successful mutations are often able to coexist with their par-
ent strains, even in saturated communities with low niche availability. At the same time,
these invading mutants often cause extinctions of metabolically distant species. Our re-
sults suggest that even small amounts of evolution can produce distinct genetic signatures
in natural microbial communities.

Main Text

Microbes often live in ecologically complex communities containing hundreds of coexist-
ing species (1–4). As residents of these communities compete with each other, they can
evolve over time by acquiring mutations (5–7). These evolutionary changes can alter the
ecological interactions between species, driving shifts in community composition (8–10).
Conversely, the community also creates the context in which organisms evolve, by influ-
encing the structure of the adaptive landscape (11–15). Understanding how the commu-
nity influences these evolutionary paths (and vice versa) is a crucial step toward predicting
and controlling microbial ecosystems.

Longstanding conceptual models suggest that community structure can impact evolution
in different ways. Some models predict that the rate of evolution should decline in larger
communities, as more niches are filled by other species (7, 16–18). Others have proposed
that diverse communities could create new opportunities for local adaptation, by suppress-
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ing key competitors or creating new niches through crossfeeding (11–14, 19, 20). These con-
ceptual models also make different predictions about how adaptive mutations will impact
their community when they invade. Some mutations will replace their parent strain, while
others can encroach on other species (9, 21) or diversify into coexisting lineages (5, 6, 22).
Each of these behaviors has been observed empirically, yet it remains challenging to pre-
dict which should dominate in a given community.

The source of this challenge lies in the niches inhabited by different species, and how
mutations alter or move between them. While much progress has been made in small
communities where the relevant niches can be explicitly defined (21–24), it is difficult to
extend this approach to larger communities like the gut microbiome, where species can
compete for many different combinations of resources. In this high-diversity limit, even
basic questions about the effects of community structure remain unresolved: how does the
benefit of a mutation depend on the diversity of the community and the metabolic overlap
between its members? Do mutations primarily compete with their parent strain, or do
they continue to stably diversify, as suggested by recent evidence from the gut microbiome
(5, 6, 25) and some in vitro communities (26, 27)?

Resource competition models provide a mechanistic framework to address these ques-
tions (28–32). In these models, niches are not defined in advance, but emerge organically
through differences in resource consumption (33). An extensive body of work has used this
framework to investigate the process of community assembly, where species compete to
colonize a new environment (28, 34–37). These model communities can recapitulate some
large-scale features of natural (38–40) and experimental ecosystems (39–42). By contrast,
the evolutionary dynamics that emerge from resource competition are difficult to model
with traditional community assembly theory. While some studies have started to explore
these effects, previous work has mostly focused on small communities (30, 31, 43) or the
long-term states attained over infinite evolutionary time (30, 44). Both approaches are
poorly suited for understanding how a focal species evolves in different community back-
grounds, which is the scenario most accessible in experiments. To address this gap, we
develop a theoretical framework for predicting the initial steps of evolution in an assem-
bled community with many coexisting species. By extending random matrix approaches
from community assembly theory, we derive analytical predictions that describe how the
fitness benefits and fates of new mutations scale with the diversity and metabolic over-
lap of the surrounding community, enabling quantitative tests of the conceptual models
above.

Modeling first-step mutations in randomly assembled communities

To study the interplay between ecological competition and new mutations in a mathe-
matically tractable setting, we turn to a simple resource competition model (28–32, 36, 45)
where microbes compete for R ≫ 1 substitutable resources that are continuously supplied
by the environment (Fig. 1A). Each strain µ in the community is characterized by a re-
source utilization vector r⃗µ = (rµ,1, . . . , rµ,R), which describes how well it can grow on
each of the supplied resources. Following previous work (30, 32), it will be convenient
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to further decompose this vector into an overall magnitude Xµ ≡ log (
∑

i rµ,i), which
represents a strain’s resource consumption budget, and a normalized resource strategy
α⃗µ ≡ r⃗µ/

∑
i rµ,i, which describes the relative effort devoted to importing each of the re-

sources. For simplicity, we neglect additional factors like regulation (46), crossfeeding (39),
and resource sequestration (47), allowing us to focus on the fundamental evolutionary
pressures imposed by resource competition alone.

With these assumptions, the relative abundances of the strains (fµ) follow the dynamical
equations,

∂fµ
∂t

= fµ

[ R∑
i=1

αµ,ie
Xµhi(f⃗ )− 1

]
, (1)

where hi(f⃗ ) ≡
(
κi/
∑

j κj

)
·
(∑

µ αµ,ie
Xµfµ

)−1
denotes the local availability of resource

i, and κi is its external supply rate (SI Section 1.1). Previous work has used this model
to study the process of community assembly (28, 36, 37), where S distinct species arrive
in a new environment, and form an ecologically stable community containing S∗ ≤ R
survivors (Fig. 1B, left). The value of S∗ depends on the environment and the resource
preferences r⃗µ of the S initial strains. While it is difficult to measure these kinetic parame-
ters directly, past research has shown that emergent features of large ecosystems can often
be mimicked by randomly drawing the uptake rates from a common statistical distribution
(28, 34–36). For concreteness, we initially focus on the binary resource usage model from
Ref. (36), in which each strain utilizes a random subset of ∼R0 resources, with an overall
uptake budget Xµ drawn from a Gaussian distribution (SI Section 1.1); we also consider
several alternative choices in Figures S2 and S6.

Individual realizations of this model produce assembled communities with similar num-
bers of surviving species (S∗), which can be predicted using methods from the physics of
disordered systems (28, 29, 36; Fig. 2B; SI Section 3). In our analysis below, it will be conve-
nient to treat the expected number of surviving species as an input parameter, and classify
the assembled communities as a function of their niche saturation, S∗/R (SI Section 3.2).

To account for evolution, we model the very first mutational steps that occur in a randomly
assembled community (Fig. 1B). This scenario might apply to the initial phases of in vitro
passaging experiments (12, 26), or recently colonized gut microbiomes (48, 49). Through
much of our analysis, we will focus on a particularly simple class of “knock-out” muta-
tions, where the mutant loses its ability to consume one resource (αi → 0). We assume
that the cell can compensate for this deletion by increasing the uptake of other resources
in its repertoire, but this compensation may not be perfect, corresponding to a shift in
the effective budget (∆X). We also consider “knock-in” mutations, where a strain gains
the ability to consume a resource (e.g. through horizontal gene transfer; 25), as well as
more general changes that influence the uptake rates of multiple resources simultaneously
(α⃗ → α⃗ + ∆α⃗). We can classify these mutations by the magnitude of their phenotypic

change, γ ≡ R0

√∑
i∆α

2
i , defined such that γ ≈ 1 for knock-out mutants.

While the phenotypes of these mutants are simple, their fitness effects depend on the local
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Figure 1: Modeling the first steps of evolution in a randomly assembled community that
competes for substitutable resources. (A) Microbial strains compete for R resources that
are continuously supplied by the environment at rates κi. Each strain µ has a characteristic
set of uptake rates rµ,i (arrows), which can be altered by further mutations. (B) A local
pool of S initial species, whose phenotypes are randomly drawn from a common statistical
distribution, self-assembles into an ecological equilibrium with S∗ ≤ S surviving species
(left). A new mutation (M ) arises in one of the surviving species (P ); if the mutation
provides a fitness benefit, its descendants can either replace the parent strain (top right)
or stably coexist with the parent, potentially driving another species to extinction (bottom
right).
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environment, which is shaped by the other resident strains. Using the assembled commu-
nities as a backdrop allows us to quantify how this evolutionary landscape varies with the
size and composition of the surrounding community.

Distribution of fitness effects of mutations in newly assembled communities

The rate of evolution in a newly assembled community will depend on the supply of ben-
eficial mutations. This landscape is often summarized by the local distribution of fitness
effects (DFE), denoted by ρµ(s), which gives the relative probability that a mutation in focal
strain µ will have an invasion fitness s. The shape and scale of ρµ(s) determine the avail-
ability of beneficial mutations, and therefore the rate of evolutionary change. Our resource
competition framework allows us to ask how these features depend on the composition of
the larger community.

For a community at ecological equilibrium, a mutation that arises in a resident strain µ and
changes its resource uptake phenotype to a new value Xµ+∆X and α⃗µ+∆α⃗ will have an
invasion fitness,

sinv ≈ ∆X +
∑
i

∆αigi , (2)

where gi ≡ hi − h is the excess availability of resource i relative to the ecosystem average,
h ≡ 1

R
∑

i hi (30) (SI Section 1.2). Equation (2) shows that the invasion fitness of a mutation
that only affects the overall uptake budget of a strain (∆α⃗ = 0⃗) is independent of the
surrounding community. In contrast, the benefits of mutations that change the resource
consumption strategy of a strain will depend on the interactions between species, which
are mediated by the values of the resource availabilities, gi. For example, if a resource has
a lower relative availability (gi < 0), then it is not worth devoting energy to consume it,
and a knock-out mutation for that resource should be beneficial.

Replica-theoretic calculations similar to those performed in Ref. (36) allow us to predict
the joint distribution of gi as a function of the community assembly parameters (SI Section
3.2). In a large ecosystem, the excess availabilities are well-approximated by a Gaussian
distribution,

gi ∼
(
1− S∗

R

)[
δκi + Zi · C ·

√
R−R0

S∗R0

]
, (3)

where δκi ≡ κi − 1 is the external supply of each resource, C is an O(1) factor which
depends on S/S∗ (SI Section 3.2), and the Zi are uncorrelated standard Gaussians. Eqs. (2)
and (3) allow us to calculate the distribution of fitness effects, ρµ(s), by aggregating over
mutations with different values of ∆α⃗ and ∆X .

To understand how the community influences the DFE, it is helpful to consider the sim-
plest case, where the resource supply is uniform (δκ⃗ = 0⃗) and mutations have no direct
costs or benefits (∆X = 0). In this case, Eqs. (2) and (3) imply that ρµ(s) will also follow a

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.15.571925doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571925
http://creativecommons.org/licenses/by-nc/4.0/


0

0.5

1

N
ic

he
 s

at
., 

S*
/R

ε = 0.001

ε = 0.4

ε = 1.5

ε = 5.5

Fitness e�ect, sinv

lo
g(

Fr
ac

tio
n 

of
 m

ut
at

io
ns

)

Knock-Out
Knock-In

B

A DC

S*/R = 0.5

S*/R = 0.9

σinv

P M
S species

S* alive

Initial growth
rate = sinv

10-2

100

102

S*/S = 0.1
S*/S = 0.5

R0 = 100
R0 = 10σ in

v · 
R 03/

2

0 0.5 1

Niche saturation, S*/R

0

0.4

0.8

Co
rr

(s
co

m
m

, s
m

on
o )

in
v

in
v

0 0.01-0.01

Deleterious Bene�cial E

-1

0

log(Varenv / Varcom
m

 )

1

Species sampled, S/R
0 2 4

Figure 2: Distribution of fitness effects of first-step mutations as a function of commu-
nity complexity. (A) As in Fig. 1, a community is assembled from S initial species, leaving
S∗ alive at equilibrium. The surviving species produce mutations, whose invasion fitness
sinv is equal to their initial relative growth rate. (B) Number of surviving species (S∗) as a
function of the sampling depth (S) and the inter-species variation in the total uptake bud-
get (ϵ). Curves show theory predictions from SI Section 3.1, while points show means and
standard deviations over 103 simulation runs with R = 200, R0 = 40, and σκ = 0. (C)
Distribution of fitness effects of knock-out (and knock-in) mutations with ∆X = 0 in com-
munities with two different levels of niche saturation (S∗/R). Black curve shows the theo-
retical predictions from Eq. (4), while dots represent a histogram over all possible strategy
mutations in 103 simulation runs using the same parameters as panel B, with S∗/S = 0.1.
(D) The width σinv of the distribution of fitness effects in panel C as a function of niche sat-
uration, for various values of sampling permissivity S∗/S and per-species resource usage
R0. Curves show the theoretical predictions from Eq. (4), while the dots show the average
over 103 simulation runs. (E) Pearson correlation between the fitness effect of a mutation
in the community and its fitness effect in monoculture, for different values of niche satura-
tion and scaled variation in resource supply rates, Varenv/Varcomm ≡ σ2κ · R0/(1−R0/R).
Curves show the theoretical predictions from SI Section 3.5, while points show the average
over all mutations in 103 simulated communities with parameters the same as panel C.
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Gaussian distribution, with mean zero and standard deviation

σinv ∼ γ · C (1− S∗/R)

√
R−R0

S∗R3
0

, (4)

where γ ≡ R0

√∑
i∆α

2
i is the overall magnitude of the phenotypic change produced by

the mutation (Fig. 2C-D). Since this result does not explicitly depend on the focal species
µ, it implies that the DFEs should be similar for all strains in the community (Fig. S1). Fur-
thermore, since the specific details of the mutations only enter through their overall mag-
nitude γ, this implies that knock-out and knock-in mutations — as well as multi-resource
mutations with the same value of γ ≈ 1 — will have statistically similar DFEs (Fig. 2C).

Equation (4) shows that the community influences the DFE primarily through the degree
of niche saturation, S∗/R. The magnitude of the typical fitness effect approaches zero
as S∗ → R (Fig. 2D), which is consistent with the idea that the rate of evolution will be
slower in communities where more niches are already filled. However, since the mean
of the DFE is still centered at s = 0, the overall fraction of beneficial mutations remains
constant as S∗ → R (Fig. 2C). This implies that surviving organisms are not necessarily at
an “evolutionary optimum,” where any change to their resource consumption tends to be
deleterious.

