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Abstract
Brain-wide interactions generating complex neural dynamics are considered crucial for

emergent cognitive functions. However, the irreducible nature of nonlinear and high-dimen-

sional dynamical interactions challenges conventional reductionist approaches. We intro-

duce a model-free method, based on embedding theorems in nonlinear state-space

reconstruction, that permits a simultaneous characterization of complexity in local dynam-

ics, directed interactions between brain areas, and how the complexity is produced by the

interactions. We demonstrate this method in large-scale electrophysiological recordings

from awake and anesthetized monkeys. The cross-embedding method captures structured

interaction underlying cortex-wide dynamics that may be missed by conventional correla-

tion-based analysis, demonstrating a critical role of time-series analysis in characterizing

brain state. The method reveals a consciousness-related hierarchy of cortical areas, where

dynamical complexity increases along with cross-area information flow. These findings

demonstrate the advantages of the cross-embedding method in deciphering large-scale

and heterogeneous neuronal systems, suggesting a crucial contribution by sensory-fronto-

parietal interactions to the emergence of complex brain dynamics during consciousness.

Author Summary

Advances in recording technologies have enabled the acquisition of neuronal dynamics
data at unprecedented scale and resolution, but the increase in data complexity challenges
reductionist model-based approaches. Motivated by generic theorems of dynamical sys-
tems, we characterize model-free, nonlinear embedding relationships for wide-field
electrophysiological data from behaving monkeys. This approach reveals a universality of
inter-areal interactions and complexity in conscious brain dynamics, demonstrating its
wide application to deciphering complex neuronal systems.
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Introduction
The brain is a complex system with restless activity dynamics [1]. These dynamics are gener-
ated and maintained by interactions among variety of neural populations inside the brain.
How brain-wide interaction produces specific dynamics underlying cognitive functions is a
central question in neuroscience [2,3]. While recent theories propose that complex dynamics
generated by integrative and recurrent interactions among brain areas form a universal founda-
tion of conscious brain state [4], it is unknown how complex dynamics support consciousness
and what specific circuits in the brain generate the complex dynamics.

Recent experimental results of high-dimensional recordings highlighted the importance of
various different aspects of dynamics in individual cortical areas underlying sensory, motor, or
cognitive functions [5–9]. A challenging point in characterizing brain-wide dynamics is that
the complexity and diversity, which many reductionist model-based approaches neglect, may
be an irreducible feature supporting cognitive processes [4]. A dilemma is that overly realistic
and detailed simulations often require a number of unknown parameters and can obscure
physiological principles [3,10]. It is, therefore, not straightforward to instantiate an appropriate
reductive model that capture dynamical complexity and diversity across multiple brain areas
[3]. Another stream of research directly evaluates statistical features in data. Although some
approaches evaluate complexity of neural activity (e.g. the correlation dimension [11] or the
algorithmic complexity [12]) and others evaluate neural interaction (e.g. the functional connec-
tivity [13] or the Granger causality [14]), there are few methods that relate these two features in
a consistent interpretable manner.

Here we introduce an alternative approach that can address how brain-wide nonlinear neural
interaction generates complex dynamics, with minimal assumptions. We focus on a generic
mathematical property termed delay-embedding [15,16] in nonlinear dynamical systems, which
enables topological reconstruction of global attractor dynamics based on local temporal
sequences. We developed an extended delay-embedding method to provide an accurate estimate
of dynamical complexity, i.e., the dimensionality of a reconstructed attracter, under the presence
of confounding factors in real data, based on a random projection technique. Relying only on
the topological aspect of reconstructed attractor dynamics, the method allows us to shortcut sev-
eral specific model assumptions and a-priori dimensionality reduction of data, and yet provides
a clear explanation for how nonlinear interactions generate complexity of dynamics.

We first illustrate the principle of our approach with simple models (where we know the true
underlying dynamical system), showing that it reliably estimates interactions among observed
nodes and the dynamical complexities that reflect the interactions, despite variations in signal
timescale and noise. Next, we apply the method to wide-field electrophysiological recordings
from awake and anesthetized monkey cortex, reporting a novel hierarchical organization of cor-
tical areas as a universal correlate of conscious brain state. In this hierarchy, the dynamical com-
plexity increases along the directed cross-area interaction from the visual to frontoparietal areas.
This can reconcile two contrasting views on conscious process—concerning whether conscious
processes are localized to specific “workspace” areas [17,18] or distributed across the entire sys-
tem [4,19,20]—from the viewpoint of information coding by dynamical systems. The high
dynamical complexity in the workspace area is accompanied by structured interactions across
cortical areas under conscious states. Remarkably, we find that brain-state distinction is reflected
in the high-dimensional temporal sequences, but not in snapshots of neural activity, emphasiz-
ing the functional importance of dynamics. Finally, we discuss possible physiological mecha-
nisms that account for the current results, proposing a likely (but to date not thoroughly
examined) contribution of bottom-up interaction (that originates from sensory cortex) to gener-
ate the state-dependent complexity of frontoparietal dynamics.
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Results

Embedding
In dynamical systems, causally interacting variables (say, electrode signals x, y and z) share a
trajectory in the state space, (x, y, z) [Fig 1A, (1)]—that is, each time point corresponds to a
location on the common set of realizing states (“attractor”) in this space. It means that once we
specify the time evolution of a variable, the other variables’ behaviors are also constrained via
this set (e.g., the dynamics of multiple electrodes can be estimated based on a single electrode’s
dynamics). Indeed, mathematical theorems guarantee that the temporal sequence of a single
variable [“local observation”, Fig 1A, (2)] has sufficient information about the underlying high-
dimensional system dynamics. This is sufficient for complete reconstruction of the original
global attractor topology [Fig 1A, (3)]; the global state has one-to-one mapping to a local tem-
poral sequence, or equivalently, a location within the delay-coordinate state-space [Fig 1A,
from (3) to (1)]. This property is called “embedding,” a general principle in deterministic
dynamical systems.

Based on this property, a protocol for inferring causation in real systems was recently pro-
posed in ecology [21], using nearest-neighbor forecasting techniques [22,23]. It allows us to
detect causal interactions and their directionality because a “downstream-node” generally has
sufficient information to estimate the dynamics of the “upstream-nodes” but not vice versa
(more details are described in the next section). However, this protocol alone does not tell us
how the causal interactions shape emergent dynamics, which is the central issue in the present
study (and in many other neuroscience studies). In addition, we show that the estimate of
dynamical complexity is severely affected by signal timescale, when we reconstruct the state-
space based on the standard delay-coordinate (as in the previous work [21], which focused on
detecting causality but not on accurately quantifying the attractor complexity). Therefore it is
problematic to naïvely apply the original protocol to a highly heterogeneous system such as the
brain [e.g., different cortical areas have different timescales of dynamics [24]].

We extended the previous approach to link the causal interaction and the dynamical com-
plexity via an embedding-based relationship between time-series variables (hereafter called
cross-embedding). The key idea is to utilize the fact that the embedding is invariant to the coor-
dinate transformation—instead of the standard delay coordinates, here we use a random pro-
jection of them to reconstruct the attractor dynamics [Fig 1A, (4)]. It is also intuitively
understandable that virtually any random projection does not break the topology of the
attractor (except for special cases), which is a consequence of random projection theory [25]. A
critical requirement for embedding is that the dimensions, d, of the state-space for reconstruc-
tion have to be greater than the attractor’s dimension, dA (Fig 1B; see the figure legend for
additional comments on the relationship between d and dA). We make use of this necessity
condition for quantifying the effective attractor dimensionality in local dynamics, which is rele-
vant to interaction from other areas. Before moving on to real data analysis, the following two
sections provide simplified examples to describe the general cross-embedding principle and
demonstrate how the proposed method dissociates the effective dimensionality from other fac-
tors such as the timescale of dynamics.