However, this symmetry between the frequency of beneficial and deleterious mutations
critically depends on the assumption of perfect trade-offs (∆X = 0), which might not hold
in practice. For example, a beneficial mutation could halt the production of an enzyme
which is used for metabolizing a low-availability resource, while leaving the expression of
other enzymes in that now-defunct pathway intact – resulting in a net cost to pure fitness.
If all mutations carried such a direct cost (∆X < 0), then Eq. (2) implies that the entire
DFE would shift to the left by a constant amount −|∆X|. If this shift is larger than the
typical spread of the DFE (|∆X| ≫ σinv), then the beneficial tail of ρµ(s) will approach
an exponential shape, whose height and width will both strongly decline with the degree
of niche saturation S∗/R. Thus, the availability of beneficial mutations can sensitively
depend on the genetic architecture underlying resource consumption.

Similar results apply when the resources are supplied at different rates (0 < |δκi| ≪ 1; SI
Section 3.5). In this case, the fitness effect of a mutation will depend on both the commu-
nity and the external environment, as encoded by the resource availabilities in Eq. (3). The
overall magnitude of the environmental contribution declines as niche saturation increases
(S∗/R → 1), consistent with previous work showing that larger communities self-organize
to “shield” their member species from the external environment (30, 32, 36). Interestingly,
however, Eq. (3) shows that the relative contribution of δκ⃗ to a mutation’s fitness effect actu-
ally increases with niche saturation, so the external environment can still exert an influence
on the overall direction of the fitness landscape. This effect is strikingly illustrated when
we compare the fitness effect of each mutation with its expected value in the absence of
the community (Fig. 2E). The correlations between the two DFEs can be substantial when
σ2κ ≳ R/S∗R0, indicating that environmental shielding is often incomplete.
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Ecological diversification in large communities

While the invasion fitness describes the initial growth of an adaptive mutation, a success-
ful variant will eventually reach a size where it starts to impact the other members of
the community. Some of these mutants will eventually replace their parent strain, due to
the principle of competitive exclusion (28). Other mutations can stably coexist with their
parent by exploiting a different ecological niche (30). How does the frequency of these eco-
logical diversification events depend on the composition of the surrounding community?

We can analyze the probability of mutant-parent coexistence in our model by recasting
it as the outcome of two correlated assembly processes. First, an initial ecosystem E0 is
formed through our standard community assembly process (Fig. 1B, left). Then, a second
ecosystem is formed when one of the surviving species in E0 produces a beneficial mutant
M , and the combined community E0 +M is allowed to reach its new ecological equilib-
rium (Fig. 1B, right). The latter event requires that the parent strain has a positive relative
abundance in the first ecosystem (fE0

P > 0), and that the mutant survives in the second
ecosystem (fE0+M

M > 0). The probability that the mutant coexists with its parent can then
be expressed as a conditional probability,

Pcoex = P[fE0+M
P > 0

∣∣ fE0
P > 0, fE0+M

M > 0], (5)

which averages over the random resource uptake rates in the initial community, as well as
the random effect of the adaptive mutation.

The correlated assembly process in Eq. (5) is challenging to analyze (37), since the mutant
and parent phenotypes are closely related. Fortunately, we will show that we can often ap-
proximate the coexistence probability by considering a third community assembly process,
in which the mutant and parent are introduced simultaneously with the other species. This
approximation differs from the two-ecosystem model in Eq. (5), since the final community
can contain “rescued” species that would not have survived in E0 before the mutant strain
invaded. However, simulations and theory indicate that these differences result in only
small corrections to the coexistence probability across a broad range of parameters (SI Sec-
tion 1.3, Fig. S3), so that the simultaneous assembly approximation is often valid.

When this approximation holds, the coexistence probability can be evaluated by extending
the replica-theoretic calculations in Eq. (3) (SI Section 3.4). We find that the coexistence
probability can be expressed in terms of quantities from the original ecosystem, before
mutant invasion:

Pcoex ≈
∫ 1

0
dfP p(fP )

∫ scoex(fP )

0
ds ρ(s|fM > 0) , (6)

where p(fP ) is the distribution of relative abundance of the parent (conditioned on sur-
vival), ρ(s|fM > 0) ∝ max (0, s) · ρµ(s) is the distribution of invasion fitnesses of mutants
that survive genetic drift (30), and scoex(fP ) is defined by

scoex(fP ) ≡
fPS∗γσinv√

R0

(S∗

R
) (

1− R0
R
) . (7)
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Since R0 ≫ 1, the integral in Eq. (6) reduces to

Pcoex ≈ ρµ(0) · σ2inv∫∞
0 sρµ(s) ds

· γ2

R0(S∗/R)(1−R0/R)
, (8)

where σinv is the width of the DFE from Eq. (2). For a mutation with perfect trade-offs
(∆X = 0), the first factor is an O(1) constant, so the coexistence probability is dominated
by the second factor.

Equation (8) shows that the coexistence probability is largest for small values of S∗/R
(Fig. 3A), consistent with the idea that diversification is easier when there are many open
niches left to exploit, as in the case of adaptive radiation (20). Interestingly, however, we
find that the coexistence probability does not vanish even as communities approach full
saturation (S∗/R → 1), but instead plateaus at a nonzero value. This is true even in fully
saturated communities (S∗ = R), where other species must be driven to extinction when
the successful mutant invades.

At this point, the coexistence probability is most strongly determined by the phenotypic
effect size of the mutation. A mutation that changes the resource consumption strategy
infinitesimally (γ → 0) can never coexist with its parent. By contrast, the coexistence
probability of a single-resource knockout mutant (γ = 1) scales inversely with the total
number of resources R0 utilized by a typical organism, rather than the total number of
resources in the environment. This suggests that mutants and parents can coexist even for
“large” communities containing many species and resources (Fig. 3B and Fig. S4).

We see that simulation results generally support the theoretical predictions in Eq. (8), but
start to exceed this value for communities very close to full saturation. The reason for this
deviation comes from our “simultaneous assembly” approximation, which allowed the
mutant’s invasion to “rescue” species that had previously gone extinct. Allowing extinct
species to re-invade flattens the mutant-parent coexistence probability (Fig. S3), suggesting
that competition from these rescued species plays a significant role in our theoretical model
for extremely high niche saturation. These rescued species could be relevant in some nat-
ural ecosystems, where a local species pool is maintained in separate spatial niches, with
frequent migration events allowing species to re-invade. Regardless, our theoretical re-
sults provide a lower bound on the coexistence probability for large ecosystems, so that
diversification could be even more common under some conditions.

In reality, most mutations that change an organism’s resource consumption strategy are
unlikely to be perfect trade-offs. More generally, we find that mutations with a direct cost
or benefit ∆X change the coexistence probability by the factor

Pcoex(∆X)

Pcoex(∆X = 0)
∼


σinv√
2π∆X

e−∆X2/2σ2
inv if ∆X ≫ σinv,

1−
√

π
2
∆X
σinv

if |∆X| ≪ σinv,
∆X2/σ2inv if ∆X < 0, |∆X| ≫ σinv.

(9)

This result shows that strategy mutations which carry a direct fitness cost are more likely to
coexist with their parent strain, provided that they are still favored to invade in the current
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community context. Conversely, strategy mutations with strong pure fitness benefits are
likely to drive their parent to extinction (Fig. 3B). This effect arises from the fact that a
nonzero ∆X changes the typical fitness of mutations that establish in the population. The
coexistence probability is highly sensitive to these changes in invasion fitness, as shown
by the bounds of integration in Eq. (6): mutants with a smaller invasion fitness are much
more likely to coexist with their parent strain (Fig. 3C, inset). Coexistence is unlikely when
invasion fitness is above a characteristic level

s̄coex ∼ γ2
1− S∗/R
R2

0(S∗/R)
. (10)

This “coexistence fitness” s̄coex is smaller than the typical invasion fitness σinv by a factor
of R−1/2

0 – meaning that diversification is driven by a narrow range of mutants with fitness
high enough to establish but small enough to coexist.

We can gain some intuition for this effect by considering a loss-of-function mutation for a
resource that is slightly overutilized by the population (gi < 0). Equation (1) shows that the
growth rate of this variant (relative to its ancestor) is given by ∼ gi(t). As the mutant grows
in abundance, it begins to replace its parent, which tends to reduce the overall utilization of
resource i (∂tgi > 0). If gi reaches zero before the parent strain goes extinct, then the mutant
will coexist with its parent, having lost its initial growth advantage. This coexistence is
most likely to happen if the parent strain has high abundance, or if |gi| (and therefore sinv)
is initially small (Fig. S5).

The same argument applies for more complex mutations which affect multiple resources.
It also explains why mutations with small phenotypic effects, γ → 0 (e.g. a pure fitness
mutation with no strategy change), cannot coexist with their parent. If the mutant and par-
ent have near-identical resource consumption strategies, the mutant’s invasion produces
very little negative feedback on its growth rate relative to its parent, making it likely the
parent strain will be driven to extinction (Fig. S4B). Similar logic applies for extensions of
the model discussed in SI Section 3.5, such as non-uniform resource supply or allowing
the parent species to use a different number of resources from the rest of the population
(Fig. S6). Together, these results suggest that in situ diversification could be common even
in large and saturated communities, particularly for mutants on abundant backgrounds
with lower-than-expected invasion fitnesses.
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Figure 3: Ecological diversification in large communities. (A-C) Probability that a suc-
cessful knock-out mutant coexists with its parent strain as a function of (A) the niche satu-
ration S∗/R, (B) the typical number of resources used per species R0, and (C) the change
in overall uptake budget of the mutant ∆X . Inset shows the dependence on the total in-
vasion fitness sinv. In all panels, curves show the theory predictions from SI Sections 3.3
and 3.4, while points show means and standard errors over 104 simulation runs with base
parameters R = 200, R0 = 40, S∗/S = 0.1, and σ2κ = 0.
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Successful mutations drive extinctions in other niches

In addition to displacing their parents, successful mutants can also drive other species
in the community to extinction. This is particularly evident in saturated communities
(S∗ = R), where competitive exclusion implies that the invasion of a new strain must be
accompanied by extinction of at least one other. Figure 4B shows that the number of extinc-
tions steadily rises with the degree of niche saturation, exceeding 1% of the initial commu-
nity (∼1-10 species) for many combinations of parameters. Moreover, these extinctions are
not completely independent of each other, since they are somewhat overdispersed com-
pared to a simple Poisson expectation (Fig. 4B, inset). Previous work has suggested that
even distantly related strains could exhibit correlated dynamics if their resource consump-
tion strategies are anomalously similar to each other (26). Could such hidden metabolic
similarity be responsible for driving the extinction events above?

We tested this idea by examining the number of resources that were jointly consumed by
the invading and displaced strains (a proxy for their overall metabolic similarity). Interest-
ingly, we found that the number of resources shared with the mutant was not substantially
higher for the displaced species, and was comparable to a randomly drawn species from
the larger community (Fig. 4C). This suggests that the extinction events in Fig. 4 cannot
be explained by traditional measures of niche overlap (33). Rather, successful mutants can
displace species outside of their apparent niche, even when they stably coexist with a more
metabolically similar parent.

Since extinctions were not well-predicted by their overall metabolic similarity to the mu-
tant, we conjectured that these displaced species may possess other features that render
them vulnerable to extinction. For example, low-abundance species may be less well-
adapted to the current environment, and thus sensitive to perturbations like the invasion
of a mutant. Consistent with this hypothesis, we found that the extinction probability for
very low-abundance species is much higher than the community average, approaching
∼50% at the highest levels of niche saturation (Fig. 4D). Furthermore, although the dis-
placed species are metabolically distant from the invading mutant, we find they are more
likely to share the mutant’s strategy for the resource targeted by the mutation. Displaced
species are more likely to use the resource gained by a successful “knock-in” mutation,
and are correspondingly less likely to use the resource lost in a successful knock-out strain
(Fig. 4E). These results illustrate that in high-dimensional ecosystems, the invasion of a
new mutant can have a small impact on a diverse range of metabolic strategies. If a resi-
dent strain is maladapted enough to already be on the edge of extinction, the invasion of
a mutant can be enough of a perturbation to displace it from the community. Thus, the
abundance of an organism might often be a better predictor of its fate than its apparent
metabolic niche.
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Figure 4: Successful mutations drive extinctions of metabolically distant species. (A)
Schematic showing the extinction of an unrelated species (blue) after a beneficial knockout
mutation (orange) invades. In this example, the displaced species and the mutant share
one common resource, but not the one targeted by the knock-out mutation. (B) Average
number of extinctions after the invasion of a successful mutant, as a function of niche
saturation S∗/R; parent strains are excluded from the extinction tally. Inset: full distribu-
tion of extinctions for the starred parameters, compared to a Poisson distribution with the
same fraction of zero counts. Points denote the averages over 104 simulation runs with
the same base parameters as Fig. 3. (C) Distribution of the number of resources jointly uti-
lized by the displaced species and the invading mutant (parent strains excluded). Points
denote the results of simulations with S∗/R = 0.9. Gray curves show the analogous back-
ground distribution between the mutant and all other species in the community, regardless
of whether they become extinct. (D) Probability of extinction as a function of initial rela-
tive abundance for the starred point in panel B. (E) The fold change in probability that the
displaced species uses the same resource targeted by the mutant (i.e., the resource being
knocked in or out), relative to the background distribution of resource use in the popula-
tion. Points denote means and standard errors for knock-in and knock-out mutations as a
function of R0 for S∗/R = 0.8, with the the remaining parameters the same as panel B.
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Robustness of ecosystem to subsequent mutations

Our analysis above focused on the first wave of mutations arising in a newly assembled
community, where the initial states could be predicted using existing community assembly
theory (28, 29, 35, 36). However, subsequent waves of evolution could eventually drive the
ecosystem away from this well-characterized initial state (30). To assess the robustness of
our results under the acquisition of further mutations, we simulated successive waves of
mutations using a generalization of the approach in Fig. 3. We considered the simplest
case where resident strains could generate knock-out mutations on any of the resources
they currently utilized. We also assumed that the dynamics were mutation-limited (30,
31), so that the community relaxes to a well-defined steady state between each successive
mutation. We continued this process until one of the surviving strains had accumulated
10 mutations in total, which typically corresponded to 100-200 successful mutations in the
larger community.