Cross-embedding reveals interaction-relevant complexity of dynamics:
“downstream complexity”
The major innovation of our cross-embedding framework is in the simultaneous reconstruc-
tion of directionality in interaction (simply denoted by directionality hereafter) and a new
dynamical complexity measure (denoted by complexity). This is achieved by extending the
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Fig 1. Cross-embedding analysis of complex network dynamics based on state-space reconstruction. (A) Example of randomized delay-coordinate
reconstruction assuming we observe dynamics determined with three-dimensional differential equation. (1) Global state is embedded using (2) temporal
sequence of single observable of system. Attractor topology in global state space is fully recovered in (3) delay-coordinate of single observable. This
relationship is maintained after (4) random linear projection of delay-coordinate space. Thus, there exists unique one-to-one map from (4) to (1), given
sufficient number of coordinates. (B) The reconstruction needs sufficient dimensionality. Whether we have embedding or not depends on the relation
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causality estimation protocol by Sugihara et al. [21] to the dynamical dimensionality domain.
It leads to a core theoretical prediction that we refer to as downstream complexity: “dynamical
complexity increases along directed interaction.”Note that we mention the “downstream” in
terms of functional network interaction, not directly associated with the biological or anatomi-
cal definition of “downstream areas.”

To have an intuition about this, let us consider a simple model example (Fig 1C), where two
recurrent systems (e.g., brain areas x and y) interact in an asymmetric manner (y affects x but
not vice versa). The aim is to identify their interaction based on two observed time series [x(t)
and y(t)] from each system (Fig 1D) (which corresponds to inferring interaction among cortical
areas based on the electrode signals recorded from them). Since the interaction is only from y to
x, the history of x has information about y, but not vice versa. We call it “x embeds y” in this
paper. [More formally, we have an one-to-one mapping from attractor manifoldMx toMy,
which are respectively reconstructed from the time series x(t) and y(t) as random projections of
the delay-coordinate reconstructions.] This generally happens if and only if y causally influences
x; it means, conversely, we have no one-to-one mapping fromMy toMx (Fig 1E). It is a direct
consequence of a mathematical theorem proven by Stark [26]. Furthermore, armed with this
mathematical insight, it is predicted that the downstream attractor,Mx, is generically more
“complex” than the upstream one,My. This is because, as x is perturbed by y, x’s dynamics live
in a state space not of x alone, but of (x, y), which generally has higher dimensionality than y
alone. Despite the fact that we only assume the validity of delay embedding here, we have a
strong theoretical prediction: asymmetry in causal interaction should be accompanied by a hier-
archy of dynamical complexities, which we directly and quantitatively test using electrophysio-
logical recordings from monkeys, as described later.

For quantitative assessments of the cross-embedding relationships, we introduced two mea-
sures summarizing the cross-embedding relationships: directionality and complexity (the full
details of the analyses are described in Materials and Methods). First, we defined the direction-
ality of interaction from y to x by the difference in embeddedness of y by xminus that of x by y
(Fig 1F). Here the embeddedness between the variables is quantified, essentially by seeing
whether the time indices of nearby data points on attractorMx are also clustered onMy (Fig
1E; see also Materials and Methods). This embeddedness takes a value in between 0 and 1.
Given a sufficient data length, a positive value of directionality from y to x indicates an asym-
metric causal interaction directed to x [21]. Next, we introduced a new measure, complexity, of
interaction from y to x by the required dimensions ofMx to identify the corresponding locus
onMy. The embeddedness is given as a function of reconstructing dimensions and therefore
the complexity was defined as the dimensions at which the embeddedness is saturated (Fig 1F;
Materials and Methods). Coordinate randomization is crucial to avoiding systematic errors in

between the reconstruction dimension (d) and the underlying attractor dimension (dA). For example, a two-dimensional delay-coordinate space generically
embeds one-dimensional attractor (e.g., a limit cycle, top row), except for a finite number of points. Higher dimensionality is required to embed more complex
dynamics (bottom row). Generally, a dimensionality larger than that of an attractor (d > dA) is necessary and sufficient for the embedding—to distinguish
almost all states of the system [16] although perfect embedding without no self-intersection requires d > 2dA [15]; the current cross-embedding protocol
utilizes the former property. The Figure explores 1, 2 or 3 embedding dimensions after randomly projecting original delay-coordinates. Red regions indicate
self-intersection with unignorable volume, reflecting incomplete embedding. (C) Unidirectional interaction between two modeled systems (directionally
coupled Rössler systems, see Materials and Methods for equations). Downstream has information for whole system (light green) whereas upstream only has
information on itself (light magenta). (D) Example of observed upstream and downstream signals. (E) The cross-embedding based on the random-coordinate
state-space reconstructions.Mx andMy respectively represent the downstream (x) and upstream (y) attractors based on single observed variable from each
system. Colored arrows depict how nearby states in one attractor (disk: 20 nearest-neighbor states) are mapped onto states (dots) in other attractor (green:
from x to y and magenta: from y to x). (F) Relationship between coordinate dimensions (number of randomized coordinates used for attractor reconstruction)
and embeddedness (how accurately one node’s history can predict another node’s state). The circled dots represent complexity estimates, which were
determined as minimum embedding dimension that provided� 95% of optimal embeddedness measure (correlation between actual and forecast signals.
See Materials and Methods).

doi:10.1371/journal.pcbi.1004537.g001
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complexity that might arise due to a finite data size (see next section). All the analyses are based
on pairwise node-to-node relationships, and thus computations are scalable to high-dimen-
sional networks.

As the previous study [21] did, we allow the data to include some noise, although the
embedding theorem in the mathematically rigorous sense assumes deterministic dynamical
systems. In the practical data analysis below, we do not assume that the data are noise-free, but
expect that the data contain some noticeable components that reflect underlying deterministic
dynamics. If we could reconstruct the attractor dynamics by the randomized delay-coordinate
state space, even under some approximations, we are able to estimate the directional informa-
tion flow and dynamical complexity. Note that incomplete recovery of upstream dynamics
does not necessarily indicate a breakdown of our deterministic assumption; the present cross-
embedding method is generally data-expensive because required data length exponentially
increases with the dimension of a downstream attractor. Nevertheless, it turns out that our
method can still extract meaningful features of an underlying dynamical system even with
finite data size and in the presence of small noise, as shown in the next section (see also S4 Fig).

Robustness under divergent timescales and variability
In realistic setups that include observation noise and limited data points with various length of
signal autocorrelation (or “timescale”), quantifying the attractor complexity is not necessarily
straightforward, as already pointed out in dynamical systems studies [27,28]. Therefore, we
examined the robustness of our complexitymeasure against variation in signal timescales and
the level of observation noise. If the estimate is systematically affected by those signal proper-
ties, it complicates the interpretation of the complexity measure because different brain areas
are known to exhibit different timescales [24] and experimental observations inevitably involve
noise. We compared the present complexitymeasure to the five other related measures (Materi-
als and Methods): (i) correlation dimension [29], (ii) dimensionality derived from principle
component analysis (PCA), (iii) permutation entropy [30,31], (iv) algorithmic (Kolmogorov-
Chaitin) complexity [32,33], and (v) the optimal embedding dimension using the standard
(non-randomized) delay-coordinate [using the algorithm by [21], which was not specifically
designed to measure the complexity]. The measures (i) and (ii) were applied to the attractor
manifold that was reconstructed within the random delay-coordinate for each electrode signal.

Using the simulated dynamics with an artificial system (Materials and Methods), we con-
firmed two points. First, the present complexity measure is almost orthogonal to the timescale
(Fig 2A) and observation noise (Fig 2B). We also confirmed that the randomization of the
coordinates worked for avoiding the overestimation of complexity for relatively slow dynamics
(Fig 2C). Second, the conventional complexity measures can be sensitive to the signal proper-
ties such as timescale or observation noise. In particular, while the measures (i)-(iv) have been
widely used in neuroscience [11,12,34–39], we need to be careful with their interpretation in
the presence of such confounding factors. In contrast, our new measure is advantageous for
fair comparison of dynamical complexity across heterogeneous brain dynamics. Together, our
new measure based on cross-embedding has advantages in providing a reliable measure of
dynamical complexity under potential heterogeneity in timescale or observation noise. Note
that the primary aim of introducing coordinate randomization is the accurate and robust esti-
mation of complexity, but not of directionality. Directionality of interactions can be estimated
accurately without using coordinate randomization if we select the embedding dimensions
appropriately. We also confirmed the robust estimation of complexity and directionality under
the variation in system noise (S4 Fig).
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Cross-embedding analysis of large-scale cortical dynamics
Based on the cross-embedding framework, we explored the structure of physiological large-
scale neural dynamics that concern distinct brain states. We recorded the large-scale brain
dynamics from monkey electrocorticography (ECoG) recordings from most of the hemispheric
cortical surface (Fig 3A and 3B).