We first asked how these subsequent waves of mutations altered the genetic structure of
their community. While the total number of surviving strains decreased slightly over time
(eventually stabilizing at an intermediate value), the number of strains related through in
situ diversification events increased approximately linearly over the same time window
(Fig. 5B). This indicates that the ecological diversification events in Fig. 3 continue to oc-
cur at a high rate even after additional mutations have accumulated, more quickly than
individual branches of diversified lineages go extinct. Nonetheless, the abundance tra-
jectories in Figure 5A indicate that these extinction events among close relatives are not
uncommon. For example, Lineage 1 seeds eight ecological diversification events over the
course of the simulation, but only three of these strains are alive at the end of the simula-
tion. On average, we find that newly diversified lineages coexist for ∼40 mutational steps
before one of them goes extinct (Fig. 5C). Nonetheless, longer coexistence is possible: one
of the diversification events in Fig. 5A is maintained for >150 mutational steps, enough
time for multiple additional mutations to accumulate within each lineage. Thus, coexist-
ing mutant-parent pairs are often maintained through further evolutionary perturbations,
even as the total number of species stabilizes over time.

Our first-step analysis showed that mutations in more abundant strains were more likely
to coexist with their parent. This prediction is borne out by our multi-step simulations
as well: while some highly abundant lineages seeded many in situ ecological diversifica-
tion events (e.g. Lineage 1 in Fig. 5A), the typical surviving lineage experienced no more
than one (e.g. Lineage 2), and many species went extinct without diversifying at all (e.g.
Lineage 3). Consistent with our earlier predictions, lineages at low abundance were more
prone to extinction when a new mutant invaded, while coexistence events tended to hap-
pen to high-abundance lineages (Figure 5A, right). The combination of these factors creates
a “rich get richer” effect where high-abundance species diversify at the expense of driving
low-abundance species to extinction (30).

Finally, we asked how the accumulation of mutations shifts the landscape of beneficial
mutations from the initial “assembled” state in Figs. 2 and 3. We found that the distri-
bution of fitness effects does not dramatically differ between the start and the end of the
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Figure 5: Mutation and diversification over longer evolutionary timescales. (A) Left: an
example simulation showing the step-wise accumulation of ∼100 adaptive knock-out mu-
tations in a community with R = 100, R0 = 20, S∗/R = 0.9, S∗/S = 0.1. Solid lines denote
the abundance trajectories of 3 example lineages. Large points indicate extinction events in
these lineages (red), diversification events (green), and mutation events that displace their
parent strain (blue) in the highlighted lineages, while smaller points indicate analogous
events for other species in the community. Dashed lines illustrate offshoots of the high-
lighted lineages that eventually went extinct. Right: Relative abundances of strains when
they experienced mutation, diversification and extinction events, respectively. Lines de-
note histograms aggregated over 10 simulation runs. (B) Left: Total number of surviving
strains over time. Grey lines denote replicate simulations for the same parameters in panel
A, while their average is shown in black. Right: Total number of strains related to another
surviving strain through one or more in situ diversification events. (C) The probability of
mutant-parent coexistence being maintained (i.e., both lineages surviving) as a function of
time since initial divergence, over ten simulations. (D) The distribution of fitness effects
at the start of the simulation (red) and after 90 accumulated mutations (blue), compared
to the first-step predictions from Fig. 2 (black). (E) The probability that a mutation event
leads to stable diversification as a function of time. Black points denote binned values ag-
gregated over ten replicate simulations, while red point denotes the analogous result for
104 first-step simulations.
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simulation, although its shape changes slightly from a Gaussian distribution toward a two-
tailed exponential (Fig. 5D). In contrast, the impacts of successful mutations exhibit larger
changes: the proportion of mutation events which result in mutant-parent coexistence in-
creases substantially with evolutionary time, rising from about 20% to 80% over the course
of the simulation (Fig. 5E). This shift cannot be explained by changes in the overall number
of species or the availability of beneficial mutations, but instead deviates entirely from the
replica-theoretic predictions that describe our initial state. Thus, while many our quali-
tative conclusions continue to hold on longer evolutionary timescales, the accumulation
of mutations can lead to quantitative differences from our first-step analysis above. In
both cases, the evolved communities exhibit distinct genetic signatures compared to their
purely assembled counterparts, which could motivate future tests of in situ evolution.

Discussion

Large ecological communities apply complex evolutionary pressures to their resident species,
leading to controversy about how these organisms’ evolutionary trajectories are affected
by the background community (17). Here, we address this challenge by developing a
theoretical framework for predicting the first steps of evolution in randomly assembled
communities that compete for substitutable resources. This provides a quantitative foun-
dation for understanding how the fitness benefits and fates of new mutations should scale
with the diversity and metabolic overlap of the surrounding community.

Our results show that the supply of beneficial mutations does not necessarily run out in
larger communities – as expected in the simplest models of niche filling – but rather that
the benefits of these mutations systematically decline with S∗/R. We also find that the
fitness effects of mutations can be broadly correlated with the external environment, even
in large communities where internal resource concentrations are shielded from environ-
mental shifts (32, 36). These distributions of fitness effects can be measured in modern
experiments, e.g. by performing barcoded fitness assays in communities of different size
(12, 48).

Our finding that successful mutants often coexist with their parents is reminiscent of em-
pirical observations from the gut microbiome, where recently diverged strains differing
by only a handful of mutations appear to stably coexist within their host (5, 6). While
spatial structure could also contribute to this coexistence (27, 50), our model demonstrates
that in situ diversification can continue to occur even in a well-mixed environment when
most niches are already filled. Similar behavior has also been observed in generalized
Lotka-Volterra models with spatiotemporal chaos (51). This suggests that ongoing diversi-
fication may be a generic feature of large microbial communities, providing an alternative
mechanism for the “diversity begets diversity” hypothesis (17, 52, 53).

Beyond diversification, Figure 5 demonstrates that successful mutants can also drive dis-
tantly related species to extinction. This behavior is consistent with recent empirical ob-
servations in the human gut microbiome (8) and strain-swapping experiments in synthetic
gut communities (54). It could also contribute to the extinction events observed in com-
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munity passaging experiments (55). The fact that the displaced species are metabolically
diverged from the invading mutants creates obstacles for inferring these interactions from
metabolomics measurements (56) or metabolic reconstructions (57). Our findings sug-
gest that future efforts should instead focus on how the invading mutant impacts low-
abundance species more generally, and whether they utilize the specific resource(s) tar-
geted by the mutation. These results align with recent work emphasizing the importance
of collective interactions in shaping microbial community dynamics (58).

Here, we focused on the simplest possible resource competition model, neglecting im-
portant factors like crossfeeding (59), spatial structure (60), and metabolic regulation (46),
which are all thought to play key roles in natural microbial communities. We also assumed
a simplified model of evolution that does not account for competition between simulta-
neously occurring mutations. These clonal interference effects can enhance diversity by
allowing strains to temporarily evade competitive exclusion (31). On the other hand, com-
petition between lineages also selects for more strongly beneficial mutations (61), which
we predict are less likely to coexist with their parent. Our results provide a baseline for
incorporating these effects, which will be crucial for understanding how large microbial
communities will evolve.

References

[1] Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT,
et al. Structure, function and diversity of the healthy human microbiome. Nature.
2012;486(7402):207–214. doi:10.1038/nature11234.

[2] Yang J, Pu J, Lu S, Bai X, Wu Y, Jin D, et al. Species-Level Analysis of Hu-
man Gut Microbiota With Metataxonomics. Frontiers in Microbiology. 2020;11.
doi:10.3389/fmicb.2020.02029.

[3] Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, et al. Functional
overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528(7582):364–369.
doi:10.1038/nature16192.

[4] Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al.
Structure and function of the global ocean microbiome. Science. 2015;348(6237).
doi:10.1126/science.1261359.

[5] Roodgar M, Good BH, Garud NR, Martis S, Avula M, Zhou W, et al. Longitudinal
linked-read sequencing reveals ecological and evolutionary responses of a human
gut microbiome during antibiotic treatment. Genome Res. 2021;31(8):1433–1446.

[6] Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM, Groussin M, et al.
Adaptive Evolution within Gut Microbiomes of Healthy People. Cell Host & Microbe.
2019;25(5):656–667.e8. doi:https://doi.org/10.1016/j.chom.2019.03.007.

[7] Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T. Bacte-
rial adaptation is constrained in complex communities. Nature Communications.
2020;11(1):754. doi:10.1038/s41467-020-14570-z.

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.15.571925doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571925
http://creativecommons.org/licenses/by-nc/4.0/


[8] Good BH, Rosenfeld LB. Eco-evolutionary feedbacks in the human gut microbiome.
Nature Communications. 2023;14(1). doi:10.1038/s41467-023-42769-3.

[9] Meroz N, Tovi N, Sorokin Y, Friedman J. Community composition of microbial mi-
crocosms follows simple assembly rules at evolutionary timescales. Nature Commu-
nications. 2021;12(1). doi:10.1038/s41467-021-23247-0.

[10] Barber JN, Sezmis AL, Woods LC, Anderson TD, Voss JM, McDonald MJ. The
evolution of coexistence from competition in experimental co-cultures of Es-
cherichia coli and Saccharomyces cerevisiae. The ISME Journal. 2020;15(3):746–761.
doi:10.1038/s41396-020-00810-z.

[11] Evans R, Beckerman AP, Wright RCT, McQueen-Mason S, Bruce NC, Brockhurst
MA. Eco-evolutionary Dynamics Set the Tempo and Trajectory of Metabolic Evo-
lution in Multispecies Communities. Current Biology. 2020;30(24):4984–4988.e4.
doi:https://doi.org/10.1016/j.cub.2020.09.028.

[12] Venkataram S, Kuo HY, Hom EFY, Kryazhimskiy S. Mutualism-enhancing mutations
dominate early adaptation in a two-species microbial community. Nature Ecology &
Evolution. 2023;7(1):143–154. doi:10.1038/s41559-022-01923-8.

[13] Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, et al. Species
interactions alter evolutionary responses to a novel environment. PLoS Biol.
2012;10(5):e1001330.

[14] Barroso-Batista J, Pedro MF, Sales-Dias J, Pinto CJG, Thompson JA, Pereira
H, et al. Specific Eco-evolutionary Contexts in the Mouse Gut Reveal Es-
cherichia coli Metabolic Versatility. Current Biology. 2020;30(6):1049–1062.e7.
doi:10.1016/j.cub.2020.01.050.

[15] Tawk C, Lim B, Bencivenga-Barry NA, Lees HJ, Ramos RJF, Cross J, et al. Infection
leaves a genetic and functional mark on the gut population of a commensal bacterium.
Cell Host & Microbe. 2023;31(5):811–826.e6. doi:10.1016/j.chom.2023.04.005.

[16] Schluter D, Pennell MW. Speciation gradients and the distribution of biodiversity.
Nature. 2017;546(7656):48–55. doi:10.1038/nature22897.

[17] Madi N, Chen D, Wolff R, Shapiro BJ, Garud NR. Community diversity is associated
with intra-species genetic diversity and gene loss in the human gut microbiome. eLife.
2023;12:e78530. doi:10.7554/eLife.78530.

[18] Hall JPJ, Harrison E, Brockhurst MA. Competitive species interactions constrain abi-
otic adaptation in a bacterial soil community. Evolution Letters. 2018;2(6):580–589.
doi:10.1002/evl3.83.

[19] Calcagno V, Jarne P, Loreau M, Mouquet N, David P. Diversity spurs diver-
sification in ecological communities. Nature Communications. 2017;8(1):15810.
doi:10.1038/ncomms15810.

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.15.571925doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571925
http://creativecommons.org/licenses/by-nc/4.0/


[20] Meyer JR, Kassen R. The effects of competition and predation on diversification in a
model adaptive radiation. Nature. 2007;446(7134):432–435. doi:10.1038/nature05599.

[21] Debray R, Conover A, Zhang X, Dewald-Wang EA, Koskella B. Within-host adapta-
tion alters priority effects within the tomato phyllosphere microbiome. Nature Ecol-
ogy & Evolution. 2023;7(5):725–731. doi:10.1038/s41559-023-02040-w.

[22] Knope ML, Forde SE, Fukami T. Evolutionary History, Immigration History, and the
Extent of Diversification in Community Assembly. Frontiers in Microbiology. 2012;2.
doi:10.3389/fmicb.2011.00273.

[23] Nadeau CP, Farkas TE, Makkay AM, Papke RT, Urban MC. Adaptation reduces com-
petitive dominance and alters community assembly. Proceedings of the Royal Society
B: Biological Sciences. 2021;288(1945):20203133. doi:10.1098/rspb.2020.3133.

[24] Gül E, Abi Younes A, Huuskonen J, Diawara C, Nguyen BD, Maurer L, et al.
Differences in carbon metabolic capacity fuel co-existence and plasmid trans-
fer between Salmonella strains in the mouse gut. Cell Host & Microbe.
2023;doi:https://doi.org/10.1016/j.chom.2023.05.029.

[25] Frazão N, Seixas E, Barreto HC, Mischler M, Güleresi D, Gordo I. Mas-
sive lateral gene transfer under strain coexistence in the gut. bioRxiv.
2023;doi:10.1101/2023.09.25.559333.

[26] Goyal A, Bittleston LS, Leventhal GE, Lu L, Cordero OX. Interactions between
strains govern the eco-evolutionary dynamics of microbial communities. eLife.
2022;11:e74987. doi:10.7554/eLife.74987.

[27] Jin X, Yu FB, Yan J, Weakley AM, Dubinkina V, Meng X, et al. Culturing of
a complex gut microbial community in mucin-hydrogel carriers reveals strain-
and gene-associated spatial organization. Nature Communications. 2023;14(1).
doi:10.1038/s41467-023-39121-0.

[28] Advani M, Bunin G, Mehta P. Statistical physics of community ecology: a cavity
solution to MacArthur’s consumer resource model. J Stat Mech. 2018;2018(3):033406.

[29] Cui W, Marsland R, Mehta P. Effect of Resource Dynamics on Species
Packing in Diverse Ecosystems. Phys Rev Lett. 2020;125:048101.
doi:10.1103/PhysRevLett.125.048101.

[30] Good B, Martis S, Hallatschek O. Adaptation limits ecological diversification and pro-
motes ecological tinkering during the competition for substitutable resources. PNAS.
2018;115(44). doi:10.1073/pnas.1807530115.

[31] Amicone M, Gordo I. Molecular signatures of resource competition: Clonal interfer-
ence favors ecological diversification and can lead to incipient speciation. Evolution.
2021;75(11):2641–2657. doi:https://doi.org/10.1111/evo.14315.

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.15.571925doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571925
http://creativecommons.org/licenses/by-nc/4.0/


[32] Posfai A, Taillefumier T, Wingreen NS. Metabolic Trade-Offs Pro-
mote Diversity in a Model Ecosystem. Phys Rev Lett. 2017;118:028103.
doi:10.1103/PhysRevLett.118.028103.

[33] Letten A, Ke PJ, Fukami T. Linking modern coexistence theory and contemporary
niche theory. Ecological Monographs. 2016;87. doi:10.1002/ecm.1242.

[34] Barbier M, Arnoldi JF, Bunin G, Loreau M. Generic assembly patterns in complex
ecological communities. Proc Natl Acad Sci U S A. 2018;115(9):2156–2161.

[35] Cui W, Marsland R, Mehta P. Diverse communities behave like typical random
ecosystems. Phys Rev E. 2021;104(3-1):034416.

[36] Tikhonov M, Monasson R. Collective Phase in Resource Competition
in a Highly Diverse Ecosystem. Physical Review Letters. 2017;118(4).
doi:10.1103/physrevlett.118.048103.

[37] Tikhonov M, Monasson R. Innovation rather than improvement: A solvable
high-dimensional model highlights the limitations of scalar fitness. J Stat Phys.
2018;172(1):74–104.

[38] Barbier M, de Mazancourt C, Loreau M, Bunin G. Fingerprints of high-dimensional
coexistence in complex ecosystems. Phys Rev X. 2021;11(1).

[39] Marsland R, Cui W, Mehta P. A minimal model for microbial biodiversity can repro-
duce experimentally observed ecological patterns. Sci Rep. 2020;10(1):3308.

[40] Ho PY, Good BH, Huang KC. Competition for fluctuating resources reproduces statis-
tics of species abundance over time across wide-ranging microbiotas. Elife. 2022;11.
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Figure S1: Distribution of invasion fitnesses for knock-out and knock-in strategy muta-
tions of a single organism within a single sampled community. Black curve shows Gaus-
sian theory prediction, while dots are histogram values over all possible strategy muta-
tions. Simulation was run for S∗/R = 0.8,R = 200, R0 = 40, S∗/S = 0.1, and σ2κ = 0.
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Figure S2: Our main conclusions about mutation in assembled communities can be
brought into qualitative and quantitative accordance with other consumer resource
schemes. (A) Distribution of invasion fitnesses for knock-in and knock-out strategy muta-
tions for the Tikhonov consumer resource model (36), which breaks knock-in/knock-out
symmetry. Black curves show theoretical prediction, while points show simulation results.
(B) Mutant-parent coexistence probability for the Tikhonov CRM as a function of niche sat-
uration, S∗/R. The average fitness benefit (cost) for knock-out (knock-in) mutations effec-
tively gives strategy mutations a nonzero change in pure fitness, which lowers (raises) the
theoretically predicted coexistence probability relative to the neutral case. Red and blue
curves show these adjusted predictions, while crosses and pluses show simulated results.
(C) Distribution of resource availability hi for an ecosystem assembled with strategy vec-
tors drawn from the Dirichlet distribution as described in SI Section 4. Black curves show
theoretical prediction from the binary resource use case studied in this paper, while points
show simulated results. (D) Probability of mutant-parent coexistence for knock-out strat-
egy mutations in this Dirichlet assembled community. Black curve shows the theoretical
prediction for binary resource use. All simulations run for S∗/R = 0.8, R = 200, R0 = 40,
S∗/S = 0.1 unless otherwise noted.
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Figure S3: Probability of coexistence as a function of niche saturation, with simulations
using the “simultaneous assembly” approximation where mutant invasion is modeled us-
ing a single assembly process (SI Section 1.3). Red points show the simultaneous assembly
approximation, which allows reappearance of extinct species. Black points show simula-
tions where extinct species were disallowed from returning (as in the rest of our study);
this change results in coexistence probability increasing at high saturation. Simulations
were performed with R = 200, R0 = 40, and S∗/S = 0.1 using knock-out mutations.
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Figure S4: Coexistence probability for different strategy mutations. Left: Mutant-parent
coexistence probability as a function of niche saturation S∗/R for full knock-out mutations
and “global” strategy mutations with γ = 1 (which have similarly-sized changes to all
nonzero entries of α⃗, as described in the Appendix). Right: Mutant-parent coexistence
probability as a function of mutation effect size γ for S∗/R = 0.8, for partial knock-out
and global strategy mutations. Black curves show theoretical prediction. All simulations
run with R = 100, R0 = 40, and S∗/S = 0.1 using Dirichlet-distributed resource usage
vectors.
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Figure S5: Scatterplot showing the invasion fitness of knock-out strategy mutations
against the relative abundance of the parent before mutant invasion, with colors indicat-
ing whether the mutants coexist with or replace their parent at ecological equilibrium. The
dashed line shows the theoretical prediction that should divide replacement events from
coexistence events. Simulations run for R = 200, R0 = 40, S∗/S = 0.1, and S∗/R = 0.8.
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Figure S6: Coexistence probability of parents and knock-out mutants for generalizations
of the community assembly procedure discussed in the main text. Left: Mutant-parent
coexistence probability as a function of the number of resources RP used by the parent
strain, while the background community uses R0 = 40 resources. Right: Mutant-parent
coexistence probability as a function of scaled variance in resource supply σ2κ. All simula-
tions run with R = 200, R0 = 40, S∗/S = 0.1, and S∗/R = 0.8.
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Figure S7: Checks to ensure that we have consistently identified extinctions numerically.
(A) Plot of the number of putatively identified survivors for an assembled community, as
a function of the numerical extinction threshold. If the resource deficit for an organism
is above this threshold times Std(hi), the organism is labeled extinct. The plateau over
multiple orders of magnitude indicates a numerically stable definition of survival vs. ex-
tinction; the dashed line shows the threshold used throughout our analysis. (B) Scatterplot
of numerical resource deficit of organisms before and after invasion of a knock-out strategy
mutant, with color indicating whether the resource deficit after invasion passes the extinc-
tion threshold, (i.e., whether the species has gone extinct). The fact that most red and gray
points are clearly separated shows that most species identified as extinct are insensitive to
our precise choice of threshold. Simulations were run with R = 200, R0 = 40, S∗/S = 0.1.
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1 Community Assembly with Mutations

In this section, we outline the setup that allows us to derive our main theoretical results.
First, we describe the consumer resource model we study, and how the task of finding an
ecological equilibrium can be described as an optimization problem. Then, we define a
convenient fitness gauge which brings our model in line with previous work. Finally, we
outline an approximate procedure for introducing mutations into an assembled commu-
nity, while considering only a single community assembly process.

1.1 Model Outline

As summarized in the Model section, we are interested in the following system: consider
an ecosystem formed by combining S species, identically and independently drawn from
some underlying distribution, competing for R resources. We allow this ecosystem to
come to ecological equilibrium, at which point S∗ ≤ S species will survive at nonzero
abundance. Then, suppose that one randomly selected surviving species undergoes a mu-
tation to produce a new strain, which can differ from its parent in its ability to consume
resources. If the mutant has positive invasion fitness, it will rise to nonzero abundance in
the population, and the abundances of other species may change as well. We are inter-
ested in analyzing the properties of this new ecosystem with a single mutant, particularly
the probability that the mutant and its parent strain are able to coexist at ecological equi-
librium.

First, we define our community assembly process and consumer resource model, which
generally follows previous work (28–32, 36, 45). We consider a well-mixed community
formed from the combination of S species, indexed by µ ∈ {1, ...,S}, and R resources, in-
dexed by i ∈ {1, ...,R}. We generally consider the large-ecosystem limit, where S,R → ∞
while maintaining a constant ratio S/R. Each organism is associated with an “uptake bud-
get” Xµ and a “strategy vector” α⃗µ, which contains R non-negative entries that sum to 1.
The uptake budget dictates the overall capacity of the organism to consume resources,
setting its maximum growth rate under ideal growth conditions; the strategy vector de-
scribes how the organism allocates this uptake budget between substitutable resources.
The consumer-resource dynamics for the abundance nµ of each species and the concentra-
tion ci of each resource are described by

∂nµ
∂t

= nµ

[ R∑
i=1

αµ,ie
Xµhi(c⃗)− 1

]
, (S1)

∂ci
∂t

= Ki − hi(c⃗)

 S∑
µ=1

nµαµ,ie
Xµ + 1

 , (S2)

where Ki is the supply of each resource, and hi(c⃗) is the availability of resource i to cells,
which depends on the concentration of each resource. Note that our model assumes a sym-
metry between consumption of resources and their contribution to biomass; this neglects
the possibility of idiosyncratic effects like resource sequestration (47), where some organ-
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isms remove resources from the environment without corresponding growth in abun-
dance. We assume that resource dynamics are fast, and the total biomass of organisms
large, so that the resource supply is nearly balanced out by their consumption by organ-
isms. Then, the availability of each resource will be at a local fixed point set by the species
abundances:

hi =
Ki∑

µ nµαµ,ieXµ
(S3)

=
κi/R∑

i fµαµ,ieXµ
, (S4)

normalizing by total biomass to transform strain abundances nµ into relative abundances
fµ. We have defined rescaled resource supplies κi ≡ Ki/(

∑
j Kj/R), which has units such

that ⟨κi⟩ = 1 and Var(κi) = σ2κ (in simulations, we choose σ2κ = 0 or normally distributed
κi). The simplified relative abundance dynamics are

∂fµ
∂t

= fµ

[ R∑
i=1

αµ,ie
Xµhi(f⃗)− 1

]
. (S5)

For any choice of species, these dynamics possess a Lyapunov function and a single stable
equilibrium (30, 32). At this equilibrium, none of the surviving organisms can increase
their abundance, while none of the extinct species could invade the ecosystem if intro-
duced at low abundance. Thus, at ecological equilibrium, the bracketed term, or “resource
surplus,” must be non-positive for all µ, and is equal to zero if and only if species µ sur-
vives at nonzero abundance.

All that remains is to choose the resource consumption parameters of our competing species,
which we draw from a common statistical distribution. For our theoretical analysis, we
follow the procedure of Ref. (36), where the uptake budgets Xµ are drawn from a normal
distribution with variance ϵ2, and the resource consumption strategies α⃗µ are normalized
binary vectors where each entry has an independent probability R0/R of being nonzero.

1.2 Ecological Equilibrium as Optimization

Conveniently, the task of finding the unique stable equilibrium for our consumer resource
model can be recast as a constrained optimization problem (36, 37). Specifically, we treat
the resource availabilities hi (rather than the relative abundances fµ) as free variables to
optimize over, and consider the task

optimize
∑
i

κi log hi

subject to
∑
i

αµ,ihi − e−Xµ ≤ 0 ∀µ. (S6)

The constraint is the same as that discussed above, requiring that the resource surplus
be non-positive for each organism. Framed in this manner, we observe that the model
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is symmetric under uptake budget translation, which we can view as a change in “pure
fitness” decoupled from the environment. If we change variables into translated fitness
X̃µ = Xµ + χ, and rescaled h̃i = e−χhi, then the optimization problem becomes

optimize
∑
i

κi

(
log h̃i + χ

)
subject to eχ

(∑
i

h̃iαµi − e−X̃µ

)
≤ 0 ∀µ. (S7)

Since χ is just an arbitrary constant, it is clear that these optimization problems are the
same, up to the rescaling of the hi. Suppose that h∗i solves the first optimization problem.
Then, h̃∗i = e−χh∗i will solve the gauge-shifted optimization problem

optimize
∑
i

κi log h̃i

subject to
∑
i

h̃iαµi − e−X̃µ ≤ 0 ∀µ. (S8)

To convince ourselves that these two problems really have the same solution, we return to
the equation defining hi in terms of the relative equilibrium abundances fµ:

hi =
κi/R∑

i αµieXµfµ
. (S9)

Translating the uptake budgets by χ rescales hi by e−χ, while leaving fµ unchanged. There-
fore, both optimization problems correspond to the same fµ, which is the actual observable
we are interested in.