We performed the aforementioned cross-embedding analysis on the resting-state ECoG sig-
nals (Fig 3C–3F), as well as comparing conscious and unconscious brain states. The complexity
and the directionality were first computed for each electrode pair (128×128 = 16384 pairs in
total). Although the embeddedness hardly reaches the theoretical maximum value of one (1)
with real data under finite recording time, the asymmetry of embedding relation between an
electrodes pair was often clear and statistically significant (Fig 3E and 3F). To characterize
inter-areal interactions, we then averaged all the complexity and directionality observed within
each set of areas. Notably, the complexity varied depending on the targets, but not on the source
areas of directed interactions (Fig 3G); this is consistent with the feature that the current com-
plexitymeasure converges to the attractor dimensions of the target with sufficient data (see
Materials and Methods). Overall, the awake state showed higher complexity than the anesthe-
tized state (Fig 3H; p<10−5, sign test, paired samples). On the other hand, the directionality
depended both on source and target areas (Fig 3I). Although the lower and higher visual corti-
ces tended to show similar properties under the awake condition (Fig 3I, left), no clear struc-
ture was observed in the anesthetized state (Fig 3I, right). The structure of directionality
changed drastically between the awake and the anesthetized conditions, which was further con-
firmed by the small correlation between these values between the two conditions (Fig 3J; ρ =
0.01, p<10−4, Spearman rank correlation test). We also found that the structure of directional-
ity was less clear when we used an insufficient number of reconstruction dimensions (e.g.,

Fig 2. Cross-embedding with random coordinates dissociates interaction-relevant complexity from timescale or noise variations. (A) Complexity
estimates based on embedding y with x in the system used in Fig 1C–1F, where timescale of signal was varied. The estimates with each method were shown
as relative values to those at timescale = 0.5. The results were similar in embedding x with y. (B) The results where the observation noise level was varied.
The noise level corresponds to the standard deviation of the (zero-mean) normal distribution, from which noise were generated. The results are shown as
relative values to those at noise level = 0. Although both the standard- and random-coordinate embedding methods (circle symbols) are invariant to noise
level in terms of the relative values, the random-coordinate method estimates the true complexity more accurately in absolute values (see panel C). (C)
Coordinate randomization avoids overestimation of complexity. The markers and error bars indicate the averages ±s.e.m. across 10 trials with different initial
states of dynamics. Here, the pre-normalized complexity estimates using regular delay coordinates, (xt, xt-τ . . .) (open symbols), are compared with results in
Fig 1C (y embedded by x) which used random delay coordinates (closed symbols); other conventions follows those in Fig 1F. The theoretically predicted
embedding dimension of x (shaded bar) were accurately estimated using random coordinates, while the previous method using standard delay-coordinates
tends to overestimate it, even exceeding the total number of nodes (dotted line) in the simulated system, which upper bounds the theoretically possible
attractor dimensions by construction.

doi:10.1371/journal.pcbi.1004537.g002
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Fig 3. Cross-embedding analysis reveals large-scale cortical interaction, which can be missed by correlation-based statistics. (A) ECoG electrode
loci in a representative subject. (B) Illustration of cortical areas covered by the present recording system. (C) Example of ECoG signals. Gray traces
represent the signal from the all electrodes superimposed; green and magenta traces show the signals in an example electrode pair (electrodes 41 and 118).
(D) Cross-embedding analysis based on the state-space reconstructions for the example electrode pair, corresponding to Fig 1E and 1F. (E) Relationship
between coordinate dimensions and embeddedness in the example electrode pair, corresponding to Fig 1F. (F) Optimal embeddedness values as functions
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d = 1, Fig 3K), indicating the importance of dynamical history, not just momentary activity
levels.

Remarkably, the present cross-embedding analysis extracts a correlate of the brain-state
change much more clearly than the conventional characterization based on correlation. For
example, in terms of correlation among momentary electrode signals, the awake and anesthe-
tized states had similar network structures (Fig 3L), but with weaker correlations in the awake
state (p<10−5, sign test, paired samples with absolute correlation coefficients). This was con-
firmed by pair-wise correlation coefficients correlated between the awake and anesthetized
states (Fig 3M; ρ = 0.18, p<10−5, Spearman rank correlation test); the correlation between the
two conditions was significant even if the analysis was restricted to electrode pairs straddling
different cortical areas to remove trivial distance dependency (ρ = 0.52, p<10−5, Spearman
rank correlation test; S5A Fig). These results are in contrast to the drastic structural change in
the cross-embedding-based directionality values between the two conditions (Fig 3I and 3J).
Difference in the dynamics was also not obvious when the dimensionality of the multi-elec-
trode signal was reduced by PCA (S2 Fig). Furthermore, we found that electrode pairs showing
only weak correlation (correlation coefficient� 0) can have strong asymmetric interaction in
terms of directionality values (Fig 3N); in both awake and anesthetized conditions, the absolute
values of correlation coefficients, and directionality for individual electrode pairs, were overall
not strongly correlated (-0.0394<ρ<-0.0307, 95% confidence interval of Spearman rank corre-
lation) although they showed weak negative correlation within the three behavioral conditions
(Awake-eyes-closed, ρ = -0.02, p<10−29; Anesthesia (ketamine-medetomidine), ρ = -0.04,
P<10−46; Anesthesia (propofol), ρ = -0.02, P<10−4; Spearman rank correlation test). These
results demonstrate that cross-embedding and correlation extract different aspects of dynam-
ics. Specifically, brain-state dependent cross-areal interaction detected by the directionality was
not reflected in conventional correlation-based statistics. This fact may explain why some stud-
ies [37,40–42] but not others [13,43] have reported changes in the resting-state functional con-
nectivity depending on arousal level.

Complexity increases along directed interaction in the awake cortex
To relate the cross-embedding properties to the electrode loci on the cortex, we averaged the
complexity and directionality values over all source areas (Fig 4). It demonstrated three major
findings: First, dynamical complexity was much higher in frontoparietal areas than occipital
areas in the awake state (Fig 4A). Second, we found the information directionality in the awake
cortex from occipital to frontoparietal areas, indicating that latter areas were downstream of
the functional network (Fig 4B). This covariation of the directionality and complexitymeasures
is consistent with the prediction of the embedding theorem that receiving additional informa-
tion via directed interaction increases dynamical complexity. Third, these characteristic

of data length (number of data points) used in the analysis. The line colors corresponds to those in panel E. Note that the embeddedness values improve as
data length increases, which is a hallmark of causally coupled deterministic dynamics [21]. (G-K) Cross-embedding results. (G) The complexity of area-to-
area interaction are shown in the matrix formats, which show the results of interaction from areas specifying columns to areas specifying rows. (H) Scatter
plot of complexity in awake vs. anesthetized conditions; each dot represents a complexity value for each “effect” electrode, averaged across “cause”
electrodes. Dashed red line shows equality. (I) (Top) The directionality of area-to-area interaction are shown in the matrix formats. (Bottom) The directionality
among individual electrodes in a single subject. (J) Scatter plot of directionality in awake vs. anesthetized conditions; each dot represents the values for each
electrode pair. (K) The same as panels I, except for that the directionality values were computed based on the cross-embedding analysis with limiting the
embedding dimension to 1. (L-N) Correlation analysis of snapshot electrode signals. (L) (Top) Average correlation among areas. (Bottom) Correlation among
individual electrodes in a single subject. (M) Scatter plots of complexity, directionality, and correlation coefficient in awake vs. anesthetized conditions; each
dot represents the values for each electrode pair. (N) Comparison between cross-embedding-based directionality and correlation. Dashed red line shows
zero value of correlation. Panels G-L, N and O show the pooled results across the four subjects. LVC: lower visual cortex; HVC: higher visual cortices; TC:
temporal cortex; PC: parietal cortex; MSCmotor and somatosensory cortex; PMC: premotor cortex; lPFC: lateral prefrontal cortex; mPFC: medial prefrontal
cortex

doi:10.1371/journal.pcbi.1004537.g003
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Fig 4. Dynamical complexity and directed interaction within awake and anesthetized brain.Unlike
anesthetized brain, awake brain exhibited clear differentiation between frontoparietal and occipital areas.
This figure provides results in a single representative experiment, where subject state was changed from
awake (A and B), eyes-closed condition to anesthesia by injection of propofol (C and D). Loci of bubbles
correspond to electrode positions; the colors of bubbles indicate (A and C) the complexity or (B and D) the
directionality averaged across forecast electrodes. (The absolute values of complexity/directionality are also
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structures of directionality and complexity seen in the awake cortex disappeared under anesthe-
sia (Fig 4C and 4D). In particular, the complexity in the frontoparietal cortex was drastically
reduced, resulting in a more uniform distribution of complexity across cortical regions (Fig
4C). The electrodes within the same area generally shared these trends (Fig 4E). To summarize,
the distinct brain states seemed to be selectively characterized by the downstream complexity
(the higher dynamical complexity downstream of directed interaction) of a whole-brain func-
tional network.

Increased downstream complexity is a universal property of conscious
neuronal dynamics
Next, we questioned how universally these dynamical properties were observed across experi-
mental setups and conditions. For example, the complexity of dynamics could reflect only the
conscious-unconscious difference (i.e., the level of consciousness) in the brain state, or could be
affected by other cognitive experiences, such as visual stimulus or body movement (i.e., the
contents of consciousness) [44]. To dissociate these possibilities, we compared the current
results with two additional experimental conditions: “Awake-eyes-open” (where monkeys
freely viewed their environment, but their body movements were restricted) and “Food-reach-
ing conditions” (where monkeys were seeing and grabbing the food by moving their arms,
Materials and Methods). We found that the difference in complexity between inside and out-
side visual cortex distinguished the awake from the anesthetized brain state across individual
animals, regardless of substantial differences in behavioral or sensory experiences (Fig 5A).

These results suggest that high complexity in those areas reflects the conscious brain state
rather than specific cognitive processes induced during visual or motor experiences (cf. table in
Fig 6A). Notably, high complexity was consistently accompanied by downstream areas with high
directionality across the conditions (Fig 5B). The increase in complexity in conscious conditions
was significant not within the visual cortex (i.e., the upstream; p>0.2, Wilcoxon rank sum test),
but only outside of the visual cortex (i.e., the downstream; p<10−5, Wilcoxon rank sum test).

Moreover, further analysis revealed that the complexity and directionality were significantly
correlated across the electrodes in all conditions (Fig 5C; 0.49<ρ<0.62, p<10−86, Spearman
rank correlation test). This suggests that the co-occurrence of positive directionality (network
downstream) and high complexity is a fundamental property shared between conscious and
unconscious states, while the range of complexity and spatial structure of interactions differ
between these brain states. As we mentioned earlier, this relationship between the complexity
and network directionality, although not reported in the previous neuroscientific studies (to
our best knowledge), agrees with the theory of directionally-coupled deterministic dynamical
systems (as shown in Fig 1C), where the downstream system must have more complex dynam-
ics than the upstream system. Additional analysis supported this view by revealing that the
reduction in the top-down interaction (from outside to inside visual cortex) dominates the
increase in bottom-up interaction (from inside to outside visual cortex) during the change
from the anesthetized to awake-eye-closed condition (Fig 5D; p<10−5, sign test, paired sam-
ples). To summarize, we found (i) that an increased complexity downstream is generally
observed in neural dynamics (regardless of brain state), and (ii) that this property emerges
across the global cortical network under conscious brain states, which is likely to be a result of
enhanced bottom-up interaction (we further examine this point in a later section).

indicated by sizes of bubbles, for visibility.) (E) Area-wise complexity and directionality. Thin lines correspond
to the individual electrodes, and thick lines indicate averages and standard errors across electrodes within
each area.

doi:10.1371/journal.pcbi.1004537.g004
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It was also confirmed that details and operations of the analyses (spatial differentiation,
denoising, and orthogonality of the coordinate) did not change the results (S1A–S1D Fig).
Finally, the high complexity observed in the network downstream is not an artifact of unreliable
estimation of complexity for weakly interacting nodes because the resulting complexity struc-
ture was qualitatively and quantitatively unaffected when we restricted our analysis to the
strongest interacting nodes (S1E Fig). The results were cross-validated, thus random variability
in data does not explain our results. Together, these results revealed a robust structure of the
large-scale cortical hierarchy under consciousness, where the visual cortex was located
upstream exhibiting simple dynamics, whereas the frontoparietal cortex was located down-
stream exhibiting complex dynamics (Fig 6B and 6C). Therefore, we conclude that the down-
stream complexity revealed by the present cross-embedding analysis reflects a universal
property of neuronal dynamics that can dissociate the conscious and unconscious states.

Not timescale, but complex temporal pattern is critical for the brain-state
dependent hierarchy
In previous studies, the distinct brain states have often been described in terms of their typical
timescales of neural dynamics: e.g., slow oscillations in anesthesia/sleep vs. high-frequency

Fig 5. Universality of complex dynamics across different awake conditions. (A) Conscious and unconscious states are differentiated in the space of
complexity averaged across all areas inside and outside the visual cortices. Markers represent individual experiments. Results from four monkeys have been
superimposed. Note that the data from Reaching, Awake-Eyes-Open, and Awake-Eyes-Closed conditions are overlapped. (B) In conscious states, the
complexity and directionality simultaneously increase in the outside visual cortex relative to the inside visual cortex. The convention follows that of panel A.
(C) Complexity and directionality are correlated even in anesthetized condition. Each marker shows averaged complexity and directionality values (as in Fig
4) in each single electrode. (D) Anesthetization decreases the bottom-up interaction. The relative embeddedness reflects the dynamical coupling after the
baseline change correlation is subtracted (Materials and Methods). The black and gray bars indicate the strength of bottom-up (from visual areas to other
areas) and top-down (form other areas to visual areas), respectively. In panels A–C, the ellipses indicate the data covariance within individual conditions; the
darker gray ellipse indicates the covariance for the data pooling the ketamine-medetomidine- and propofol-induced anesthesia. The dotted line indicates
equality of average complexity. VC: visual cortex.

doi:10.1371/journal.pcbi.1004537.g005
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fluctuation in wakefulness [45–47]. The present findings on the hierarchy and brain-state
dependency of complexity are in contrast to the characterization based on timescale because
our complexitymeasure was designed to be invariant to the timescale.

Although its timescale-invariance was confirmed with the simulation (Fig 2A), one might
still consider the possibility that the change in complexity reflects the difference in the timescale
of neural dynamics. To directly exclude this possibility, we replicated the analyses using a dif-
ferent size of the unit delay in the state-space reconstruction. If the complexity depended on
timescale, this manipulation should yield different results. However, we found that the main
results, including the spatial distributions of complexity and directionality, were robust to the
substantial change in the unit delay size (Fig 7A). It should be noted that the use of the different
unit-delay can affect the embedding performance (Fig 7B) and the absolute value of direction-
ality (changed by 0.36 times), possibly due to the limitation in data length [an interpretation of
why 20-Hz unit-delay yielded better embedding performance is that signals with moderately

Fig 6. Increased complexity at the cortical downstream differentiates conscious form unconscious brain states. (A) Summary of task conditions. (B)
Cortical hierarchy defined by complexity. Areas aligned by complexity and relative directed interaction between them have been visualized. Arrows indicate
relative information flows from one area to another, which were quantified by average directionality for interactions between two areas (only strong
information flows exceeding 0.01 are shown). Complexity in visual areas was smaller than that in other areas during awake conditions (reaching: P<0.004;
awake-eyes-open and awake-eyes-closed: P<0.00007; sign test, matched samples), and this inter-area difference in complexity was reduced by anesthesia
(P<3×10−8; Wilcoxon rank sum test, independent samples). (C) Schematic summary of the main findings.

doi:10.1371/journal.pcbi.1004537.g006
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high frequency (e.g.,>5 Hz) had large contribution to reconstructing the attractor topology
under the noise and limitation of data length]. Nevertheless, the average directionality from
visual to other areas was still larger in the awake than anesthetized conditions (p<10−7; Wil-
coxon rank sum test), suggesting the qualitative robustness of the present results. In addition,
the complexity values themselves were quantitatively maintained across the different unit-delay
sizes (Fig 7C), which is reasonable since the complexity reflects the attractor dimensionality.
Although one might speculate that the complexity values were robust to the unit delay if they
reflected a temporally scale-free property such as ratio of time-constants between source and
target, it is unlikely since the data suggest that the complexity primarily depended on the target
areas, not on the combination of source and target (Fig 3F). Therefore, our results strongly sup-
port the view that this emergent hierarchy of complexity accurately reflects the hierarchy of
attractor dimensions, which is invariant to the timescale of dynamics.