This gauge symmetry allows us to relate our consumer resource model to that analyzed in
Refs. (36) and (37), by choosing a gauge such that ⟨hi⟩ = 1. Let’s define a constant h0 based
on the equilibrium solution in our (arbitrary) original gauge,

h0 =
1

R
∑
i

h∗i , (S10)

and consider what happens when we set χ = log h0. The rescaled solution is

h̃∗i =
h∗i
h0
, (S11)

which by definition has mean 1. It is now natural to define a new variable, gi = 1 − h̃i,
which has mean zero. The optimization problem is now

optimize
∑
i

κi log(1− gi)

subject to 1− e−X̃µ −
∑
i

giαµi ≤ 0 ∀µ. (S12)
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For a large ecosystem, the gi’s should be small, allowing us to Taylor expand the opti-
mization function to second order. We also recall that for surviving species, the constraint
should achieve equality (i.e., resource surplus should be zero). Since the gi’s are small and
have mean zero, the third term on the LHS of the constraint equation should be small.
To achieve equality, the first and second terms on the LHS must therefore nearly cancel,
implying that the X̃µ are small for survivors. In other words, choosing a gauge such that
all hi ≈ 1 is the same as choosing a gauge where the pure fitnesses of surviving organisms
are near zero. This observation allows us to Taylor expand the X̃µ as well. Altogether, the
approximate optimization problem is

optimize
∑
i

κi

(
gi +

g2i
2

)
subject to X̃µ −

∑
i

giαµi ≤ 0 ∀µ. (S13)

For organisms that go extinct, the Taylor expansion we did of the e−X̃µ may not be very
accurate, since X̃µ can be arbitrarily negative. However, since 1 − X̃µ ≤ e−X̃µ , this ap-
proximation will not cause us to erroneously label any extinct species as alive – and for the
species which are alive, the approximation should be sufficiently accurate to avoid worry.
While it is not yet clear why this approximation is useful, we will see below that remapping
the consumer resource problem in this way makes it amenable to replica-theoretic analy-
sis. Note that for numerical simulations, we do not make these approximations, instead
solving the original optimization problem in Eq. (S6).

1.3 Single-Ecosystem Approximation of First-Step Invasion

As discussed in the Model section, mutant-parent coexistence can be described as two
correlated community assembly processes. Here, we argue that we can reasonably ap-
proximate the conditions for mutant-parent coexistence while considering only one com-
munity assembly process, which simplifies our theoretical work. First, we describe the
two-ecosystem framework. An ecosystem E1 is formed through standard community as-
sembly: S species are placed into competition, and S∗ remain alive at equilibrium. Then,
one of the surviving species produces a beneficial mutant offspring. This effectively creates
a new community assembly problem for ecosystem E2, where the initial S∗ species plus
one mutant are allowed to reach ecological equilibrium. The mutant-parent coexistence
probability can therefore be written as

Pcoex = P [parent alive in E2|mutant alive in E2, parent alive in E1] , (S14)

where the conditional probability requires that (1) the mutant be beneficial and (2) the
parent be alive when it produces a mutant. Standard manipulation of probabilities allows
us to rewrite this as

Pcoex =
P [P and M in E2]− P [P and M in E2, P not in E1]

P [M in E2]− P [M in E2, P not in E1]
. (S15)
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First, we argue that P [P and M in E2, P not in E1] ≈ 0. This probability describes a situ-
ation where the parent is unable to survive in the initial ecosystem, but its hypothetical
mutant offspring is. Moreover, the invasion of the mutant offspring adjusts the ecosystem
in a way where the original parent strain is also able to simultaneously invade. Intuitively,
both of these requirements are unlikely: it will be difficult for a small mutation to allow
an otherwise unfavored species to invade, and we would naively expect that the presence
of the mutant would make it more difficult for the parent species to survive – not easier –
due to their shared competition for resources. Making this approximation, we find

Pcoex ≈ P [P and M in E2]

P [M in E2]− P [M in E2, P not in E1 or E2]
. (S16)

The next approximation we make is similar: we assume that if the mutant is able to sur-
vive, the parent would likely be able to survive in its absence. Mathematically, P [M in E2] ≫
P [M in E2, P not in E1 or E2]. While it is possible that a small-effect beneficial mutation
could push an organism over the survival threshold, we expect that most randomly chosen
surviving organisms will not be able to be rescued from extinction by a single mutation.
Thus, we write

Pcoex ≈ P [P and M in E2]

P [M in E2]
. (S17)

Now, our coexistence probability depends only on one ecosystem. But there is still an issue:
E2 is not a traditionally assembled community, since it is formed only from the survivors of
an earlier community assembly process plus a mutant, rather than independently sampled
organisms. Let’s instead consider Es, an ecosystem obtained from simultaneous commu-
nity assembly of S independently sampled species, plus one “mutant” species which is
closely related to one of the S other species. The key difference between E2 and Es is that
Es can potentially contain species which were extinct in E1, but are brought “back to life”
by the invasion of the mutant. While such returns are possible (37), we conjecture that
the invasion of a closely-related mutant strain should be a relatively small perturbation to
the ecosystem, and as such these re-introductions should be rare – particularly when the
number of resources and species are large. So, as a first approximation, we do not expect
them to meaningfully impact Pcoex. After these approximations, we now have

Pcoex ≈ P [P and M in Es]

P [M in Es]
. (S18)

This approximation allows us to estimate the mutant-parent coexistence probability in an
assembled community by only considering one community assembly process, which in-
cludes two closely correlated organisms. (Which one we have labeled the “parent” and
“mutant” is essentially arbitrary after making these approximations.) As shown in Fig.
S3, simulations confirm that these approximations are valid across most of the parameter
regime we study, so our one-ecosystem approximation produces results which match the
two-ecosystem one. An exception is at very high expected niche saturation, where species
“coming back to life” after mutant invasion becomes more relevant. However, there is
a narrow range of parameters where this effect is significant (particularly for ecosystems
with many resources), and our approximation where these species are allowed to return
nonetheless sets a lower bound on the mutant-parent coexistence probability.
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2 Replica-Theoretic Analysis of First-Step Invasion

2.1 Partition Function and the Replica Trick

We would now like to argue that our model can be treated similarly to Refs. (36) and
(37), meaning that their results describe a baseline assembled community before we add
mutations. While we will not reproduce every element of their calculation, we restate key
steps and approximations. Since ecological equilibrium can be described as the solution
to an optimization problem, we can write a partition function for a system with energy
F (g⃗) =

∑
i Fi(gi) =

∑
i κi

(
gi +

g2i
2

)
at temperature β−1. In the zero-temperature limit β →

∞, the system will be exactly at ecological equilibrium; at finite values of β, fluctuations
from equilibrium correspond to shot noise in the population. The partition function is

Z =

∫
Ω

∏
i

dgie
−βF (g⃗), (S19)

where Ω corresponds to the constrained region in our optimization problem, where re-
source surplus is non-positive. We can write out this region explicitly using the Heaviside
function θ(x) = max(0, x) as follows:

Z =

∫ 1

−∞

∏
i

dgie
−βFi(gi)

S∏
µ=1

θ

(∑
i

giαµi − X̃µ

)
(S20)

=

∫ 1

−∞

∏
i

dgie
−βFi(gi)

S∏
µ=1

∫
d∆µθ(−∆µ)δ

(
∆µ +

∑
i

giαµi − X̃µ

)
(S21)

=

∫ 1

−∞

∏
i

dgie
−βFi(gi)

∏
µ

∫
d∆µd∆̂µ

2π
θ(−∆µ)e

i
∑

µ ∆̂µ(∆µ+
∑

i giαµi−X̃µ). (S22)

where X̃µ is the pure fitness of species µ, in the gauge described in 6.1.2. We have traded
our complicated integration region for two additional integration variables for each species:
the resource surplus ∆µ and its auxiliary Fourier variable ∆̂µ.

This partition function is written for a particular choice of S sampled species. However,
we are interested not in any particular choices of species, but the behavior of the ecosystem
when typical species are drawn from some random distribution. These typical ecosystems
can be analyzed by calculating ⟨logZ⟩, where the average is over our random draws of
species. This average can be calculated through use of the replica trick,

⟨logZ⟩ = lim
n→0

⟨Zn⟩ − 1

n
. (S23)

In accordance with the replica trick, we consider n copies of our system, which share iden-
tical resident species but may differ in shot noise (encoded by the temperature β). Then,
we treat n as a real number and consider the limit n→ 0, comparing our results to simula-
tion to ensure this approximation holds. With n copies of our system, the average partition
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function is

⟨Zn⟩ =
∫ ∏

i,a

[
dgai e

−β
∑

i,a Fi(g
a
i )
]
×

S∏
µ=1

{∏
a

[∫
d∆a

µd∆̂
a
µ

2π
θ(−∆a

µ)

]
ei

∑
a ∆̂a

µ∆
a
µ

〈
e−iX̃µ

∑
a ∆̂a

µ

〉
X̃µ

×

∏
i

〈
ei

∑
i,a ∆̂a

µg
a
i αµ,i

〉
αµ,i

}
, (S24)

where a runs from 1 to n and indexes the replicas of our system. Next, let’s average over
our random draws of species. Suppose that the pure fitnesses X̃µ are drawn from a normal
distribution with mean χ and variance ϵ2. (Recall that χ represents our fitness gauge, and
will later be set to ensure that ⟨gi⟩ = 0.) The X̃µ-dependent term then becomes

〈
e−iX̃µ

∑
a ∆̂a

µ

〉
X̃µ

= exp

−iχ∑
a

∆̂a
µ − ϵ2

2

(∑
a

∆̂a
µ

)2
 . (S25)

Now, let’s consider the average over the strategy vectors. For binary resource strategies,
the αµi are defined as

αµi =
σµi∑
j σµj

, (S26)

where σµi are i.i.d. random variables equal to 1 with probability R0/R and 0 otherwise.
Unlike the σµi, the αµi are not independent for the same µ with different i’s. However, we
can approximate them as independent by separating out the dependent portion, provided
that R0 ≫ 1:

αµi =
σµi

R0 + bµ
√
R0

(S27)

≈ σµi
R0

(
1− bµ√

R0

)
. (S28)

The bµ are mean-zero O(1) random variables representing the fluctuations in the total num-
ber of resources used by each species. While not technically independent of the σµi, this
dependence would contribute to terms with smaller powers of R0 and can thus be ignored.
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So, we consider their averages separately:

〈
ei

∑
i,a ∆̂a

µg
a
i αµ,i

〉
αµ,i

≈

〈∏
i

[
1− R0

R
+

R0

R
ei

∑
a ∆̂a

µg
a
i /R0e−i

∑
a ∆̂a

µg
a
i bµ/R

3/2
0

]〉
bµ

≈

〈∏
i

exp

i 1
R
∑
a

∆̂a
µg

a
i

(
1− bµ

R0

)
− (1−R0/R)

2R0R

(∑
a

∆̂a
µg

a
i

)2
〉

bµ

(S29)

=
〈
e−i

∑
i,a ∆̂a

µg
a
i bµ/R

√
R0

〉
bµ

∏
i

exp

i 1
R
∑
a

∆̂a
µg

a
i −

(1−R0/R)

2RR0

(∑
a

∆̂a
µg

a
i

)2
 (S30)

≈ exp

[
−
(
∑

i,a ∆̂
a
µg

a
i )

2

2R2R0

]∏
i

exp

i 1
R
∑
a

∆̂a
µg

a
i −

(1−R0/R)

2RR0

(∑
a

∆̂a
µg

a
i

)2
 (S31)

≈
∏
i

exp

i 1
R
∑
a

∆̂a
µg

a
i −

(1−R0/R)

2RR0

(∑
a

∆̂a
µg

a
i

)2
 . (S32)

Effectively, this approximation treats αµi ≈ σµi/R0. Finally, to bring our answer in line
with Refs. (36) and (37), we rescale variables ϵ → ϵ/R0, χ → χ/R0, ∆a

µ → ∆a
µ/R0, and

∆̂a
µ → R0∆̂

a
µ. The final partition function is

⟨Zn⟩ =
∫ ∏

i,a

[
dgai e

−β
∑

i,a Fi(g
a
i )
] S∏
µ=1

{∏
a

[∫
d∆a

µd∆̂
a
µ

2π
θ(−∆a

µ)

]
×

exp

[
i
∑
a

∆̂a
µ

(
∆a

µ +
R0

R
∑
i

gai − χ

)
− ϵ2

2

(∑
a

∆̂a
µ

)2

−

R0(1−R0/R)

2R
∑
i

(∑
a

∆̂a
µg

a
i

)2 ]}
. (S33)

This is the same as the partition function calculated in Refs. (36) and (37), except for the
presence of χ. We can ignore χ until later in the calculation (for example, by absorbing it
into the definition of ∆a

µ, which causes it to appear only within the Heaviside function),
and re-introduce it only when we require that ⟨gi⟩ = 0.