If timescale is not critical, what determines this hierarchy? Our data suggest that it is the
dimensionality of an attractor underlying observed temporal sequences. For example, the cor-
relation structure (which was derived from the momentary signal values) was not sensitive to
the difference in brain states, as we have seen before in this paper (Fig 3L). This insensitivity is
not caused by the difference in analytical procedure between correlation and cross-embedding
because the brain state-dependency was not clear even with the cross-embedding analysis
when we limited the embedding dimension to one (Fig 3K). Rather, it is critical to take into
account the high-dimensional pattern of temporal sequence, not momentary “snapshots.”

Fig 7. Robustness to variations in timescale. The main result is not affected by lengthening the unit delay
although forecasting accuracy (embeddedness) was generally degraded by using suboptimal unit delay size.
(A) The replications of the results shown in Fig 5A, respectively, where a longer unit delay (100 ms) was used
for the state space reconstruction. (B) Optimal embeddedness in the all electrode pairs decreased by 0.21
times with the longer unit delay (p<10−5, sign test, paired sample across all electrode pairs). The figure shows
the embeddedness averaged inside (dashed lines) or outside (solid lines) visual cortex. (C) Complexity
(averaged inside or outside visual cortex) showed only small or not significant dependency to the unit delay
variation (inside visual cortex: changed by 0.90 times, p <10−4; outside visual cortex: by 0.80 times, p = 0.5;
sign test, paired sample, across all experimental sessions). This robustness validates that complexity reflects
dimensions of dynamical attractor rather than variations in timescale of signals. In panels D-F, the color code
follows that of panel B.

doi:10.1371/journal.pcbi.1004537.g007

Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004537 November 19, 2015 14 / 28



Altogether, the current results suggest that the brain-state change from the conscious to uncon-
scious condition is reflected in relatively complex dynamics of neural activities, which is not
reduced to conventional statistics such as timescale or correlation.

Models of interaction-induced complexity increase
What causes the increased complexity in the awake frontoparietal cortex? As directionality
from visual to frontoparietal cortex also increased under the awake conditions, a likely mecha-
nism would be that the increased bottom-up interaction caused the complex frontoparietal
dynamics. Alternatively, it is possible that increased complexity in the frontoparietal cortex
caused the change in the estimate of directionality in our cross-embedding analysis.

To examine this, we explored what mechanism can (or cannot) account for the present
results, using a simplified network model (Fig 8). Here, we consider three large clusters of the
nervous system: two (visual and frontoparietal cortices) correspond to those observed in the
present ECoG experiment while the last one is assumed an unobserved system (e.g., subcortical
structure). The contributions of cortical and subcortical mechanisms to the anesthesia-induced
loss of consciousness is currently a central subject of debate [48–52]. The unconscious (anes-
thetized) state was modeled by a network having only weak long-range coupling among the
three clusters, but is moderately coupled within individual clusters (Fig 8A), which follows the
experimental findings [40]. We simulated individual nodes with a linear-nonlinear model
including self-feedback (Materials and Methods). Note that our focus here is not on modeling
details of nervous systems but on illustrating the basic mechanisms of how complexity and
directionality change depending on the network properties.

The increase in complexity could be caused by three different mechanisms (Fig 8B–8D): (i)
increases in the bottom-up interaction from the visual to the frontoparietal cluster, (ii)
increased extra-cortical input from the subcortical to the frontoparietal cluster, and (iii) change
in intrinsic connectivity within the frontoparietal cluster. Simulation confirmed that all the
three mechanisms lead to an increase in complexity within the frontoparietal cluster (Fig 8B–
8D, fourth column). However, they differ in directionality related to the bottom-up interaction
from the visual to the frontoparietal cluster (Fig 8B–8D, fifth column). Only the first model
(with increased bottom-up interaction) predicted the increase in the visual-to-frontoparietal
directionality, replicating the present results. In contrast, the other two models showed no
increase in this directionalitymeasure, which is reasonable because those models do not
assume any mechanistic change in terms of the visual-to-frontoparietal interaction. Adding the
baseline correlation among nodes did not affect these qualitative results. It should be noted
that the results here do not reject partial contributions by (ii) or (iii), or the possibility that the
changing complexity reflects the variation in indirect interactions between the visual to the
frontoparietal areas via subcortical system. Whether direct or indirect, these simulation results
suggest that the sensory cortex contributes to shaping the conscious cortical dynamics, posing
important constraints on the models of brain-state dependent nervous activities.

Discussion
We have introduced an embedding-based computational method that bridges cross-area inter-
actions and emergent dynamics with a clear theoretical underpinning, but without making spe-
cific or reductive assumptions about brain systems. The method is based only on generic
dynamical properties and is readily applicable to systems that are difficult to model. Indeed, it
has successfully captured features that can be easily overlooked by conventional reductionist
approaches, such as spatiotemporal variations in complexity itself (e.g., Fig 4A and 4C). In
addition, unlike PCA or power spectrum analyses in temporal frequency domains, this method
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Fig 8. Possible mechanisms of changing frontoparietal dynamics in the conscious brain state. (A) Simplified architecture of nervous system under
unconscious (anesthetized) state. In the unconscious state, three clusters (frontoparietal, visual, and subcortical systems) have no strong nonlinear
interaction. (B) Model 1: the frontoparietal complexity is increased by the enhanced bottom-up interaction. (C) Model 2: the frontoparietal complexity is
increased by subcortical input. (D) Model 3: the frontoparietal complexity is increased by change in the connectivity inside of the frontoparietal system itself.
Only Model 1 accounts for the increase in the directionality from the visual to the frontoparietal cortex, which was observed in the experimental data. (From
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can fully exploit nonlinear and directed interactions between brain areas. One caveat of the
present method is that it may not always detect veritable underlying causal interactions if the
data length is restricted. Despite this limitation, the embedding-based characterization of inter-
actions is advantageous over existing prediction-based methods, such as Granger causality or
transfer entropy, because it is not confounded by self-predictability [21] (S3B Fig). That is, a
node’s own historical trace is generally sufficient to predict its future regardless of the presence
or absence of causal interactions from other nodes in a deterministic system.

It is important to discriminate the embedding in a rigorous mathematical sense from that
for practical data analysis. Embedding in a rigorous mathematical sense is not defined in the
presence of noise. However, in practical applications, embedding-based analysis can extract
underlying dynamical features with a resolution limited by the noise. Indeed, the method suc-
cessfully estimated the dimensionality of an attractor and the structure of interactions in the
system (as we showed in S4 Fig, and as demonstrated by Sugihara et al. [21]) unless noise is too
large. We believe that the present cross-embedding based analysis yields new insights from the
practical viewpoint, in purpose of analyzing deterministic aspects of in neural dynamics. This
view is supported by the fact that the present results are fully consistent with a mathematical
property of a deterministic system, in which the cortical areas estimated as network down-
stream have higher complexity than the upstream areas. This structure was highly robust to dif-
ferent versions of analytic procedures and parameters (S1 Fig).

Based on this method, we simultaneously characterized the large-scale cortical interaction
and the dynamical complexities embedded in individual area activities. It revealed that the
awake brain has a hierarchical structure of the dynamical complexity, where the frontoparietal
areas had more complex dynamics than visual areas. Intriguingly, this hierarchy was linked to
the directed cross-area interaction from visual to frontoparietal areas. To our best knowledge,
this is the first study reporting clear cortical hierarchy in terms of dynamical complexity, as
well as its relationship to the global cortical interaction. Moreover, we found that this hierarchy
was universal across different behavioral/sensory conditions and disappeared after the loss-of-
consciousness induced by either of two different anesthetization methods. These results indi-
cate that this hierarchical structure is correlated with the level of consciousness rather than its
specific contents reflecting perception or action.

The present results demonstrate that the correlation structure was similar (correlated)
between awake and anesthetized conditions at a whole-brain scale (Fig 3L and 3M), albeit with
slightly larger absolute correlation strength in the anesthetized condition. On the other hand,
some previous studies show that the brain states can be differentiated based on correlation-
based analysis [53,54]. Although the exact reason behind this discrepancy is beyond the focus
of this work, one potential reason is the difference in natures of signals to be analyzed. For
example, the correlation based on slow fMRI signal might correspond to a nonlinear sum of
the ECoG-based correlation across a wide range of time-delays. We do not exclude the possibil-
ity that the correlation-based measure can differentiate the two conditions. Instead, we empha-
size that the correlation and directionality are conceptually distinct measures—we can
intuitively expect that two electrodes can be highly correlated despite week directionality in
their interaction if the two sites are bidirectionally interacting with the equal strength. More-
over, we observed that the area pairs showing only weak correlation can have large value in the

left to right columns) Network architecture, mechanistic connectivity matrices, directionalitymatrices derived based on cross-embedding analysis with
simulated dynamics, average complexity in the frontoparietal cortex, the averaged directionality from the visual to the frontoparietal cortex. V: visual cortex.
FP: frontoparietal cortex.

doi:10.1371/journal.pcbi.1004537.g008
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directionality measure, and vice versa (Fig 3O). This result was also robust to the exclusion of
intra-areal electrode pairs (S5B Fig).

From the theory and modeling, we proposed that the increasing complexity at the frontopar-
ietal cortex under awake conditions is likely to be a consequence of enhanced (direct or indi-
rect) bottom-up interaction from the visual cortex. Another way of accounting for the current
data is to assume that the frontoparietal cortex is always downstream of the visual cortex, and
that the former simply reflects input from the latter in the unconscious state. In this case, we
do not observe any hierarchy among them under unconscious state since the visual and fronto-
parietal cortices have exactly the same dynamical complexity. When the transition to the con-
scious state causes some additional input or self-recurrence in the frontoparietal cortex, it no
longer simply reflects the visual cortex and can have more complex dynamics. Although theo-
retically interesting, this hypothesis requires several physiologically questionable assumptions.
First, there is currently no evidence supporting the idea that the visual cortex drives the entire
cortical dynamic in the unconscious state. Second, it assumes no local recurrent connection
within the frontoparietal area under unconsciousness, which is not consistent with the experi-
mental findings (e.g., [40]). Nevertheless, we do not reject such the possibility in this paper. To
directly test which mechanism is the most likely, we can stimulate the visual cortex (using tran-
scranial magnetic stimulation or other methods) and compare the efficacy of bottom-up signal
transmission from the visual to frontoparietal cortex, among different brain states. If the fron-
toparietal cortex simply reflects the visual cortex under unconsciousness, the former should
precisely reflect the stimulation pattern in the latter. On the other hand, if the bottom-up inter-
action varies among the distinct brain states (as we hypothesized in the above), the stimulation
in the visual cortex would have fewer effects on the frontoparietal cortex in the unconscious
than the conscious state. Whichever hypothesis is true, our present finding emphasizes the link
between frontoparietal dynamical complexity and bottom-up interaction. It inspires a novel
debate on the organization of the state-dependent cortical dynamics by suggesting that the
interaction originates from the sensory cortex, which seems to be of much greater importance
than previously expected.

In a current theory of consciousness, the high complexity and integrative interaction have
been proposed as two important aspects of the conscious experience [4], but their relationship
remains elusive. A previous study that quantified dynamical complexity [11,38] did not focus
on spatial distribution of the complexity measures across brain areas, or on, its relationship to
information transfer. Conversely, while previous studies have reported that functional connec-
tivity can differentiate conscious and unconscious brain states [40,55–57], this was not linked
to local dynamical characteristics. Hence, the present result establishes for the first time tight
relations between these two concepts by quantifying them in a unified framework, and by
revealing structural correlates of cognitive brain states. Our findings on an area-specific con-
sciousness analogue in the frontoparietal cortex is concordant with its proposed role as a
workspace for information sharing [17]. However, the present embedding-based approach
conceptually advances this model by suggesting that its highly complex dynamics are the sub-
strate of embedding the information across wide-spread brain areas, specifically in conscious
states (Fig 4B). Our data and model suggest that, although the frontoparietal area is a key
region, its characteristic dynamical complexity is likely to be a consequence of integrating
brain-wide information including the sensory cortex. In this sense, the present results are also
consistent with the view that finds the basis of consciousness in brain-wide interaction, rather
than in a specific area [4,19,20]. A particularly unique aspect of the cross-embedding concept
is that the information integration does not necessarily require observation of spatially distrib-
uted dynamics, but can be achieved by localized complex dynamics that embeds the global
state.
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More generally, the cross-embedding property highlights the universal importance of neu-
ronal dynamics in information coding. Embedding describes the observability of information
in one brain area by another area, fulfilling a prerequisite for the actor-critic models of brain
systems [58]. While a similar concept has been proposed in terms of anatomical connectivity
as an internal monitoring property [59], it has not been linked to neuronal dynamics. Complex
dynamic in one area that embeds a high dimensional attractor is generally capable of differenti-
ating a large number of states that characterize its entire “upstream-area”. For example, the
embedding dimensions outside of the visual cortex were typically larger than one (Fig 6B),
indicating that substantial information is embedded not only in single momentary states, but
also in complex temporal sequences of neuronal activity. How the brain utilizes such tempo-
rally encoded information remains an open problem, nevertheless, temporal sequences in non-
stationary attractor dynamics have been suggested to subserve behaviorally relevant informa-
tion [60,61]. Based on the current delay-embedding framework, one can extract more in-depth
information about an attractor’s topology [15,16] and its characterization would facilitate an
understanding of dynamic information coding and messaging across brain areas. Together,
these results suggest that computational approaches based on dynamical cross-embedding will
be generally applicable to study complex neuronal interactions in large-scale physiological
dynamics of the brain.

Materials and Methods

Ethics statement
All the experimental procedures were approved by the RIKEN Ethics Committee.

Electrophysiological recording
We used ECoG data that were recorded from four monkeys. 128 channel ECoG signals were
recorded from a wide field of a hemisphere for each monkey brain, covering the lower and
higher visual cortices, temporal cortex, parietal cortex, motor and somatosensory cortex, pre-
motor cortex, and lateral and medial prefrontal cortices; the medial prefrontal cortex was
recorded from two of the four male monkeys (threeMacaca fuscata and oneMacaca mulatta).
The details on the recording apparatus have previously been reported [62], and part of the
dataset is available online (http://neurotycho.org).

Tasks
Food reaching condition. Amonkey sat facing an experimenter across a table in each ses-

sion. The head and a hand on the same side of the ECoG array of the monkey were fixed.
Another experimenter placed food (a piece of apple) either in front of the monkey or in front
of the experimenter, using a dish attached to a bar to carry the food. The dish with the food
came down from the top from the monkey’s point of view. The monkey grabbed the food and
ate it. The food was delivered once every 10–20 s.

Awake and anesthetized conditions. The monkeys were sitting calm with their head and
arms restrained. A ketamine-medetomidine cocktail was injected intramuscularly, or propofol
was injected intravenously [42]. Each experiment consisted of three periods: (1) awake-eyes-
open, where the monkeys were in a resting state with their eyes open, (2) awake-eyes-closed,
where the monkeys were in a resting state with their eyes covered, (3) deep-anesthesia, where
the monkeys were in a state of loss of consciousness (LOC). LOC was defined by a monkey’s
loss of responsiveness to its hand being manipulated and to having its nostril/philtrum touched
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with a cotton swab. We observed slow wave oscillations in the neural signal [42] as an addi-
tional confirmation of LOC.