2.2 Introducing First-Step Mutations

The above partition function is valid for an ecosystem where all species are sampled ran-
domly. However, in our “simultaneous assembly” approximation of first-step mutation,
we would like to include two sampled species which are very related to each other, dif-
fering only by a single knock-out mutation. We will index the parent and mutant species
P and M ; they have the same resource consumption strategy, except that the parent uses
resource 1, while the mutant’s capacity to use resource 1 is lowered by a factor of γ. (For a
full knock-out mutation which preserves our assumption about binary resource use, γ = 1,
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but this more general type of mutation will aid us when interpreting our conclusions later.)
Their pure fitnesses are also the same, except that the mutant’s pure fitness is increased by
∆X (which can be negative to indicate an overall cost to the mutation). With the parent-
mutant pair accounted for, the partition function becomes

⟨Zn⟩ =
∫ ∏

i,a

[
dgai e

−β
∑

i,a Fi(g
a
i )
] S−1∏
µ=1

{∏
a

[∫
d∆a

µd∆̂
a
µ

2π
θ(−∆a

µ)

]
×

exp

[
i
∑
a

∆̂a
µ

(
∆a

µ +
R0

R
∑
i

gai − χ

)
− ϵ2

2

(∑
a

∆̂a
µ

)2

−

R0(1−R0/R)

2R
∑
i

(∑
a

∆̂a
µg

a
i

)2 ]}
×

∏
a

[∫
d∆a

Pd∆̂
a
P

2π

d∆a
Pd∆̂

a
P

2π
θ(−∆a

P )θ(−∆a
M )

]

exp

{
i
∑
a

∆̂a
P

(
∆a

P +
R0

R
∑
i

gai +

(
1− R0

R

)
ga1 − χ

)
+

i
∑
a

∆̂a
M

(
∆a

M +
R0

R
∑
i

gai +

(
1− γ − R0

R

)
ga1 − χ−R0∆X

)
−

ϵ2

2

[∑
a

(
∆̂a

P + ∆̂a
M

)]2
− R0(1−R0/R)

2R
∑
i

[∑
a

(
∆̂a

P + ∆̂a
M

)
gai

]2
+

R0(1−R0/R)

2R

[∑
a

(
∆̂a

P + ∆̂a
M

)
ga1

]2}
. (S34)

(Note that the ∆X term has a factor of R0 to account for the rescaling we did earlier.) The
next few steps of the calculation are a series of approximations which allow us to evaluate
this complicated integral, paralleling those in Refs. (36) and (37).

2.3 Saddle Point Approximations

For R ≫ 1, the central limit theorem dictates that the mean and variance of the equilibrium
gi (which encode the availabilities of each resource) should approach a deterministic value.
Introducing the mutant-parent pair is a relatively small change in the ecosystem, so we
expect that these deterministic values should be the same as those calculated in previous
work, if the mutant-parent pair were not present. This motivates us to define replica-
specific “order parameters”

ma =
∑
i

gai , (S35)

qab =
∑
i

gai g
b
i . (S36)

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.15.571925doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571925
http://creativecommons.org/licenses/by-nc/4.0/


As we did with the resource surplus ∆a
µ, we can introduce these order parameters as new

integration variables, defined via delta functions in their Fourier representation. This re-
sults in an integral

⟨Zn⟩ =
∫ ∏

a≤b

(
dqabdq̂ab

2π

)∏
a

(
dmadm̂a

2π

)
exp

i
∑

a≤b

qabq̂ab +
∑
a

mam̂a

×
R∏
i=2


∫ 1

−∞

∏
a

dgai exp

−∑
a

βFi(g
a
i )− i

∑
a

m̂agai − i
∑
a≤b

q̂abgai g
b
i

×

S−1∏
µ=1

{∏
a

[∫
d∆a

µd∆̂
a
µ

2π
θ(−∆a

µ)

]
×

exp

i∑
a

∆̂a
µ

(
∆a

µ +
R0

R
ma − χ

)
− 1

2

∑
a,b

(
R0(1−R0/R)

R
qab + ϵ2

)
∆̂a

µ∆̂
b
µ

}

×
∏
a

[∫
d∆a

Pd∆̂
a
P

2π

d∆a
Md∆̂

a
M

2π
θ(−∆a

P )θ(−∆a
M )

∫ 1

−∞
dga1

]
exp

{∑
a

βF1(g
a
1)

− i
∑
a

m̂aga1 − i
∑
a≤b

q̂abga1g
b
1 + i

∑
a

∆̂a
P

(
∆a

P +
R0

R
ma +

(
1− R0

R

)
ga1 − χ

)

+ i
∑
a

∆̂a
M

(
∆a

M +
R0

R
ma +

(
1− γ − R0

R

)
gaR − χ−R0∆X

)

− 1

2

∑
a,b

[
R0(1−R0/R)

R
(qab − ga1g

b
1) + ϵ2

](
∆̂a

P ∆̂
b
P + 2∆̂a

P ∆̂
b
M + ∆̂a

M∆̂b
M

)}
. (S37)

So far, we have made no approximations from our initial partition function. Now, however,
we invoke the saddle-point approximation, stating that the probability distribution for the
order parameters and their Fourier conjugates is so heavily peaked that their values are
equivalent across replicas. In short, we assume

ma = m, (S38)

qaa = qD (S39)

qab = qO if a ̸= b, (S40)

and likewise for the conjugate (hatted) order parameters. We recall that we must eventu-
ally choose our fitness gauge χ such that m = 0, a deviation from the analysis in Refs. (36)
and (37) due to our choice of consumer resource model. Our saddle point approxima-
tion allows us to significantly simplify our integral, by eliminating the integrals over the
replica-specific order parameters. This change decouples our large integral expression into
a product of three independent integrals: one over the resource availabilities gi for i > 1,
one over the surpluses ∆a

µ for all species besides the parent and the mutant, and the final
integral over g1 and the surpluses for the mutant and parent strains.
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Because we assume a diverse, many-species ecosystem, the species besides the parent and
mutant will be most important in setting the saddle-point values of our order parameters
and their Fourier conjugates. Thus, we approximate that these saddle-point values are
unchanged from the calculation in Refs. (36) and (37), which includes only the first two sets
of integrals (i.e., those independent of the parent and mutant). While we will not restate
their calculation here, we will summarize their results. If we assume that the values of qD

and qO are similar –

qD ≈ qO = q, (S41)

qD − qO =
R
β
x, (S42)

then the saddle-point values of the conjugate variables are

m̂ ≈ iβ, (S43)

q̂O ≈ i

(
β

x

√
q

R

)2

, (S44)

q̂D − q̂O

2
≈ iβ

x− 1

2x
. (S45)

These equations leave q and x undetermined, which can be solved for implicitly and ap-
proximated through numerical equations which we will discuss later.

We also make the approximation qO − ga1g
b
1 ≈ qO. The order parameter q is formed by

adding together gai g
b
i for each of R resources, and we expect each of these quantities to be

positive. So, the scale of q− gaRg
b
R ∼ q(R− 1)/R ∼ q. After making this approximation, let

us also recall that Fi(g
a
i ) = κi

[
gai + (gai )

2/2
]
. Knowing that m = 0 and m̂ ≈ iβ causes all

the terms linearly dependent on the gai to cancel out, besides the mutation-dependent ga1
terms: thus, before considering the effects of the mutation, our system is invariant under
rotation of the gai ’s. Practically, this means that our initial choice of a knock-out muta-
tion was arbitrary: a knock-in mutation, or any strategy change ∆α⃗ with the same overall
magnitude, can be redefined as a change in a single element through an appropriate rota-
tion. Our results should therefore be valid for mutations which affect multiple resources
simultaneously.

2.4 Joint Distribution of ∆P and ∆M

Now that we have decoupled our integrals through the saddle-point approximation, we
are nearly ready to analyze the phenomenon of parent-mutant coexistence. To do this,
we only care about the part of the partition function which depends on those strains. For
simplicity, we will also at this point assume uniform resource supply (κi = 1); we will
discuss at the end of our calculation what happens when this assumption is relaxed. With
the saddle-point approximation for κi = 1, the portion of the integral in Eq. (S37) which
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depends on the parent and mutant strains is

Zn
PM =

∏
a

[∫
d∆a

Pd∆̂
a
P

2π

d∆a
Md∆̂

a
M

2π
θ(−∆a

P )θ(−∆a
M )

∫ 1

−∞
dga1

]
×

exp

{∑
a

[
− β

2x
(ga1)

2

]
+

1

2

(
β

x

√
q

R
∑
a

ga1

)2

+ i
∑
a

∆̂a
P

(
∆a

P +
R0

R
m+

(
1− R0

R

)
ga1 − χ

)
+ i
∑
a

∆̂a
M

(
∆a

M +
R0

R
m+

(
1− γ − R0

R

)
ga1 − χ−R0∆X

)
− R0(1−R0/R)

2β
x
∑
a

(
∆̂a

P + ∆̂a
M

)2
− 1

2

∑
a,b

[
R0(1−R0/R)

R
q + ϵ2

](
∆̂a

P ∆̂
b
P + 2∆̂a

P ∆̂
b
M + ∆̂a

M∆̂b
M

)}
. (S46)

Next, we perform a change of variables to ∆̂a
± = ∆̂a

P ± ∆̂a
M :

Zn
PM =

∏
a

[∫
d∆a

Pd∆
a
M

4π

d∆̂a
+d∆̂

a
−

4π
θ(−∆a

P )θ(−∆a
M )

∫ 1

−∞
dga1

]
×

exp

{∑
a

[
− β

2x
(ga1)

2

]
+

1

2

(
β

x

√
q

R
∑
a

ga1

)2

+ i
∑
a

∆̂a
+

(
∆a

P +∆a
M

2
+

R0

R
m+

(
1− γ

2
− R0

R

)
ga1 − χ−R0

∆X

2

)
+ i
∑
a

∆̂a
−

(
∆a

P −∆a
M

2
+
γ

2
ga1 +R0

∆X

2

)
− R0(1−R0/R)

2β
x
∑
a

(
∆̂a

+

)2
− 1

2

∑
a,b

[
R0(1−R0/R)

R
q + ϵ2

](∑
a

∆̂a
+

)2}
. (S47)

We now aim to decouple the replicas, by eliminating terms which involve more than one
replica. All these terms are of the form (

∑
a f

a)2, where fa is some quantity which depends
only on one replica. We can decouple these replicas using the identity

exp

(
1

2
(Cx)2

)
=

∫
dω
e−ω2/2

√
2π

eCxω. (S48)

Thus, we can decouple the replicas at the cost of introducing an additional Gaussian inte-
gration variable per square term. We can now drop the a indices and replace them with a
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simple power to n:

Zn
PM =

∫
dω1dω2

{∫
d∆Pd∆M

4π

d∆̂+d∆̂−
4π

θ(−∆P )θ(−∆M )

∫ 1

−∞
dg1

× exp

[
− β

2x
g21 + ω1

β

x

√
q

R
g1 −

R0(1−R0/R)

2β
x∆̂2

+

+ i∆̂+

(
∆P +∆M

2
+

R0

R
m+

(
1− γ

2
− R0

R

)
g1 + ω2V

1/2
tot − χ−R0

∆X

2

)
+ i∆̂−

(
∆P −∆M

2
+
γ

2
g1 +R0

∆X

2

)]}n
e−(ω2

1+ω2
2)/2

2π
. (S49)

Here, we have defined Vtot = qR0(1 − R0/R)/R + ϵ2. This parameter, defined as ψ2 in
Refs. Refs. (36) and (37), represents the total variance in fitness among sampled species
from both strategy and pure fitness. As we will demonstrate later, the integration vari-
ables ω1 and ω2 do in fact have physical meaning: ω1 is related to the invasion fitness of
the mutant, while ω2 is related to the abundance of the parent. Next, we perform the inte-
gral over g1. To do so, we assume that most of the weight of the integral is concentrated
near small g, meaning that we can approximate the integration bounds as −∞ to ∞ rather
than −∞ to 1. We also condense all of the resulting terms which do not depend on ∆̂+ or
∆̂− into a constant term c.