Data analysis
For the food-reaching experiment, the data were extracted from periods where the monkeys
were moving their arms. Chewing noises were eliminated from the main analysis by excluding
the post-food-grabbing periods (typically 2–15 s) where the channel-averaged signal was
higher than the 75th percentile of the whole data. We did not apply pre-filtering to the ECoG
signals before the subsequent analyses, except for eliminating the 50±2.5 Hz component,
which included line noise due to the recording apparatus. We separated the recorded signals
for the anesthetization experiment into blocks corresponding to awake-eyes-open, awake-eyes-
closed, and deep-anesthesia periods, and applied embedding analysis within each block. The
total data length was 400 s. Data were analyzed using random coordinate cross-embedding (see
next section for details), which we developed to reliably measure attractor dimensions. The
inter-subject average was obtained by averaging the results across electrodes within individual
areas of each subject and experiment, before they were averaged across subjects and experi-
ments. The data from the medial prefrontal cortex were analyzed for the two subjects for which
they had been recorded.

Random coordinate cross-embedding
In this section, we explain the technical details of the cross-embedding algorithm while the
problem formulation and the theoretical principle themselves are presented in Results. The
algorithm was based on the convergence cross-mapping (CCM) method, which was proposed
in ecosystem analysis [21] as an extension of nonlinear state-space reconstruction [22,23,63].
Although the original method was shown to characterize the causal interaction in ecological
system with 2~5 variables, its applicability to analysis of dynamical complexity in large-scale
and heterogeneous systems (such as the brain) has been not clear. The CCM alone does not tell
us how the causal interactions are related to the emergent neural dynamics and functions.
Moreover, we find that the state-space reconstruction based on the original delay-coordinate is
severely affected by the heterogeneity in signal timescale across the system. Therefore, we
developed a method to simultaneously quantify the causal interaction and dynamical complex-
ity, by utilizing random projection in the reconstructed state space.

We quantified the pairwise dynamical relationships based on a delay-embedding theorem
in nonlinear dynamical systems including external forces [26,64–66]. We first reconstructed
the attractor manifold for each node x in the delay-coordinates,
xdmax

t ¼ ðxt; xt�t; . . . ; xt�ðdmax�1ÞtÞ, where dmax represents the maximum number of dimen-

sions (number of delay-coordinates) to be considered, t is the time point, and τ is the unit delay
length. Although the original protocol uses this delay-vector for subsequent nonlinear forecast-
ing analysis [22,23,63], we found that it makes the results vulnerable to the time-scale heteroge-
neity in the system. We avoided this problem by projecting delay vector xdmax

t to a randomized
coordinate space by multiplying a square random matrix, R, from the left to obtain a trans-
formed vector: xdmax

t ¼ R xdmax
t , which is equivalent to considering the time series convolved

with preset random filters [In our dataset, the distribution of random numbers did not have
much effect on the results, at least for widely-used distributions (e.g., Gaussian or uniform dis-
tribution); in the current analysis, we used Gaussian distribution centered at zero with standard
deviation of one]. A d-dimensional delay vector xd

t was constructed by selecting the first d
(� dmax) components of xdmax

t . The topological embeddedness for signal y by another signal x
was quantified based on the correlation coefficient, ryt ;ŷðxt dÞ, between the true (yt) and forecast
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(ŷ tðxd
t Þ) signals, where

ŷ t ¼
X

t0 s:t: xd
t0 2Bðx

d
t Þ

wðjxd
t0 � xd

t jÞ yt0

with the k-nearest neighbor set Bðxd
t Þ of xd

t in the delay-coordinate space. We set k = 4, weight

wðjxt0
d � xt

djÞÞ ¼ e�jxt0 d�xt
d j=Sxt0 d2Bðxt dÞ e

�jxt0 d�xt
d j, and jxd

t0 � xd
t j as the square distance between

xd
t0 and x

d
t in the data analysis. Note that ryt ;ŷðxt dÞ ¼ 1 means perfect embedding, where observ-

ing xd
t completely eliminates the uncertainty of estimating state y and the conditional probabil-

ity density distribution Pðytjxd
t Þ becomes a delta function. The relative embeddedness was

derived by subtracting the embeddedness with d = 1 from that with d = d� to extract the cou-
pling of complex temporal structures, which is not reflected in correlation.

All the analyses were conducted after normalizing the signal variance to one, in order to
avoid heterogeneity in signal amplitude affecting the estimation accuracy. All estimation accu-
racy was measured with two-fold cross-validation, in which 1000 uniformly subsampled time
points (t) from the latter-half of the data were predicted based on the embedding relation to
the former-half, to avoid the confounding effects of over-fitting [27].

This procedure of random projection was introduced to avoid systematic biases in estimat-
ing the embedding dimension based on finite data sets. Adjacent components (e.g., xt, and xt−τ)
typically have some non-zero correlation in a standard construction of delay-coordinate vector
xdmax

t , depending on the signal timescale. A greater number of dimensions may be required to
untangle the attractor manifold due to non-negligible correlation among the delay coordinates,
leading to an overestimation of complexity. In addition, since the magnitude of overestimation
depends on the signal timescale, the estimated complexities will be contaminated by variations
in signal autocorrelation [27,67]. This problem does not arise after the effect of signal autocor-
relation [67,68] is eliminated by applying the above-mentioned coordinate-randomization pro-
cedure. Indeed, the simulation demonstrated that estimated complexity typically became more
accurate with the randomization procedure (Fig 2C).

The intuition behind random matrix multiplication is as follows. When the studied signal
has relatively slow dynamics, the signal values at two adjacent time points, x(t) and x(t-τ), can
be similar if unit delay τ is small compared to the time constant of the signal. In this case,
observing x(t-τ) in addition to x(t) does not practically add much information about the system
state. As a consequence, small τ can lead to overestimation of dimensionality in standard delay
coordinates. Hence, estimated dimension sensitively depends on the choice of τ in pre-ran-
domized delay coordinates. Using the randomized delay coordinates alleviates this problem. In
this case, each observation is linear sum of observations at across widely different time delays,
where a weighted sum of observations at intermediate delays always well characterizes the sys-
tem dynamics. As we explained above, summed observations at small delays do not add much
information but are not harmful. Summed observations at large delays can add variability if the
system is very noisy (because noise can accumulate in time) but generally does not bias charac-
terization of system’s state. Hence, the choice of the maximal delay requires much less tuning
than the choice of τ in the standard delay coordinates.

Complexity
The complexity of dynamics concerning pairwise interaction was quantified using minimum
embedding dimension d� that yielded� 95% of optimal estimation accuracy maxd ry;ŷðxt dÞ,

which is an extension of the false-neighbor method [27,28,68] to the present cross-embedding.
(Our ECoG results were robust when complexity was instead defined as the minimum
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embedding dimension that yielded 90% or 100% of the optimal estimation accuracy.) Note
that in real data with a limited sample size, the accuracies sometimes did not have plateaus but
have a peak followed by a gradual decrease [23]. In this case, complexity corresponds approxi-
mately to a dimension that maximizes estimation accuracy. Estimating from the upstream to
downstream nodes is generically incomplete (correlation coefficient< 1) because the latter
does not embed the former; even in such cases, estimation accuracy depends on the embedding
dimension, and we can quantify complexity with the same procedure. While the method cannot
estimate the attractor dimension of the target electrode if the cross-embedding method detects
no interactions, this only occasionally happened in our analyses of the ECoG data. As expected
from this characteristic, our results were qualitatively and quantitatively the same when we lim-
ited our analyses only to most strongly interacting pairs of electrodes.

Directionality
The directionality in interaction from x to y was quantified by the difference between optimal
estimation accuracies: ry;ŷðxt dÞ � rx;x̂ðyt dÞ. This takes a positive value when there is directed inter-

action from x to y. Note that stochastic components within an upstream system is not embed-
ded by downstream dynamics since the embedding requires deterministic nature of dynamics.
However, the directionality of causality between as pair of nodes should be detected by a node
asking the other node whether there is any asymmetry of observability (conditional entropy) of
a node by the other node [21], even under some stochasticity due to system noise (S4 Fig). It is
worth noting that detecting a clear causal relationship by Transfer entropy [69,70], Granger
causality [71] or spectral Granger causality [72,73] is not straightforward unless the system’s
dynamical properties are well known, due to the confounding effects of phase delay [74] or
self-predictability in deterministic dynamics [21].