We can write the result as

Zn
PM =

∫
dω1dω2

{∫
d∆Pd∆M

4π

d∆̂+d∆̂−
4π

θ(−∆P )θ(−∆M )

× exp

[
−1

2
∆⃗M∆⃗t + i∆⃗ · v⃗ + c

]}n
e−(ω2

1+ω2
2)/2

2π
, (S50)

where

∆⃗ =
[
∆̂+ ∆̂−

]
, (S51)

M =
x

β

[
A B
B C

]
, (S52)

v⃗ =
[
∆P+∆M

2 +D ∆P−∆M
2 + E

]
, (S53)
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and we define

A = R0

(
1− R0

R

)
+

(
1− γ

2
− R0

R

)2

, (S54)

B =
γ

2

(
1− γ

2
− R0

R

)
, (S55)

C =
γ2

4
, (S56)

D = ω2V
1/2
tot +

R0

R
m+ ω1

√
q

R

(
1− γ

2
− R0

R

)
− χ−R0

∆X

2
, (S57)

E = R0
∆X

2
+ ω1

γ

2

√
q

R
. (S58)

We can now perform the integrals over ∆̂+ and ∆̂−. This yields

Zn
PM =

∫
dω1dω2

[
1√

detM

∫
d∆Pd∆M

4π
θ(−∆P )θ(−∆M )×

exp

(
−1

2
v⃗M−1v⃗t + c

)]n e−(ω2
1+ω2

2)/2

2π
. (S59)

Now, let’s utilize the replica trick limit n → 0. Again following the methodology in
Refs. (36) and (37), this can be used to recover the joint probability distribution ρ(∆P ,∆M ):

lim
n→0

Zn
PM =

∫ 0

−∞
d∆Pd∆M

∫
dω1dω2

e−(ω2
1+ω2

2)/2

2π
×

exp
(
−1

2 v⃗M
−1v⃗t

)∫ 0
−∞ d∆′

Pd∆
′
M exp

(
−1

2 v⃗
′M−1v⃗′t

) , (S60)

=

∫ 0

−∞
d∆Pd∆Mρ(∆P ,∆M ). (S61)

Recall that M−1 ∼ β, an inverse temperature which scales with the number of cells in our
community, reflecting the shot noise in our population at any given time. If we assume
that our population is always exactly at equilibrium (i.e., is large enough that shot noise
is negligible), we can take the β → ∞ limit, in which case the exponentials involving
M−1 will be very strongly peaked. In this limit, we can therefore approximate the ratio in
Eq. (S60) as a delta function:

ρ(∆P ,∆M ) =

∫
dω1dω2

e−(ω2
1+ω2

2)/2

2π
δ(∆P −∆∗

P )δ(∆M −∆∗
M ), (S62)

where ∆∗
P (ω1, ω2) and ∆∗

M (ω1, ω2) are the non-positive values of ∆P and ∆M that mini-
mize v⃗M−1v⃗t for a given ω1 and ω2.
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2.5 Parent-Mutant Coexistence Probability

The parent-mutant coexistence probability is encoded in the joint distribution ρ(∆P ,∆M ):

P[Both survive] =

∫
dω1dω2

e−(ω2
1+ω2

2)/2

2π
δ(∆∗

P (ω1, ω2))δ(∆
∗
M (ω1, ω2)). (S63)

So, the next step is to uncover the functional forms of ∆∗
P and ∆∗

M , which represent the
values of ∆P and ∆M that minimize v⃗M−1v⃗t, constrained such that both ∆P and ∆M

are non-positive. If the global minimum happens to be within the allowed region, these
quantities are simple:

∆∗
P

∣∣
∆∗

P<0, ∆∗
M<0

= −D − E, (S64)

∆∗
M

∣∣
∆∗

P<0, ∆∗
M<0

= −D + E. (S65)

This unconstrained minimum will be in the allowed region if both of these quantities are
negative, which occurs when D > |E|. If both resource surpluses are negative, neither the
parent or mutant survive at equilibrium, so

P[Both die] = P[D > |E|]. (S66)

What if the mutant survives and the parent goes extinct, such that ∆∗
M = 0? Then ∆∗

P will
be found at

∆∗
P

∣∣
∆∗

P<0, ∆∗
M=0

=
2B(D + E)− 2(CD +AE)

A− 2B + C
, (S67)

≈ −2E +
2

A
(B − C)(D − E). (S68)

This expansion comes from the fact that A ∼ R0 (provided that R0 does not get too close
to R), while B, C ∼ 1. Similarly, if the mutant goes extinct while the parent survives, we
find

∆∗
M

∣∣
∆∗

P=0, ∆∗
M<0

=
2E(A+B)− 2D(B + C)

A+ 2B + C
, (S69)

≈ 2E − 2

A
(B + C)(D + E). (S70)

Parent-mutant coexistence requires that none of these optima are in the allowed region, so
that ∆∗

P = ∆∗
M = 0. This is satisfied when

P[Both survive] ≈ P[BE + CD < −|AE −BD − CE|, D < |E|]. (S71)

Recalling that A ∼ R0 ≫ 1, the AE term dominates unless |E| ≪ 1, meaning that E must
be small for the inequality to be possible. (Note that the R0∆X term is not actually O(R0),
because the natural fitness scale for a mutant turns out to be ∆X ∼ R−3/2

0 .) When this is
the case, the BE and CE terms will be even smaller, allowing us to safely ignore them:

P[Both survive] ≈ P[CD < −|AE −BD|, D < |E|], (S72)
= P[CD < −|AE −BD|]. (S73)
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We have eliminated the second condition because it is now redundant with the first: since
C > 0, the first inequality requires D < 0, trivially satisfying D < |E|. Finally, let’s recall
that in our simultaneous assembly approximation of mutant invasion (Appendix 1.3), we
must condition on the probability that the mutant survives:

Pcoex ≈ P[Both survive]

P[Mutant survives]
, (S74)

≈ P[CD < −|AE −BD|]
P[E > D,E > 0]

. (S75)

In principle, this is a quantity that can be calculated numerically. However, this result is
difficult to intuitively interpret in this form, and it still depends on the saddle-point order
parameter q. Nonetheless, we can immediately make two meaningful conclusions. If we
send the number of resources consumed by a typical organism R0 → ∞, then A becomes
large and Pcoex → 0. Likewise, if we send the effect size of our mutation γ → 0, then

|CD|
|AE−BD| ∼ γ → 0, and thus Pcoex → 0. Since we are considering a mutation whose effect
size is comparable to changing one resource’s uptake rate by a factor of γ, both of these
observations suggest the same thing: if the phenotypic effect of a mutation is too small,
mutant-parent coexistence is impossible. This phenomenon is a signature of “mesoscopic”
mutation, suggesting that our results may not be captured by models of mutations with
infinitesimal phenotypic effects, such as adaptive dynamics approaches (44, 62).

3 Scaling Analysis of First-Step Mutations

In this section, we aim to restore physical intuition to our replica-theoretic results, finding
approximate expressions which indicate how the frequency of inter-niche evolution scales
with community parameters such as the number of surviving species.

3.1 Sampling Depth and Fitness Gauge

We must utilize the saddle-point results for an assembled community without mutation,
largely from Refs. (36) and (37), to calculate our order parameters m and q. However, we
opt for a different set of independent variables, defining our assembly process in terms
of the number of sampled species S and the typical number of surviving species S∗. The
community assembly parameter ϵ, which describes the variation in pure fitness among
sampled species, will then be defined implicitly as a function of these parameters. This
change of variables is helpful because S∗ is a measurable property of an experimental
ecosystem, while ϵ describes a property of sampled species, which may be very different
from typical surviving species and is thus more difficult to access experimentally.

With this set of variables, a natural ratio to consider is the “sampling permissivity” S∗/S,
roughly the probability that a new independently sampled species would be able to invade
the ecosystem. It turns out that it will be useful to define an effective “sampling depth” λ,
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which is a function of S∗/S:

λ ≡ erf−1

(
1− 2

S∗

S

)√
2. (S76)

For an undersampled system (S∗/S → 1), the sampling depth λ → −∞; for an oversam-
pled system (S∗/S → 0), we have λ → ∞. From the saddle-point results of Refs. (36) and
(37) (which we do not re-derive here), we know that

m =
R
R0

(
V

1/2
tot λ+ χ

)
. (S77)

Recall that χ sets our choice of fitness gauge: the uptake budget of sampled species is
drawn with mean χ/R0 and standard deviation ϵ/R0. But in our community assembly
approximations, we have chosen our gauge such that ⟨gi⟩ = m/R = 0. This implies that

χ = −V 1/2
tot λ. (S78)

As we sample more species and λ increases, the uptake budgets or pure fitnesses of surviv-
ing species will be further and further into the high-fitness tail of the distribution. Since
the typical pure fitness of surviving species is nearly zero in our fitness gauge, χ must
become more negative as λ increases to compensate for the increased sampling. In the
consumer resource model analyzed in Refs. (36) and (37) (where χ = 0), an increase in
sampling depth results in an overall increase in m: as oversampled species become higher
and higher in pure fitness, the typical resource becomes less valuable to consume. This
effect causes resource knock-out mutations to be more beneficial on average than knock-in
mutations in the oversampled limit. In our model, we adjust the “zero” of pure fitness to
compensate for this effect, such that m = 0 regardless of λ.

For future sections, it is helpful to define a function I(λ) such that

I(λ) =
1 + λ2

2
erfc

(
λ√
2

)
− λ√

2π
e−λ2/2. (S79)

3.2 Niche Saturation and σinv

From saddle-point results in Refs. (36) and (37), we can write expressions for Vtot, q, and ϵ
in terms of quantities we have already defined:

V
1/2
tot =

(
1− R0

R

)(
2
(
1− S

RI(λ)
)

− S
RI

′(λ)
− λ

)
, (S80)

q = Vtot
S

R
I(λ)

R
R0(1−R0/R)

+Rσ2κ
(
1− S∗

R

)2

, (S81)

ϵ2 = Vtot

(
1− S

R
I(λ)

)
−R0σ

2
κ

(
1− R0

R

)(
1− S∗

R

)2

. (S82)
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The order parameter q describes the total variance in resource availability, allowing us to
find the distribution of the resource availabilities hi: a Gaussian with mean 1 and variance
q/R. A mutation changing use of a single resource by a factor γ will have an invasion
fitness with magnitude γ|1− hi|/R0. This leads us to define the quantity

σinv ≡ γ

R0

√
q

R
, (S83)

which describes the typical magnitude of the invasion fitness of a strategy mutant α⃗ →
α⃗+∆α⃗, where |∆α⃗| ≈ γ/R0. (For example, for a complete knock-out mutant for a system
with binary resource use, we have γ = 1.)

While these equations completely determine all the variables we have defined, they are
difficult to interpret physically, having complicated dependence on the ratios S/R and
R0/R as well as the sampling depth λ. We can make progress by considering how these
equations depend on the niche saturation S∗/R ≤ 1, describing how close to maximum
capacity we expect our final ecosystem to be. By rewriting S/R = (S/S∗)(S∗/R), we sep-
arate out the parts of these equations that depend on the sampling depth λ (or equivalently,
S∗/S) from the niche saturation S∗/R. (Technically, rather than using the value of S∗ for
any particular ecosystem as an input parameter, we use its expectation ⟨S∗⟩ over random
ecosystems with the same underlying parameters. Since these values tend to be close in
practice, as shown in Figure 2B, we will simply write S∗ in our scaling relationships.)

To simplify our results, it is helpful to expand our expressions in the undersampled and
oversampled limits (λ → ±∞). It is worth noting that the λ → −∞ limit for fixed S∗/R
does not correspond to a physical community assembly process: the expression for ϵ in
Eqn. (S82) must be positive, but (S/R) · I(λ) → ∞ as λ → −∞, making the RHS of
that equation negative. Effectively, this means that in order to sample species such that a
desired fraction of niches are filled, a minimum fraction of sampled species must go extinct
in the final ecosystem (on average). However, many quantities we are interested in are still
well-defined in the λ → −∞ limit, and indeed scale similarly to the λ → ∞ limit: we use
this to demonstrate an overall lack of dependence on sampling depth.

We first quote results for σ2κ = 0. From standard expansions of the error function, we
obtain

σinv ≈

γ
(
1− S∗

R
)√R−R0

S∗R3
0

when λ→ −∞,

γ
√
2
(
1− S∗

R
)√R−R0

S∗R3
0

when λ→ ∞.
(S84)

Remarkably, the typical invasion fitness scale of a strategy mutation has very weak de-
pendence on the sampling depth λ, changing only by a factor of

√
2 from the extremely

undersampled to the extremely oversampled regimes. This result allows us to effectively
drop out λ (and thus S∗/S) as a variable, which was very difficult to see from our saddle-
point results above.
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3.3 Scaling Analysis of Pcoex

We got our expression for σinv “for free” from the saddle-point value of q, without need to
explicitly consider the impact of the parent and mutant on the ecosystem. The same is not
true for the mutant-parent coexistence probability: to obtain an interpretable expression
for Pcoex, we must start from our results in Appendix 2.5, and then undergo a similar
procedure of plugging in saddle-point values in the λ → ±∞ limits. Recall that in our
two-ecosystem approximation, we have

Pcoex ≈ P[Both survive]

P[Mutant survives]
. (S85)

To get some intuition, let’s start with the simpler calculation of the denominator of this
expression: the probability that the mutant species survives in our assembled ecosystem.
From our earlier results, this is

PM lives = P

[
∆X + Z1σinv > 0,

Z2V
1/2
tot + V

1/2
tot λ+ Z1

σinvR0

γ

(
1− γ − R0

R

)
−R0∆X < 0

]
, (S86)

where Zi are independent standard normal random variables. Looking at these inequal-
ities, we can get some intuition for what they mean. The first inequality represents the
probability the mutant is beneficial relative to the parent: the chances that the determin-
istic fitness change ∆X combined with the fitness change due to the strategy mutation
Z1σinv, is positive. The second inequality represents the requirement that the mutant is
well-adapted enough to survive in the population in the first place: the Vtot factors rep-
resent total fitness variation across sampled species, while Z2 represents the randomness
in how well-adapted the parent organism is. Indeed, we expect the Gaussian distribu-
tion of Z2 to map directly onto the truncated Gaussian distribution of the parent’s relative
abundance fP :

fP ≈ 2

SI ′(λ)
(Z2 + λ)θ(−Z2 − λ). (S87)

The terms which do not scale with V
1/2
tot are corrections related to the fitness effect of the

mutation. But for a small mutation, we expect these to produce a relatively small change
in how well-adapted the organism is. Furthermore, the only circumstance where these
corrections are likely to matter is one where the parent would not be able to survive in the
population on its own, but the mutant can: a pathological situation for our approximation
of Pcoex that we have argued is rare. So, it is fair to approximate

PM lives ≈ P
[
Z1 > −∆X

σinv
, Z2 < −λ

]
, (S88)

=
1

2
erfc

(
− ∆X

σinv
√
2

)
· 1
2
erfc

(
λ√
2

)
, (S89)

=
S∗

2S
erfc

(
− ∆X

σinv
√
2

)
. (S90)
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This result should not be too surprising: if the pure fitness benefit ∆X carried by the mu-
tant is zero, then the chance the mutant lives is (1/2) · (S∗/S): there are even odds the
mutant is beneficial relative to the parent, and a probability S∗/S that it is one of the S∗

well-adapted species which can survive in the community. If the mutant carries a change
in pure fitness along with a change in strategy, its survival probability rises or falls ac-
cordingly as the deterministic pure fitness change |∆X| approaches the same size as the
stochastic fitness change ∼ σinv due to altered strategy.