Parameter selection
In the present analysis, we used unit delay τ = 20 ms and embedding dimension dmax = 30 in
the main analysis. The optimal unit-delay depends on noise/dynamical property, and again,
has to be selected generally depending on each dataset to be studied. Note that our point in Fig
7 is not to show that 20-ms delay is “the optimal” but to demonstrate that the complexity and
relative relationships in terms of network upstream-downstream is robust to selection of unit
delay. The embedding dimension, dmax, does not affect the results in theory, as long as our
methodological assumptions hold and if we set dmax sufficiently larger than true dimensions
of attractor. In practice in the presence of noise in the system, however, the embedding perfor-
mance slowly falls if we choose too large dmax. However, this dmax dependency is not very
sensitive because intermediate delays always provide good signal about system’s state and,
while large delays gradually add some variability, they do not bias the estimate. Since we do not
know a-priori the maximum dimensionality of attractors in general, dmax has to be selected ad
hoc manner depending on data to be studied. In this study, we set dmax = 30 empirically by
observing that the accuracy of nearest-neighbor mapping (measure of “embeddedness”) satu-
rates, at most, around dimensions 10.

In the current data, we used total data points in each segment at order of 10000 to obtain
robust results. When we decrease the number of data points (e.g., 6000 or 2000), the accuracy
of nearest-neighbor mapping were degraded, although the relative patterns (e.g., asymmetry in
mapping accuracy) tended to be preserved. Regarding how to estimate the sufficient data
length, one rough estimate is based on the dimension of an attractor, d. For example, if n data
points per dimension are needed for accurate prediction, the total points required would be
~nd. While the number of required data points also depends on spatial roughness of the
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attractor, this provides a reasonable estimate. A more sophisticated estimate may be possible
by fitting the attracter using a manifold learning algorithm.

Effect of data variance
Although we normalized the data before the present analyses to make the results comparable
to the correlation analysis and to rule out the possibility that the heterogeneity in signal ampli-
tude variability affected the results, the embedding analysis is, in principle, scale invariant. The
mathematical concept of embedding relies only on the topological property of attractor
dynamics, which has by definition nothing to do with the scale of the signal amplitude (e.g.,
variance). In this sense, the principle of method is scale invariant. In practical implementation,
however, the result of the analysis can be affected by the scale of signal under a limited data
length. For a concrete example, we used a nearest neighbor model to construct a mapping from
a reconstructed attractor to the other one. In this case, the results depend on how we define the
“neighbor” of a data point. Unless we have infinitely long data, the data points are distributed
on the attractor with some sparcity. Keeping the number of total data points fixed, the larger
signal scale leads to the smaller absolute density of data points (number of data points in a unit
cube/sphere in the state space). If the neighbor of a data point were defined with the unit cube/
sphere around it, the number of other data points inside the neighbor would be affected by the
absolute density of data points, and thus the result would depend on the scale of signal. On the
other hand, in the present method, we defined the neighbor not by unit cube/sphere but by the
simplex spanned by k-nearest points of each data point with keeping k constant. In this
method, the number of the data points to construct nearest-neighbor mapping does not
depend on the scale. We also confirmed that the normalization procedure was not critical in
the present finding (S1E Fig).

Other complexity measures
The correlation dimension was computed with the algorithm proposed by [29]; the PCA
dimension was quantified by the number of dimension explaining 90% of the all variance; the
permutation entropy was derived using the algorithm proposed by [31]; the algorithmic com-
plexity was derived with the method proposed by [75]; the complexity with standard delay-
coordinate was given as the optimal embedding dimension in the algorithm proposed by [21].

Artificial system
The example dynamics in Fig 1C–1F were generated based on the following coupled Rössler
oscillators:

T _x1 ¼ �ðZ1 þ z1Þ ðx2 þ 11Þ=2; T _x2 ¼ �ðZ2 þ z2Þ;

T _Z1 ¼ x1 þ 0:2Z1; T _Z2 ¼ x2 þ 0:22Z2;

T _z1 ¼ z1ðx1 � 5:7Þ þ 0:2; T _z2 ¼ z1ðx1 � 5:6Þ þ 0:2;

where the dots indicate temporal differentiation;~x = (ξ1, η1, z1),~y = (ξ2, η2, z2), and (xobs, yobs)
= (ξ1, ξ2) in Fig 1C. Parameter T controls the timescale of the dynamics. The signals were gen-
erated using a fourth-order Runge-Kutta method with a time step of 0.01, and subsampled
with a time step of 0.1 in the embedding analysis, where we used τ = 4 and dmax = 20.
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Network simulation
In Fig 8, the brain dynamics were simulated with the following difference equations:

xiðtÞ ¼ f
X

j

Jijxjðt � 1Þ
0
@

1
Aþ biðtÞ;

Where xi(t) is activity of ith node at time step t, Jij is the connectivity from jth to ith node, and f
(x) = x exp[3(1 –x)]. The activation function, f, is interpreted as a qualitative model of balanced
local circuit, although our aim here is not to provide a detailed model of nervous systems but to
demonstrate the basic mechanisms with a simplified example. We set Jii = 1 for all i. Inter-node
connectivity (Jii) was randomly sampled from a normal distribution [mean = 0, and standard
deviation = 0.1/N (within cluster) or 0.5/N (between cluster), where N is the total number of
nodes in the whole network], or set as zero, depending on the models; in the model 3, the con-
nectivity within the frontoparietal cluster was doubled, except for the self-feedback (Jii). bi(t) is
the bias input; to add the baseline correlation, we assumed the bias term irrelevant to brain
state, and modeled it with a sinusoidal function with random amplitudes and phase. We ran
the simulation for 1000 time steps, with 5 nodes for each clusters for illustrative purpose
(increasing the number of node had not much effect on the simulation results; note also that
the number of nodes does not directly reflect the number of ECoG electrodes). After the gener-
ating simulated dynamics, we performed the same cross-embedding analysis as the one used in
the main ECoG results (except for that here we used the unit time-delay of 1 time step).

Supporting Information
S1 Fig. Robustness to analytical methods. Trends are reproducible across recording days, ani-
mals, and types of anesthetic chemicals. (A) Bipolar analysis, in which differential signals from
neighboring electrode pairs were used as data. (B) Analysis without eliminating chewing period
(see Materials and Methods). (C) The results in which the random matrix with orthogonal
basis was used for the coordinate transformation. (D) Results using electrode pairs that showed
significant interaction (64.5 ± 3.24% [mean ± SEM] of pairs that have P< 0.01 by the Pearson
correlation test for the embedding-based forecasting performance). (E) Results without nor-
malization of signal variability before the analysis. (Top row) Convention follows that in Fig
5A. (Bottom row) Convention follows that in Fig 5B.
(PDF)

S2 Fig. Multi-area dynamics have complex structures. Dynamics of the all electrodes shown
in three principal components, where the 128 electrode dynamics were reduced using PCA,
based on the correlation matrices. Results for (left) awake-eyes-closed and (right) propofol
anesthesia in a single subject are shown.
(PDF)

S3 Fig. Distribution of interaction strength. (A) The distribution of p-value in the embed-
ding-based forecasting performance (correlation between forecasted and true data). The major-
ity (64.5%) of electrode pairs showed significant interaction (p<0.05). (B) The p-value
distribution in transfer entropy, where we used nonuniform embedding-dimension technique
[70] for a fair comparison. In panels A and B, data from the all experimental sessions are com-
bined. Filled bar: significant pairs; open bars: not significant pairs.
(PDF)
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S4 Fig. Robustness of embedding results under system noise. Results of the cross-embedding
analysis where moderate system noise were added to the system shown in Fig 1C–1F. Gaussian
random noise were added to each node in every time step. The noise level denotes the standard
deviation of noise component per unit time, where the dynamic range of signal is about ±1.
(System noise> 0.05 per every unit-time made the simulated attractor dynamics unstable) (A)
The estimated complexity. (B) The estimated directionality. Note that the polarity of direction-
ality is maintained when the noise level vary.
(PDF)

S5 Fig. Robustness of correlation analyses to removal of short-range interactions. (A and B)
The same as Fig 3M and 3N, but the electrode pairs within the same cortical areas were elimi-
nated from the analyses.
(PDF)
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