Now, let’s calculate the numerator of Pcoex, the probability that the mutant and parent
will both be alive in our simultaneously assembled ecosystem. Again approximating that
terms which scale with overall fitness variation V

1/2
tot dominate terms which scale with

mutant fitness change ∆X and σinv, we find that

PP,M live ≈ P

[
γV

1/2
tot

R2
0

(Z2 + λ) < ∆X + Z1σinv <
γ(1− γ − R0

R )V
1/2
tot

R2
0(1−

R0
R )

(Z2 + λ)

]
. (S91)

Can we interpret this probability physically? The outer inequality only holds when Z2 <
−λ. We calculated this probability earlier: it should be roughly S∗/S, the chance that
the parent species is well-adapted enough to survive before mutant invasion. The middle
term is the leading contribution to the invasion fitness of the mutant, which is O(R−3/2

0 ).
However, the inequality bounds it between two quantities of size O(R−2

0 ). So, we con-
clude that parent-mutant coexistence is achieved when the invasion fitness of the mutant
is sufficiently small.

Since the allowed region for Z1 is smaller than its typical width by a factor of 1/
√
R0, we

can approximate its probability density as constant over the allowed region. This gives us

PP,M live ≈
e−(∆X/σinv)

2/2

√
2π

γ2V
1/2
tot

σinvR2
0(1−

R0
R )

∫ −λ

−∞
(−Z2 − λ)

e−Z2
2/2

√
2π

dZ2 (S92)

=
e−(∆X/σinv)

2/2

√
2π

γ2V
1/2
tot

σinvR2
0(1−

R0
R )

−I ′(λ)
2

. (S93)

Finally, we divide by the probability the mutant lives, and consider the undersampled and
oversampled limits when ∆X = 0:

Pcoex ≈

γ
√

2R
πS∗

√
1

R0(1−R0/R) when λ→ −∞,

γ
√

R
πS∗

√
1

R0(1−R0/R) when λ→ ∞.
(S94)

Once again, the dependence on the sampling depth is nearly negligible, contributing only
an O(1) numerical factor. Note, however, that this result is different from that in the main
text in Equation (8). This is because in our theoretical calculation, we arbitrarily chose the
identity of the parent species and the mutation, effectively giving each surviving species
and each mutation an equal chance of being selected. In reality, each surviving species pro-
duces mutations at a rate proportional to its abundance, and mutations have a probability
proportional to their invasion fitness of surviving genetic drift. In the next section, we will
discuss how to correct for this difference.
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3.4 Dependence of Pcoex on Invasion Fitness and Abundance

Let us reframe our expression for Pcoex in terms of the abundance fP of the parent and
the invasion fitness sinv of the mutant. We can read off the invasion fitness of a beneficial
mutant as the saddle-point value of ∆∗

M when ∆P is fixed at zero, representing the initial
growth rate of the mutant before it has a chance to invade:

sinv ≈ ∆X + Z1σinv +
γ

R2
0

V
1/2
tot (−Z2 − λ). (S95)

We can plug this expression into our earlier probability that both the mutant and parent
live to find that

PP,M live ≈ P

[
0 < sinv <

γ2V
1/2
tot

R2
0(1−R0/R)

(−Z2 − λ)

]
. (S96)

Recall that −Z2 − λ is a random variable describing how well-adapted the parent and
mutant strains are to the ecosystem; it is proportional to the abundance of the parent, as
we calculated earlier. While Z2 is not independent of sinv, its contribution to sinv is small,
so approximating them as independent is reasonable. Plugging in this relationship, we
find that

Pcoex ≈ P

[
sinv < −I ′(λ) γ2V

1/2
tot S

2R2
0(1−R0/R)

fP

]
, (S97)

= P
[
sinv <

γ2(1− S∗/R)

R2
0(S∗/R)

S∗fP

]
. (S98)

So, our analysis of mutant-parent coexistence has an easily-interpreted meaning: a mutant
strain will coexist with its parent when its (positive) invasion fitness is below

scoex(fP ) =
γ2(1− S∗/R)

R2
0(S∗/R)

S∗fP . (S99)

We can calculate this probability by treating sinv and fP as independent random variables,
accounting for the probability the mutant survives genetic drift. In this case, their proba-
bility densities scale as

ρ(sinv) ∼ sinvθ(sinv)e
−(sinv−∆X)2/2σ2

inv , (S100)

ρ(fP ) ∼ fP θ(fP )e
−(fP+Dλ)2/2D2

, (S101)

whereD ≡ −2/SI ′(λ). Finally, Pcoex can be calculated using standard integration methods,
giving the results quoted in the main text after applying similar scaling analysis to the pre-
vious section. We can also fix either sinv or fP to calculate a conditional coexistence proba-
bility. For example, plugging in a “typical” fP = 1/S∗ indicates that s̄coex = γ2(1−S∗/R)

R2
0(S∗/R)

is
the typical value of sinv above which the coexistence probability begins to fall.
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3.5 Extensions of Coexistence Scaling

In this section, we will consider somewhat more general formulations of our model: non-
uniform resource supply, and a mutant whose background parent species uses a different
number of resources than the typical organism in the ecosystem. We will find that our
qualitative results remain sound, and we can largely explain these results in terms of the
“invasion fitness versus abundance” framework we have discussed so far.

3.5.1 Non-Uniform Resource Supply

First, let’s consider non-uniform resource supply (nonzero σ2κ), as in (37). If each resource
has a supply κi = 1 + δκi, then the availability hi of that resource will have a component
which scales with δκi in addition to a community-dependent component. Thus, mutations
that knock out a highly-supplied resource will be less beneficial on average. We can de-
termine the strength of this effect by starting with the integrals over the gai in the second
line of Eq. (S37), where the resource supply enters through Fi(gi) ≡

∑
i κi(gi + g2i /2). This

portion of the partition function was labeled Ai by Ref. (37) (see their Appendix 2, section
1.3). We can follow their calculation to obtain

Ai =

∫
dω

2π
e−ω2/2

{∫ 1

−∞
dgi expβ

[
−
(

1

2x
+
δκi
2

)
g2i −

(
ωb√
R

+ δκi

)
gi

]}n

, (S102)

where b is a term independent of δκi whose value does not concern us here. The contents
of the brackets are a Gaussian integral over the gi, centered where the integrand attains its
maximum value. Taking non-uniform resource supply, δκi ̸= 0, will shift this saddle-point
value of gi by approximately xδκi ≪ 1. The saddle-point value of x was calculated in
Ref. (36) as x = 1 − S∗/R, following our typical substitution of (S∗/R)(S/S∗) for S/R.
This shift in the central value of gi will shift the invasion fitness of a knock-out mutation
targeting that resource by a corresponding amount, since the invasion fitness of a knock-
out mutation is simply gi/R0. Thus, we can write

sinv = ∆X − δκi
R0

(
1− S∗

R

)
+ Zσinv(δκ⃗ = 0). (S103)

for a mutation knocking out resource i. The first term represents the mutation’s change
in pure fitness, the second term reflects that environmental supply makes some mutations
more or less beneficial on average, while the stochastic third term depends on the spe-
cific draws of species in the community, as we calculated earlier. We can quantify the
relative importance of environment and community by considering the invasion fitness
of a mutation in a monoculture community, where invasion fitness only depends on the
environment:

smono
inv ≈ ∆X − δκi

R0
. (S104)

The correlation between the invasion fitness of a mutant in monoculture and in the com-
munity context illustrates how much the impact of environmental supply is felt through
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the “shielding” effects of the community: in the oversampled limit (λ→ ∞), we find that

ρ(scomm
inv , smono

inv ) ≈
(
1 +

R−R0

S∗R0σ2κ

)−1/2

, (S105)

assuming that δκi are drawn from a distribution with mean zero and variance σ2κ. In gen-
eral, non-uniform resource supply will increase the variance in invasion fitness σinv:

σinv ≈

γ
(
1− S∗

R
)√R−R0

S∗R3
0
+ σ2

κ

R2
0

when λ→ −∞,

γ
√
2
(
1− S∗

R
)√R−R0

S∗R3
0
+ σ2

κ

2R2
0

when λ→ ∞.
(S106)

Note that σinv still scales with an overall factor of 1−S∗/R, leaving our previous qualitative
results unaffected. Increasing resource supply variation increases σinv and thus lowers the
coexistence probability, by making it less likely that the invasion fitness of an arbitrary
beneficial mutation will be small enough to make coexistence possible.

3.5.2 Variation in Number of Metabolized Resources

Now, let’s consider what happens if the parent species uses RP resources on average,
rather than the R0 resources that most species in the community use. This extension helps
us disentangle what terms in our expressions depend on the typical metabolic overlap
between members of the community (encoded by R0), and what depends on the specific
number of resources used by the parent and mutant species. It can also help determine
whether generalist or specialist species are more likely to diversify in a given community.

The more resources a given organism uses, the more its growth rate and overall fitness are
averaged out between different independent variables, effectively reducing the variance in
its abundance as well as the invasion fitness of any particular mutation. So, if RP is larger,
the parent species is less likely to have particularly high abundance, but the invasion fit-
ness of a strategy mutation it obtains is likely to be smaller in magnitude. The first effect
should lower the coexistence probability, while the second should raise it. Performing the
calculation up to our expression for the joint probability of ∆P and ∆M gives us

A ≈ R0
R0

RP

(
1− RP

R

)
, (S107)

B ≈ R0

RP

γ

2

[
R0

RP

(
1− γ

2

)
− R0

R

]
, (S108)

C ≈ R2
0

R2
P

γ2

4
, (S109)

D ≈ ω2V
1/2
P + λV

1/2
tot , (S110)

E ≈ R0
∆X

2
+ ω1

R0

RP

γ

2

√
q

R
. (S111)
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Here, we have defined VP =
R2

0(1−RP /R)
RRP

q + ϵ2, reflecting the different variation in over-
all fitness between the parent and other species in the community. We have once again
defined γ such that γ ≈ 1 for a knock-out mutation.

Since most of the community is unaffected by changing RP , we use the same saddle-point
results we calculated before. Thus, the value of σinv is unchanged, although the invasion
fitness of the mutant has a prefactor of R0/RP to account for the altered number of re-
sources. The inequality we obtain that predicts mutant-parent coexistence (for ∆X = 0) is
now given by

PP,M live ≈ P

[
Z1 <

γV
1/2
P

R0(1−RP /R)
√
q/R

(
−Z2 − λ

V
1/2
tot

V
1/2
P

)]
, (S112)

where Z1 is once again proportional to the invasion fitness of the mutant, and the Z2-
dependent factor on the RHS is proportional to the abundance of the parent strain. The
calculations otherwise proceed as before, yielding the results shown in Figure S6. For these
parameter values, it appears that mutant-parent coexistence is more likely for mutations
on a background strain which metabolizes many resources, since these mutations tend to
have small invasion fitness.

4 Numerical Simulations

Throughout this work, we have performed numerical simulations of community assembly
in order to verify and extend our analytical results. These simulations were performed by
randomly sampling species and solving the optimization problem corresponding to eco-
logical equilibrium (described in SI Section 1.2), rather than explicitly solving the abun-
dance dynamics: the final outputs are the resource availabilities hi and the surpluses ∆µ.
The code for these simulations is based on that in Ref. (37).

Much of our analysis relies on identifying whether individual species are present in the
population or extinct. Mathematically, these cases correspond to whether ∆µ is zero or
negative. Numerically, however, ∆µ is never precisely zero, necessitating the definition of
an “extinction threshold.” Any species with a surplus ∆µ below the extinction threshold, a
small negative number, is classified as extinct. We typically defined the extinction thresh-
old as −10−3 · Std(hi)/R0, several orders of magnitude smaller than the typical fitness
effect of a knock-in or knock-out mutation.

In Figure S7, we demonstrate that this is a reasonable choice of threshold. In order to
be numerically sensible, there should be a clear separation between typical values of ∆µ

for surviving and extinct species, and the threshold should be well within this gap. We
verified this by plotting the number of putative surviving species as a function of the ex-
tinction threshold. In the neighborhood of the threshold we have chosen, the number of
putative survivors is independent of the threshold, suggesting that there is a clear separa-
tion between alive and extinct species and that our choice of threshold should not heavily
impact our results. We also analyzed the values ∆µ for each strain before and after mutant
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invasion in order to ensure that we were reliably identifying species that go extinct. A
scatterplot of initial vs. final ∆µ values shows that almost all species are clearly separated
into a “surviving” cluster and an “extinct” cluster, again suggesting that our results are not
due to numerical artifacts.

In addition to our standard simulations, we also verified the robustness of our conclu-
sions using organisms with Dirichlet-distributed resource use (Figs. S2 and S4). In these
simulations, each entry of the strategy vectors α⃗µ for each organism is drawn from the
gamma distribution Γ(R0/R, 1) and then normalized to sum to 1. This procedure results
in Dirichlet-distributed entries which roughly retain the sparseness properties of binary
resource use: typically, ∼ R0 entries of each vector will be O(R0), while the others will
be much smaller. Knock-out mutations were simulated by choosing a random entry of the
parent organism’s strategy vector with value at least γ/R0, and reducing it by γ/R0. We
also used alternate “global-effect” mutations: rather than knocking out one resource, these
mutations slightly perturbed each element of the resource use vector. Specifically, a strat-
egy mutation ∆α⃗ was constructed by multiplying each element of α⃗ by an independent
Gaussian random variable with mean 0 and variance 1/R0, then by rescaling such that∑

i∆αi = 0 and |∆α⃗| = γ/R0.
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